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Summary. Starting from a general characterization of logical inferences, I consider
abductive reasoning, which aims at finding likely causes for observed symptoms.
Such inferences are not truth preserving and thus it is necessary to assess their
conclusions, to compare different explanations of the same findings, and finally to
select the “best” hypothesis. Since in a large number of applications probabilistic
graphical models are a mathematically sound and also very convenient tool for these
operations, I discuss how they can be used to make abductive inference feasible.

1 Introduction

Abduction is a form of non-deductive logical inference, which aims at finding
explanations for observations made (PEIR58; SALM73; CHAR97; PENGS89;
JOSE96; BORGO00). On the other hand, probabilistic graphical models are a
method to structure a multivariate probability distribution (mainly by finding
a way to decompose it into distributions on lower-dimensional subspaces) and
to compute efficiently (conditioned) marginal distributions on subspaces, espe-
cially individual variables (PEAR92; WHIT90; LAUR96; CAST97; JENSO1;
GAMEO04). Hence, at first glance, there seems to be little that these two ar-
eas have in common. However, the two notions are closely connected through
(probabilistic) hypothesis assessment and statistical explanations.

In order to reveal this connection, I study a general model of abductive in-
ference and hypothesis assessment. Unfortunately, this model is not suited for
implementation, because it needs too much storage space and also because
usually its parameters cannot be determined reliably. Direct approaches to
simplify the model render it manageable, but require strong independence as-
sumptions that are hardly acceptable in applications. Therefore a modeling
technique is desired, by which we can take dependences between the involved
variables into account, but which nevertheless lets us exploit (conditional)
independences to simplify the model. One such technique, which has become
very popular, are probabilistic graphical models. I review this modeling tech-
nique and discuss how it can be used for abductive inference.
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2 Categorization of Logical Inferences

Logic, in the most general sense, describes the structure of languages in which
one can argue. That is, logic is the (formal) theory of arguments, where an
argument is a group of statements that are related to each other. More pre-
cisely, an argument consists of one statement representing the conclusion and
one or more statements that give reasons supporting this conclusion. These
latter statements are called premisses (SALM73). The process of deriving the
conclusion from the premisses (using an argument) is called inference. Argu-
ments are studied by analyzing the inference rule that is used. Such rules are
usually stated in the form of argument schemes.

Lukasiewicz showed (according to (BOCH54)), that all logical inferences
can be divided into two classes, which he called deduction and reduction. By
exploiting logical equivalences we can modify the premisses of all arguments
in such a way that arguments with only two premisses result. One of these
premisses is a conditional or an implication (an if-then-statement), the other
is equivalent either to the antecedent or to the consequent of this conditional®:

Deduction: A— B Reduction: A— B
A B
B A

Both of these inference rules are based on the tautology ((A — B)AA) — B,
but they use it in different ways, which results in different properties.

Deduction serves the purpose to make all truths explicit that are deter-
mined by a set of statements. These truths are found by constructing appro-
priate arguments, which yield true conclusions, provided their premisses are
true. Obviously, this holds only if no information is added to what is already
present in the premisses. (If information was added, we could not guarantee
the truth of the conclusion, because we would not know whether the additional
information is correct.) Thus the basic properties of deduction are that it is
infallible, but it does not tell us anything new (w.r.t. the premisses). These
properties are a consequence of the fact that deductive inferences correspond
exactly to tautologies (like, for example, the modus ponens).

Reduction serves the purpose to find explanations for statements that de-
scribe, for example, observations made. Obviously, the second premiss of a
reductive argument can be obtained from the first premiss (the conditional)
and the conclusion by a deductive inference. This is the rationale underlying
them: the premiss B becomes a logical consequence and is thus “explained” by
the conclusion. The drawback is that reduction is not truth preserving (which
is not surprising, since information is added). Thus, the basic properties of
reduction are that it is fallible, but as a compensation it tells us something
new (w.r.t. the premisses). These properties are a consequence of the fact that
there are no tautologies to which reductive inferences correspond directly.

1 To avoid some technical problems, I implicitly assume throughout this paper that
conditionals may or may not be (multiply) universally quantified.
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Reduction can be further divided into induction and abduction.? This di-
vision is not based on the argument scheme, but on the types of statements
involved: Induction goes from particular statements describing, for example,
observations, symptoms, experiments etc., to general statements, that is, hy-
potheses and theories. Abduction, on the other hand, is a reductive inference
in which the conclusion is a particular statement (BORGO00). Using a notion
of formal logic, we may also say that abduction is a reductive inference with
the conclusion being a ground formula. That is, it must not contain variables,
neither bound nor free, since they would render it a general statement.

Note that an analogous distinction is made for deduction, namely in the
hypothetico-deductive method of science (HEMPG66). There it is necessary,
because only particular statements can be confronted with experimental find-
ings; we can never observe a general law directly (POPP34). However, as far as
I know, there are no special names for these two types of deductive inferences.

3 Hypothesis Assessment

A reductive—and thus an abductive—inference can yield a false conclusion,
even if the premisses are true (due to the information added in the inference,
see above). This is usually made explicit by calling the conclusion of a re-
ductive argument a hypothesis or a conjecture. Therefore results of abductive
inferences have to be assessed in order to minimize the chances that they are
wrong.® The main criteria are (I do not claim that this list is complete):

e Relation between antecedent and consequent
There must be a semantic connection between the antecendent and the
consequent of the conditional, since otherwise the material implication
used in formal logic allows for an abundance of meaningless explanations.

e Relation to other statements
The inferred conclusion must be consistent with statements that are not
used in the inference, but are known to be true (background knowledge,
accepted theories). On the other hand, a hypothesis gets more plausible if
several independent reductive arguments lead to it.

e Parsimony (Ockham’s razor)
An explanation should be as simple as possible, that is, should make as
few and as simple assumptions as possible (pluralitas non est ponenda sine
necessitate), since complex hypotheses are usually less likely to be true.

2 There are other ways of defining abduction, which are discussed, for example, in
(JOSE96; GABB00). However, I reject these alternative definitions due to reasons
which are explained in detail in (BORGO00).

3 Note that most of the confusion about the meaning of the term “abduction” comes
from a lack of distinction between the logical inference and the assessment of its
result. Thus it is not surprising that there are as many different interpretations
of the term “abduction” as there are criteria to assess hypotheses.
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e  Probability
By exploiting prior and conditional probabilities we may sometimes be
able to compute or at least estimate the probability of a hypothesis. This
allows us to formally compare different hypotheses on solid grounds.

It should be noted that the last criterion (probability) captures a large part of
the other criteria in a formal way. For example, parsimony can be seen as an
intuitive and simplified probability assessment, since hypotheses combining
several independent assumptions are usually less probable then simple ones
making only a single assumption (as the probabilities of independent assump-
tions multiply). An exception are semantic considerations, which have to be
treated, for instance, by fixing the set of useable conditionals and the set of
abducibles (acceptable abductive hypotheses), maybe by a formal language.

4 Probabilistic Inferences

Up to now I assumed implicitly that the conditional (implication), which
appears in deductive as well as in reductive arguments, is known to be abso-
lutely correct (definite truth). However, in real world applications we rarely
find ourselves in such a favorable position. To quote a well-known example:
even the statement “If an animal is a bird, then it can fly.” is not absolutely
correct, since there are exceptions like penguins, ostriches etc. To deal with
such cases—obviously, confining ourselves to absolutely correct conditionals
would not be very helpful—we have to consider statistical syllogisms, statis-
tical generalizations, and (particular) statistical explanations.

By statistical syllogism I mean a deductively shaped argument, in which
the conditional is a statistical statement (like “80% of the beans in this box are
white.”). With a statistical conditional a deductively shaped argument loses
its distinctive mark, that is, it is no longer infallible. Since the implication is
not true in all cases (expressed by the associated percentage or probability),
the conclusion may be false, even though the premisses are true. Nevertheless
we can be rather confident that the conclusion of the argument is true if the
conditional probability associated with the implication is fairly high. We may
express this confidence by assigning to the conclusion a degree of belief (or a
degree of confidence) equal to the probability stated in the conditional.

A statistical generalization is an argument that extends a statement about
a sample to a statement about the whole population (like, for example, infer-
ring the percentage of girls among newborn children from the observed per-
centage in a specific hospital). As a consequence, a statistical generalization
is the probabilistic analog of an inductive argument. Statistical generaliza-
tions are one of the main topics of (inductive) statistics, where they are used,
for instance, to predict the outcome of an election from polls. In (inductive)
statistics it is studied what it takes to make the inferred statement reliable
(theory of hypothesis testing), what the best estimates of parameters for the
whole population are, and how to compute these best estimates.
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I use the term (particular) statistical explanation® as a name for the proba-
bilistic analog of an abductive inference. An example is a physician who infers
the disease of a patient from observed symptoms and statistical knowledge
about how often these symptoms are caused by different diseases the patient
may have contracted. In order to assign a degree of confidence or degree of
belief to the conclusion, we can draw on Bayes’ rule in order to “invert” the
conditional probability. That is, we compute

PlalB) = SRR,

where P(B|A) is the conditional probability associated with the implication
of the argument and P(A) and P(B) are the prior probabilities of the events
in its antecedent and its consequent. Obviously, with Bayes’ rule we can al-
ways translate a statistical explanation into a statistical syllogism, simply by
turning the conditional around and associating it with the “inverted” con-
ditional probability. Thus in probabilistic reasoning the difference between
abductively and deductively shaped arguments vanishes—which is not sur-
prising, since the distinctive mark of deductive inferences, their infallibility,
is lost.

However, the other distinction made above, namely the distinction between
arguments, the conclusion of which is a general statement, and arguments, the
conclusion of which is a particular statement, remains valid. The reason is that
it is next to impossible to know or even define the prior or posterior probability
of a general statement (as is convincingly argued in (POPP34)). Therefore I
confine myself to inferences of particular statements in the following, which is
no real restriction, since my topic is abductive inference anyway.

5 General Model of Abductive Inference

In this section I briefly review a general model of abductive inference as it
was presented in (BORGOO0). It incorporates a way of assessing hypotheses
that is based on (BYLA91), but is also closely related to (PENG89). Since
this model cannot be implemented directly (it would require too much storage
space and usually its parameters cannot all be determined reliably) I also look
for simplifications, which finally lead us to probabilistic graphical models.

5.1 Formal Definition

The following definition is intended to describe the framework in which the
abductive reasoning takes place by fixing the statements that may be used in
abductive arguments and a mechanisms to assess the resulting hypotheses.

4 The word particular is added only to emphasize that the explanation must be
a particular statement, since statistical generalizations—due to their reductive
structure—also yield statistical explanations. However, statistical generalizations
yield general statements, which refer to a whole population.
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Definition 1. An abductive problem is a tuple AP = (D1, Han, €, pl, Dobs),
where

e D.y is a finite set of possible atomic data,

H.y is a finite set of possible atomic hypotheses,

e is a relation of 2P=1 and 2H=1 j.e., e C 2P x 2Han,

pl is a mapping from 2P0 x 2Hai to o partially ordered set Q, and
Dops € Dgy is the set of observed data.

The sets D, and Hy,) contain the statements that can be used in inferences,
the former the possible observations (or data), the latter the possible hypothe-
ses. All statements in D, and H,) are required to be particular, i.e., ground
formulae. The two sets need not be disjoint, although this is useful for most
applications. The relation e (for explanation) connects sets of observations
with sets of hypotheses which explain them and thus describes the set of con-
ditionals. The mapping pl (for plausibility) assesses the quality of an inferred
(compound) hypothesis. In the following the set @Q is always the interval [0, 1],
as I consider only probabilities and degrees of belief. Dy, is the set of observed
data, that is, the set for which an explanation is desired.

Note that we may add to D, statements that do not need an explanation,
but may have a bearing on the assessment of possible hypotheses. For example,
in medical diagnosis we register the sex of a patient, because the likelihood
of certain diseases differs considerably for the two sexes. That is, Dy may
contain not only general background knowledge about the application domain,
but also relevant case-specific information.

An abductive problem is solved by finding the best explanation(s) for the
data observed. This motivates the next two definitions.

Definition 2. In an abductive problem AP = (Dan, Han, e, pl, Dobs) a set
H C H,j is called an explanation (of the data Doys), iff (H, Dobs) € €.

Often an explanation is required to be parsimonious (see above). We may add
this requirement by defining

H is an explanation, iff (H,Dops) € e A =3H' C H : (H', Dops) € e,

that is, H is an explanation only, if no proper subset of H is also an explana-
tion. That is, we may require H to be irredundant (PENGS89).

Definition 3. In an abductive problem AP = (D.n, Han, e, pl, Dops) an ex-
planation H is called a best explanation (of the data Doys), iff there is no
ezplanation H' that is better than H w.r.t. the mapping pl, i.c., iff

—3H' : (H', Dops) € € A pl(H, Dops) < pl(H', Dopg)-

Of course, which explanation is selected depends on how the hypothesis as-
sessment function pl ranks the possible explanations. Therefore it should be
chosen with care. Fortunately, based on statistical arguments, we can identify
the ideal choice, which may serve as a guideline.
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Definition 4. The optimal hypothesis assessment function is
plops(H, D) = P(H|D).
The best explanation under pl, is called the most probable explanation.

The probability of the hypothesis given the data is the optimal hypothesis
assessment function, because it is easy to show that choosing the hypothesis
it advocates is, in the long run, superior to any other decision strategy—
at least w.r.t. the relative number of times the correct decision is made. If
the alternatives carry different costs in case of a wrong decision, an different
function may be better. Nevertheless, the probability of the hypothesis given
the data is still very important in this case, because it is needed to compute
the hypothesis assessment function that optimizes the expected benefit.

The relation e and the mapping pl of an abductive problem can easily be
represented as a table in which the rows correspond to the possible sets of hy-
potheses and the columns to the possible sets of observations (or vice versa).
Each entry states the value assigned by the mapping pl to the pair (H, D)
corresponding to the table field, provided that this pair is contained in the
relation e (otherwise it is left null). With this representation solving an ab-
ductive problem is very simple: visit the table column that corresponds to
the observed data and to find the row of this column that contains the high-
est probability. However, it is clear that for any real world problem worth
considering we cannot set up this table, since it would have too many rows
and columns. Therefore we have to look for simplifications, which exploit the
structure of the relationships between the data and the possible hypotheses.

5.2 Simplifications

Let us consider, in two steps, simplifications of the general model. The first
is based on the idea to replace the relation e by a function, which assigns
to a set H of hypotheses the union of all sets D of observations that H can
explain. Of course, this requires specific conditions to hold.

Definition 5. An abductive problem is called functional iff
1.VH CHa: VD1,D3 C Dy :
((H,Dl) ceANDy C Dl) = (H,DQ) ce

2.VH C Hyy: VDi,D3 C Dy :
((H,Dy) € e\ (H,Ds) € e AN Dy U Dy is consistent) = (H, D1 U Ds) € e

Note that the first condition is no real restriction, since sets of observations
are interpreted as conjunctions. The second condition is a restriction, though,
since counterexamples can easily be found (see, for instance, (BORGO00)). But
if these conditions hold, the relation e can be replaced by a function e, where

VH C Hy : ef(H) = {d € D ‘ dD C Dy :de DA (H,D) S 6}.



8 Christian Borgelt

With this function ey an explanation is defined as a set H C H,j, such that
Doys C ef(H). Hence it allows to represent the explanation relation by a table
with one column for each d € D, and one row for each H C H,j. However, in
order to represent the plausibility assessment function pl with a similar table
(otherwise we do not gain anything), we need even stronger assumptions.

Definition 6. A functional abductive problem is called D-independent, iff

VH C Ha : VD C Dz D is consistent = P(D|H) =[] P(d|H).
deD

Intuitively, D-independence means that the probability of a possible observa-
tion d is independent of any other observations that may be present given any
set of hypotheses H. Under these conditions we can compute the assessment
of any consistent set H of hypotheses (using Bayes’ rule) as

P(D|H)P(H)
P(D)

P(d|H)

P(H|D) = =P(H —_—

(H|D) ) T1 gy
deD

provided we also know the prior probability P(H). This approach, although

restricted to one element sets {h}, was suggested in (CHAR97). For general

sets H, consisting of several individual hypotheses, it is still not usable, since

the needed table has too many rows. Therefore we need further simplifications.

Definition 7. A functional abductive problem is called independent, iff

VH C Han: ef(H) = U er({h}),
heH

where ey is the function by which the relation e can be represented in a func-
tional abductive problem (see above).

Of course, this is a very strong restriction. It requires that there is no interac-
tion of hypotheses in the sense that no combination of atomic hypotheses can
explain an observation, which cannot be explained by at least one of the con-
tained atomic hypothesis alone. In addition, the explanatory powers of atomic
hypothesis must not cancel each other (there must not be “destructive inter-
ference”), so that a combination of hypotheses can no longer explain what one
of them could explain individually. Unfortunately, this requirement excludes
fairly commonplace situations (see (BORGO0) for examples). Even worse, this
assumption alone is not even enough to allow us to simplify the plausibility
assessment function pl in a similar way. In order to achieve a simplification of
the function pl, we need even stronger assumptions.

Definition 8. A D-independent abductive problem is HD-independent, iff
VH C Hyy :Vd € Dy -

H is consistent = P(H|d) = [] P(hld) A P(H)= [] P(h).
heH heH
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As a result of this final assumption, we only need to store the probabili-
ties P(h), P(d), and P(d|h) for all h € H,y and all d € D,y, that is, only
(|Han|+1)- (| Dan|+1) — 1 probabilities. The conditional probability of a set H
of hypotheses given a set D of possible observations is computed as:

pHD)= [] P ]] (H P]gi'l’;)).

h'eH deD \heH

This model, which was derived in (BORGO00), is surely feasible in terms of
storage and computation requirements. However, it is unlikely to be useful in
practice, due to its fairly extreme independence assumptions. However, study-
ing the simplifications that led to it reveals fairly clearly where the problems
of abductive inference lie. Without exploiting (conditional) independences,
we cannot reach a feasible model. However, assuming too much independence
renders the model too strict and thus inappropriate for practical purposes.

6 Probabilistic Graphical Models

In order to cope with the problem of achieving simplifications without in-
troducing extreme independence assumptions, we may search for a model, in
which we can take dependences into account, but nevertheless can exploit all
existing independences to reduce the amount of storage needed and to make
inferences tractable. Probabilistic graphical models are such an approach.

6.1 Decomposition and Abductive Reasoning

Concisely stated, the basic ideas underlying probabilistic graphical models
are these: under certain conditions a probability distribution P on a multi-
dimensional domain, which encodes prior knowledge about this domain, can
be decomposed into a set {Py, ..., P,} of probability distributions on lower-
dimensional subspaces. This decomposition is based on dependence and inde-
pendence relations between the attributes used to describe the domain. If a
decomposition is possible, it is sufficient to know the distributions on the sub-
spaces to compute all probabilities that can be computed using the original
distribution P. Since such a decomposition can be represented as a network
(or graph), it is commonly called a probabilistic network or a probabilistic
graphical model. Reasoning in such a network consists in conditioning the rep-
resented probability distribution w.r.t. the observed values of some attributes.

A decomposition of a probability distribution has several advantages. The
most important are that it can usually be stored much more efficiently and
with less redundancy than the original distribution. However, this would be of
little use for reasoning tasks, were it not for the possibility to draw inferences
using only the distributions {Py, ..., P.} on the subspaces without having to
reconstruct the original distribution P. If we obtained evidential knowledge
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about the current state of the domain under consideration, which consists of
observed values for some of the attributes, we can condition the represented
probability distribution on the observed values by passing the conditioning
information from subspace distribution to subspace distribution until all have
been updated. This process is usually called evidence propagation.

Mapping the abductive inference model to probabilistic networks is—for
the greater part—very simple. In the first place, we form groups of mutually
exclusive and exhaustive statements from the statements in H.y; and Dy,
which then form the dimensions of the multidimensional space. The hypothesis
assessment function pl corresponds directly to the probability distribution P
on the domain constructed in this way, since from this probability distribution
we can compute the probability P(H|D) for all sets H and D. Hence the
decomposition can be used to simplify the representation of the hypothesis
assessment function pl. The observed data D, corresponds, of course, to the
evidential knowledge. The only element of an abductive problem for which
there is no direct analog is the explanation relation e (see below).

6.2 Conditional Independence

Whether and how a given probability distribution P can be decomposed into
aset {Py,...,P.} of distributions on subspaces is determined by the depen-
dence structure of the attributes of the domain (2 underlying P. The core
notion governing this decomposition is that of attributes being (probabilisti-
cally) conditionally independent of each other (DAWI79; PEAR92).

Definition 9. Let P be a probability distribution on the space spanned by the
attributes in V.={A1,...,An} and let X, Y, and Z be three disjoint subsets
of attributes in V. X is called conditionally independent of Y given Z
w.r.t. P, written X LY | Z, iff whenever P(wz) > 0 we have

Ywe 2: Plwxuy |wz) =Plwx |wz) - Plwy |wz),

where wx , wy etc. are instantiation of the variables in X, Y etc., respectively.

It has been shown in general that a notion of conditional independence
satisfying certain axioms, which are known as the semi-graphoid axioms
(DAWI79; PEAR92), can be used to define a graph structure on the set of
attributes. These axioms are:

symmetry: XLY|2)= (Y 1LX]|Z2)

decomposition: (WUX LY |Z)= (WILY |Z)AN(X LY |Z)

weak union: WUXLUY | Z)= (XLY|ZUW)

contraction: WLY | 2)NXLY | ZUW) = WUX LY |Z)

The symmetry axiom states that in any state of knowledge Z, if Y tells us

nothing new about X, then X tells us nothing new about Y. The decom-
position axiom asserts that if two combined items of information are judged
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irrelevant to X, then each separate item is irrelevant as well. The weak union
axiom states that learning irrelevant information W cannot help the irrele-
vant information Y become relevant to X. The contraction axiom says that if
we judge W irrelevant to X after learning irrelevant information Y, then W
must have been irrelevant before. Together the weak union and contraction
properties mean that irrelevant information should not alter the relevance of
other propositions in the system; what was relevant remains relevant, and
what was irrelevant remains irrelevant (PEAR92). It is plausible that a rea-
sonable notion of conditional independence should satisfy these axioms and,
indeed, probabilistic conditional independence does.

6.3 Graph Representation

The notion of conditional independence provides the connection to a graph
representation. In a conditional independence graph G = (V, E) for a given
probability distribution P each node represents an attribute of the underlying
domain. The topology of the graph (i.e., which edges are present and which
are missing) is an independence model of the distribution P. In particular,
the graph represents a set of conditional independence statements about the
distribution P by a notion of node separation (PEAR92; SPTR93).

What is to be understood by “separation” depends on whether the graph
is directed or undirected. If X, Y, and Z are three disjoint subsets of nodes
in an undirected graph, then Z separates X from Y, iff after removing the
nodes in Z and their associated edges from the graph there is no path, i.e.,
no sequence of consecutive edges, from a node in X to a node in Y. Or, in
other words, Z separates X from Y, iff all paths from a node in X to a node
in Y contain a node in Z. For directed graphs, which have to be acyclic, the
so-called d-separation criterion is used (PEAR92; VERM90): If X, Y, and Z
are three disjoint subsets of nodes in a directed acyclic graph (DAG), then
Z is said to d-separate X from Y, iff there is no path, i.e., no sequence of
consecutive edges (of any directionality), from a node in X to a node in Y
along which the following two conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,
2. every other node is not in Z.

With the described two notions of node separation, we can define the so-called

Markov properties of graphs (WHIT90). For example, for undirected graphs,

these properties are defined as follows (for directed graphs they are similar):

pairwise: Attributes, whose nodes are non-adjacent in the graph, are condi-
tionally independent given all remaining attributes.

local: Given the attributes of the adjacent nodes (the neighbors), an at-
tribute is conditionally independent of all remaining attributes.

global:  Any two subsets of attributes, whose corresponding node sets are
separated by a third node set, are conditionally independent given
the attributes corresponding to the nodes in the third set.
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Note that the local Markov property is contained in the global, and the pair-
wise Markov property in the local. However, the three types are not equivalent
in general, and it is obvious that we need the global Markov property for infer-
ences from multiple observations. However, the above definition can be used
if—in addition to the semi-graphoid axioms—the following axiom holds:

intersection: (W LY | ZUX)AN(X LY | ZUW)= (WUX LY |Z)

The semi-graphoid axioms together with this one are called the graphoid az-
ioms. If can be shown that a strictly positive probability distribution satisfies
the intersection axiom (PEAR92) and therefore the probability distribution
on the modeled domain is often required (or assumed) to be strictly positive.

6.4 Factorization

The conditional independence graph is also called the qualitative part of a
probabilistic graphical model, since it specifies which attributes are depen-
dent and which are (conditionally) independent, but not the exact details of
the dependences. These details are represented in the quantitative part of a
probabilistic graphical model. It consists of a set of probability distributions
and describes a factorization of the joint probability distribution P. The exact
representation of the quantitative information and the factorization formula
depends on the type of the conditional independence graph.

e Bayesian networks
The most popular probabilistic network is the Bayesian network, also
called belief network or (somewhat misleadingly) probabilistic causal net-
work. Tt consists of a directed acyclic graph and a set of conditional proba-
bility distributions P(wa | Wparents(a)), A € V, where parents(A) is the set
of attributes corresponding to the parents of the node that corresponds to
attribute A. A Bayesian network describes the factorization

Yw e 2: P(W) = H P(WA | Wparents(A))'
AeV

o Markov networks
An alternative type of probabilistic networks uses undirected graphs and
is called a Markov network. It represents so-called Markov random fields.
Similar to a Bayesian network a Markov network describes a factorization
of the joint probability distribution P, but it uses a potential represen-
tation: a strictly positive probability distribution P factorizes w.r.t. an
undirected graph G = (V, E), iff

VX € cliques(G) : Jox :Yw e 2: Pw) = H dx(wx),
Xecliques(G)

where cliques(G) is the set of all maximal cliques of G. The factor poten-
tials ¢x are strictly positive functions defined on 25, X C V, which can
be computed from the corresponding marginal distributions.
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6.5 Evidence Propagation

After a probabilistic network has been constructed, it can be used to do rea-
soning. Although this is fairly straightforward in general, considerations of
efficiency make it often advisable to transform a graphical model into a form
that is better suited for propagating the evidential knowledge and computing
the resulting marginal distributions for the unobserved attributes. Among
the most popular techniques is clique tree propagation (CTP) (LAURSS;
CAST97; JENSO1), which involves transforming the conditional independence
graph into a clique tree. Alternatives include bucket elimination (DECH96;
ZHAN96) and iterative proportional fitting (WHIT90). Commonly used evi-
dence propagation algorithms differ from each other w.r.t. the network struc-
tures they support. For example, bucket elimination can also be used with
networks that contain cycles, while other methods need cycles to be elimi-
nated, temporarily “cut open” or treated with other special techniques.

6.6 Hypothesis Selection

As indicated above, probabilistic networks provide means to represent the hy-
pothesis assessment function pl for abductive reasoning. However, in a proba-
bilistic network there is no direct analog to the explanation relation e, which
identifies the relevant hypotheses. That is, with a probabilistic network we can
compute the plausibility of a given hypothesis, but we cannot check whether
the hypothesis is semantically acceptable (which is the main purpose of the
explanation relation e). Fortunately, in models tailored for a specific applica-
tion this is often irrelevant, because from the application it can be clear what
attributes we are interested in and therefore we only have to compute the
most probable tuple of values for the subspace formed by these attributes.
To identify the most probable tuple in a subspace formed by a set of
attributes, may not always be appropriate, though. If, for instance, not all
acceptable (compound) hypotheses consist of the same number of atomic hy-
potheses, we cannot use it, because it may result in hypotheses that are too
specific for a given problem. However, even in this case the probabilistic net-
work alone may contain enough information to select the best acceptable
hypothesis. For example, the structure of the network can provide informa-
tion how to restrict the set of attributes we have to take into account to
form a (compound) hypothesis. Obviously, it is sufficient to select a set of
explanatory attributes (i.e., attributes derived from Hy)) in such a way that
the observed attributes and the remaining attributes are conditionally inde-
pendent given the selected attributes. A (compound) hypothesis formed from
these attributes has to be considered complete, because due to the interpre-
tation of the semi-graphoid axioms (see above) the remaining attributes are
irrelevant for the observations. Of course, such a restriction does not guaran-
tee that the selected (compound) hypothesis is semantically acceptable, but
it may help to restrict the set of hypotheses one has to consider. The idea can
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be enhanced by the requirement that a reasonable hypothesis should make
the observed data more likely than it is without it or that the observed data
should make an acceptable hypothesis more likely (even though this is not
sufficient to make a hypothesis semantically acceptable).

If these approaches, which try to do without additional information, are
not feasible, we have to add some structure to represent (a simplification of)
the explanation relation e. A very manageable structure results if we have
an independent abductive problem and thus can represent the relation e as a
simple table with H,) lines and D,j columns. In this case the probabilistic
network helps to avoid the strong probabilistic independence assumptions
underlying D-independent and H D-independent abductive problems. We only
need the (weaker) logical independence assumptions needed to simplify the
representation of the relation e. If even these logical assumptions are too
strong, we can enhance the table of the relation e for an independent abductive
problem by an explicit list of (compound) hypotheses, for which “constructive”
or “destructive inference” occurs, i.e., those (compound) hypotheses which can
explain more than the sum of their elements and those, which can explain less.
Provided this list is of moderate size, the problem remains tractable.

6.7 Learning from Data

A probabilistic network is a powerful tool to support reasoning—as soon as
it is constructed. Its construction by human experts, however, can be tedious
and time consuming. Therefore a large part of research in probabilistic graph-
ical models focused on learning them from a database of sample cases. In
accordance with the two components of graphical models, one distinguishes
between quantitative and qualitative (or structural) network induction.

o Quantitative network induction
Given a graph, the parameters of the conditional probability distributions
or the factor potentials are estimated. A lot of approaches have been devel-
oped in this field, using methods such as maximum likelihood, maximum
penalized likelihood, or fully Bayesian approaches.

o Qualitative network induction
The graph underlying the network is induced from a database of sample
cases. The most popular approaches are based on conditional independence
tests (CI tests) (VERM92; CHEN02) and on Bayesian inference (COOP92;
HECK95). All of them work reasonably well in practice, but still suffer
from some problems.

More details about learning probabilistic graphical models from data can be
found in (CAST97; JORD98; BORGO02). The last of these references also con-
siders learning possibilistic graphical models, which use an alternative uncer-
tainty calculus and can be useful in scenarios where the available information
is insufficient or does not allow for a proper estimation of probabilities.
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7 Summary

In this paper I considered how probabilistic networks can support abductive
reasoning. Starting from a definition of an abductive inference as a reductive,
i.e., explanatory inference, the conclusion of which is a particular statement,
I showed how probability theory enters the consideration due to two rea-
sons: in the first place, if we want to handle real world problems, we have
to take into account statistical conditionals. Secondly, in order to reduce the
chances of an incorrect result, we have to assess and compare the conclusions
of abductive inferences. Based on a general model of abductive inference I
showed that a direct approach to represent a hypothesis assessment function
is not feasible and thus simplifications are required. Although straightforward
simplifications lead to a manageable model, they involve strong assumptions
which cannot reasonably be expected to hold in applications. As a solution
probabilistic networks suggest themselves as a well-established technique to
decompose a multivariate probability distribution in order to make reasoning
in high-dimensional domains possible. They are very well-suited to represent
the hypothesis assessment function of abductive problem solving. However,
it may be necessary to enhance them by a method to identify the (semanti-
cally) acceptable hypotheses, because the raw probabilistic information they
represent is often not sufficient for this task.
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