Subgraph Support in a Single Large Graph

Mathias Fiedler and Christian Borgelt

European Center for Soft Computing
¢/ Gonzalo Gutiérrez Quirds s/n, 33600 Mieres, Spain
Email: mail @mathias-fiedler.info, christian.borgelt@softcomputing.es

Abstract—Defining the support (or frequency) of a subgraph is
trivial when a database of graphs is given: it is simply the number
of graphs in the database that contain the subgraph. However, if
the input is one large graph, an appropriate support definition
is much more difficult to find. In this paper we study the core
problem, namely overlapping embeddings of the subgraph, in
detail and suggest a definition that relies on the non-existence of
equivalent ancestor embeddings in order to guarantee that the
resulting support is anti-monotone. We prove this property and
describe a method to compute the support defined in this way.

I. INTRODUCTION

In recent years frequent subgraph mining has received
intense and still growing attention, since it has a wide and con-
stantly expanding range of applications areas, which include
biochemistry, web mining, and program flow analysis. As
a consequence, several frequent subgraph mining algorithms
have been developed. Some of them rely on principles from
inductive logic programming and describe the graph structure
by logical expressions [6]. However, the vast majority transfers
techniques that were originally developed for frequent item set
mining. Examples include MolFea [9], FSG [10], MoSS/MoFa
[1], gSpan [14], CloseGraph [15], FFSM [7], and Gaston [12].
A related, but slightly different approach is used in Subdue [3].

Most existing work in frequent subgraph mining considers
a database of (attributed) graphs as input. In this setting it
is straightforward to define the support (or frequency) of a
subgraph: it is simply the number of graphs in the given
database that contain the subgraph. If, however, the input is
a single large graph (which is the case we consider here), it
is surprisingly difficult to find a support definition that has
certain desirable properties. Until recently there was only one
suggestion, which is used in the algorithms in [11]: the support
of a subgraph is the size of a maximum independent node set
of the overlap graph of the embeddings of the subgraph (details
of this definition are reviewed in Sections III to V).

However, as we argue in this paper, this approach has the
drawback that it can sometimes be too restrictive: there are
certain cases in which it allows us to count at most one of
two embeddings, even though counting both does not have any
harmful effects. In addition, a proper proof was lacking that the
support defined in this way is anti-monotone. By studying the
core problem of overlapping embeddings in detail, we arrive
at a modified support definition and also provide a clear proof
that both types of subgraph support are anti-monotone.

Finally, we briefly look at a recently presented alternative
support definition [4], which is based on the minimum number
of different images of a node, and compare its properties.

II. FREQUENT SUBGRAPH MINING

In order to fix the algorithmic setting, we briefly review
the core principles of frequent subgraph mining. The search is
usually restricted to connected subgraphs, since this reduces
the search space considerably and suffices for most applica-
tions. The search grows all possible (connected) subgraphs,
starting from a single node and adding an edge and maybe
a node (if it is not yet in the subgraph) in each step. For
each grown subgraph the support is computed (for example, as
the number of database graphs that contain the subgraph) and
infrequent subgraph are eliminated (where infrequent means
that the support does not reach a user-specified threshold).

Since with this basic procedure the same subgraph can be
grown in several ways, namely by adding its nodes and edges
in different orders, a fundamental problem is how to avoid
redundant search. The predominant method for this is so-called
canonical form pruning, which is based on the definition of a
canonical code word of a graph that uniquely identifies it up
to automorphisms. Together with a specific way of growing
subgraphs (and thus of building code words), a canonical form
can be used to check whether a subgraph has already been
considered and thus can be pruned from the search tree [2].
The exact way in which the search space (that is, the subgraph
(semi-)lattice) is traversed does not matter much. We use a
depth-first search, since this has advantages w.r.t. memory
consumption, but a breadth-first approach is also feasible.

It should be noted that the above description does not fix a
specific definition of the support of a subgraph. However, it ex-
ploits a fundamental property, namely that the support is anti-
monotone: the fact that infrequent subgraphs are eliminated
from the search presupposes that no supergraph of a subgraph
can have a higher support than the subgraph itself. Otherwise it
would not be possible to prune infrequent subgraphs, because
we would run the risk to miss frequent subgraphs. Since
support-based pruning is essential for the efficiency of the
mining algorithm, it is of vital importance to ensure that the
support is defined in such a way that it is anti-monotone.

III. EMBEDDINGS

The fundamental concept underlying any type of support
definition for subgraphs is that of an embedding of the
subgraph into the input graph(s). It is formally defined by
the notion of a subgraph isomorphism, which we consider in
the context of labeled or attributed (simple) graphs.

Definition 1: A labeled or attributed graph is a triple
G = (V,E,l), where V is the set of vertices, E CV x V —

{(v,v) | v € V} is the set of edges, and [: VUE — L is a
function that assigns labels from the set L to nodes and edges.

Definition 2: Let G = (VG,EG,Zg) and S = (Vs,Es,ls)
be two labeled graphs. A subgraph isomorphism of S to G
is an injective function f : Vg — Vi satisfying Vv € Vg :
ls(v) = la(f(v)) and V(u,v) € Es : (f(u), f(v)) € Eg A
Ls((u,v)) = la((f (u), f(v))).

Every subgraph isomorphism of a graph S to the input
graph(s) defines one embedding of S (we use embedding as a
synonym for subgraph isomorphism). Note that two different
embeddings may refer to the same nodes and edges in G or,
more generally, may share a subset of the nodes and edges.

Definition 3: Let G = (VG,EG,Zg) and S = (Vs,Es,ls)
be two labeled graphs, f1 and fo two subgraph isomorphisms
of StoG,and let V; = {v € Vg | Ju e Vs :v = fi(u)},
E;={e € Eg | 3(u,v) € Es: e = (fi(u), fi(v)},i=1,2.
That is, let V; and F; be the f;-images (in G) of the nodes and
edges of S. fi and f5 are called overlapping, written fi® f, iff
ViNVa # . f1 and fy are called equivalent, written fyo fa, iff
Vi = V5 and Fy = Es. Finally, fi and f5 are called identical,
written f1 = fa, iff Vo € Vg @ f1(v) = fa(v).

Note that two identical subgraph isomorphisms are actually
the same subgraph isomorphism and thus define only one
embedding. Note also that identical subgraph isomorphisms
are necessarily equivalent, which in turn must be overlapping.
The inverse inclusions, however, do not hold in general.

IV. SUBGRAPH SUPPORT AND OVERLAP GRAPHS

In terms of the notions defined in the preceding section the
support of a graph S in a given database of graphs is simply the
number of graphs into which there exists an embedding of S.
However, if the input is a single large graph, this definition
is not particularly useful: since there either is an embedding
of S into the input graph or not, the support of any graph is
either 1 or 0. Even worse: if the output is restricted to closed
subgraphs (which are subgraphs no supergraph of which has
the same support), the mining result is always the input graph
(or its connected components) and thus entirely useless.

The most intuitive definition of the support of a subgraph
in the single graph setting would be to simply count its
embeddings. However, this definition is not feasible, since
it is not anti-monotone: the support of a supergraph of a
subgraph S can exceed the support of S, as is demonstrated
by the example shown in Figure 1. (In order to keep things
simple, only nodes are labeled, while edges are assumed to be
unlabeled, or rather seen as all labeled with the same label,
so that it can be neglected.) The graph consisting of a single
node labeled A has one embedding into the input graph B-A-B
and thus support 1. However, the graph B-A-B, obviously
a supergraph of the single node graph, has two embeddings
(which are equivalent and differ only in the way in which the
nodes labeled B are mapped). Hence it has support 2.

The same example also shows that we cannot fix this
problem by counting at most one out of a set of equivalent
embeddings (which would be a simple and straightforward
amendment, since equivalent embeddings are, in an intuitive

input graph: (B)—A)—B)

subgraphs: @ 2 @] ’
embedings) @ @-0-0®

OROR0)
Fig. 1. The number of embeddings of a subgraph is not anti-monotone.

input graph:

OROROSOR0
.3 .l .2 m 2 I
&-O-®

Fig. 2. Overlap graph of the subgraph B-A-B w.r.t. the graph B-A-B-A-B.

W

©

sense, the “same” embedding): the intermediate subgraph A-B
also has two embeddings—which are not equivalent, because
the node labeled B is mapped to different nodes. Hence it also
has support 2, thus violating anti-monotony.

A closer look at this example suggests that the problem is
caused by overlapping embeddings (see Definition 3), since
the two embeddings of the subgraph A-B overlap on the
node labeled A, which, if considered alone, has only one
embedding. Therefore it is plausible to consider the overlap
graph of the embeddings of a subgraph S and derive the
support of S from this overlap graph. This is the basis of
the approach used in the algorithms presented in [11].

Definition 4: Let G = (Vg,EG,l(;) and S = (VS,Es,ls)
be two labeled graphs and let V5 be the set of all embeddings
(that is, subgraph isomorphisms) of S into G. The overlap
graph of S wrt. G is the graph O = (V, Ep), which has
the set Vo of embeddings as its node set and the edge set
Eo={(fi,f2) | fi,fo€VoNfi # fa A fiofa}.

An example of an overlap graph for the subgraph B-A-B
w.r.t. the graph B-A-B-A-B is shown in Figure 2. It contains
four nodes, one for each of the four possible embeddings.
Since in this case every embedding overlaps with every other
(because they share at least the node labeled B in the middle
of the input graph), the overlap graph is a complete graph.

V. MAXIMUM INDEPENDENT SET SUPPORT

Since overlaps of embeddings appear to be harmful, it is
plausible to count at most one of each pair of overlapping
embeddings. This leads directly to the idea to define the
support of a subgraph as the size of a maximum independent
node set of the overlap graph of its embeddings.

Definition 5: Let G = (V, E) be a graph with node set V
and edge set E C V x V —{(v,v) | v € V'}. An independent
node set of G is aset I CV with Vu,v € I : (u,v) ¢ E. I is
a maximum independent node set iff it is an independent node
set and for all independent node sets J of G it is |I| > |J|.

Note that a maximum independent set need not be unique:
several independent node sets may have the same (maximum)
size. For example, for the overlap graph shown in Figure 2,
any single node is a maximum independent node set.

Definition 6: Let O = (V, E) be the overlap graph of the
embeddings of a labeled graph S = (Vg, E'g,ls) into a labeled
graph G = (Vg, Eq,lg). Then the maximum independent set
support (or MIS-support for short) of the graph S w.r.t. the
graph G is the size of a maximum independent node set of O.

For example, the MIS-support of the graph B-A-B w.r.t. the
graph B-A-B-A-B is 1 (see the overlap graph in Figure 2).

The approach of [11] is essentially based on the MIS-
support of a graph. The only difference is that [11] defines
that two embeddings overlap if they share an edge, while we
defined that they overlap if they share a node. Although this
leads to minor differences, the basic properties are the same.'

However, a fundamental problem of [11] is that no proof is
given that MIS-support (with either definition of overlap) is
anti-monotone. For this, [11] refers to [13], which, however,
actually considers a different property (which is difficult to
relate to MIS-support) and itself refers to a (hard to obtain)
Master’s thesis for the details of its proof. Therefore we
provide here a clear and fairly straightforward proof, which
can be transferred directly to our own support definition.

Definition 7: Let G = (Vg,Eg,lg) and S = (Vs,Es,ls)
be two labeled graphs and let fgs be an embedding of .S into G.
An embedding fr of a proper subgraph T' = (Vir, Ep, lr) of S
(thatis, Vo C Vg, BEp = (VT XVT)ﬂEs, and I = lS|VTUET)
is called a T-ancestor of fs iff fr = fs|v,, that is, if the
embedding fr coincides with fg on the node set Vi of T.

We now consider two very simple observations about 7-
ancestors of embeddings, which form the basis of our proof.

Observation 1: For given G, S, T and fg the T-ancestor fr
of the embedding fg is uniquely defined.

This is obvious, since fr is only the restriction of fg to the
node set Vp of T' and thus there is no possibility to choose.

Observation 2: Let G=(Vg, Eg,lg) and S=(Vg, Eg,lg)
be two labeled graphs and let T' = (V, Er,lr) be a proper
subgraph of S. Furthermore, let f; and f; be two (non-
identical, but possibly equivalent) embeddings of S into G.
f1 and fy overlap if there exist overlapping 7-ancestors f]
and f} of the embeddings f; and f,, respectively.

This is obvious, since fi and f} are restrictions of f; and
f2 to a subset of the nodes of S. Hence, if f and f4 overlap,
so must f; and f>. Note, however, that f; and f; may overlap
even if f] and f4 do not overlap: they may overlap on (a subset
of) Vs — V. Hence the reverse implication does not hold.

Theorem 1: MIS-support is anti-monotone.

Proof: We have to show that the MIS-support of a sub-
graph S w.r.t. a graph G cannot exceed the MIS-support of any
(non-empty) proper subgraph 7" of S. To do so we consider an
arbitrary independent node set Ig of the overlap Og graph of S
w.r.t. G. This node set induces a subset I of the nodes of the
overlap graph O of an (arbitrary, but fixed) subgraph 7" of S,

'Tt has to be noted, though, that defining embeddings as overlapping only if
they share an edge makes it possible that they can share several nodes without
being considered as overlapping (which may be somewhat unintuitive). It also
rules out the possibility to consider single node subgraphs, since such an
approach does not rule out violations of anti-monotony occurring in the step
from single node subgraphs to subgraphs with two nodes.

input graph:

subgraph:
embeddings:

Fig. 3. Not all overlaps of embeddings are harmful.

which consists of the (uniquely defined, see Observation 1)
T-ancestors of the nodes in Ig. It is |Ig| = |I7|, because no
two nodes in Ig can have the same T-ancestor: if they did,
they would overlap on this ancestor, which would give rise
to an edge between them (see Observation 2), contradicting
the presupposition that Ig is an independent node set. With a
similar argument we obtain that /7 is an independent node set
of the overlap graph Or: if two nodes of I were connected by
an edge in O, the corresponding two nodes in /g would have
to be connected (since there is a pair of overlapping ancestors,
see Observation 2), again contradicting the presupposition that
Is is an independent node set. As a consequence, since Ig
is arbitrary, every independent node set of Og induces an
independent node set of O of the same size. Therefore the
maximum independent node set of Op must be at least as
large as the maximum independent node set of Og. a

VI. HARMFUL OVERLAP SUPPORT

The definition of MIS-support sees any overlap as harmful:
at most one of two overlapping embeddings may be counted.
However, there are pairs of embeddings for which the overlap
is clearly harmless, so that there is no reason why they should
not both be counted. An example is shown in Figure 3. Even
though the embeddings overlap on the node labeled A in the
middle of the input graph, they do not have an embedding of
a graph with a single node labeled A as a common ancestor.
Neither of the two nodes labeled A is mapped to the same
node in both embeddings. Hence the two embeddings cannot
be constructed from the same embedding of a single node
labeled A, which is then extended in corresponding ways.

In other words: the two embeddings have to be built
from two different embeddings of a single node labeled A.
Therefore the fact that they overlap does not destroy the anti-
monotony of the support. There were two embeddings for
any ancestors of these embeddings and thus the support has
always been 2. As a consequence, it can be 2 for the subgraph
A-B-C-A without harming anti-monotony. This observation
gives rise to a more sophisticated support definition.

Definition 8: Let G = (Vg,Eg,lg) and S = (VS,ES,ZS)
be two labeled graphs and f; and f> two subgraph isomor-
phisms of S to G. f1 and f, are called harmfully overlapping
(or H-overlapping for short), written fiefs, iff they are
equivalent (see Definition 3) or there exists a (non-empty)
proper subgraph T’ of S, so that the T-ancestors f| and f}
of f1 and f5, respectively, are equivalent.

Note that this definition refers to an arbitrary (non-empty)
subgraph T of S. However, the search for frequent subgraphs

input graph:

® 06

Qe 000 ®

S

&)
&)
®

®
.2 .l .3

Fig. 4. Harmful overlap graphs of embeddings and ancestor relations.

is usually restricted to connected substructures. As a conse-
quence, only connected ancestors can actually produce coun-
terexamples to anti-monotony. Therefore we should restrict the
definition to connected subgraphs 7" in this case.

The support of a subgraph can now be defined in direct
analogy to maximum independent set support.

Definition 9: Let G = (Vc;,Eg,lg) and S = (Vs,Es,ls)
be two labeled graphs and let Vi be the set of all embeddings
(that is, subgraph isomorphisms) of S into G. The harmful
overlap graph of S wrt. G is the graph H = (Vy, Ep),
which has the set Vi of embeddings as its node set and the
edge set By = {(f1, f2) | fi,f2 € VE AN f1 Z fa A [refa}.

Definition 10: Let H = (Vi, Epr) be the harmful overlap
graph of the embeddings of a labeled graph S = (V, Es,ls)
into a labeled graph G = (V, Eg,lc). Then the harmful
overlap support (or HO-support for short) of the graph S
w.r.t. G is the size of a maximum independent node set of H.

Theorem 2: HO-support is anti-monotone.

Proof: The proof is exactly the same as for MIS-support (see
Theorem 1), since Observations 1 and 2 also hold for HO-
support and they were all that was needed for the proof. O

An illustration of the relationships between embeddings of
a subgraph and their ancestors is shown in Figure 4. The
graphs A, B, A-B, and B-A-B are embedded into the input
graph B-A-B-A-B shown at the top. The grey circles are the
nodes of harmful overlap graphs for the different subgraphs
and correspond to the embeddings shown to the left or to
the right of them. Arrows connect ancestors to descendant
embeddings (for simplicity, transitive ancestor relations, which
are implied, are not shown). Note how any two nodes that
are connected by an edge in the square-shaped graph at the
bottom (the harmful overlap graph for B-A-B) have equivalent
ancestors, while those that are not connected do not.

Note that the HO-support of the graph B-A-B w.r.t. the
graph B-A-B-A-B is 2, as there are two maximum independent
node sets, each consisting of the two nodes at the ends of one
diagonal of the harmful overlap graph. MIS-support, however,
is only 1 (recall Figure 2), as a simple overlap graph contains
these diagonals. These diagonals are not present in the harmful
overlap graph, because the corresponding overlaps are not
harmful (there are no equivalent ancestor embeddings).

It should be clear that HO-support is never less than MIS-
support, since harmful overlap is the weaker concept and
thus gives rise to fewer edges in the resulting overlap graph.
Therefore, if the same minimum support threshold is used, it
cannot be that fewer frequent subgraphs are found with HO-
support than with MIS-support. We can rather expect that the
number of frequent subgraphs is larger. That the difference
can actually be surprisingly large will be seen in Section IX.

VII. SUBGRAPH SUPPORT COMPUTATION

It is easy to check whether two embeddings overlap, hence
computing MIS-support is fairly simple. (Note, though, that
finding a maximum independent node set is NP-complete.
What is easy is building the overlap graph.) However, building
a harmful overlap graph is not quite as simple, since it is more
difficult to check whether two embeddings overlap harmfully.
Fortunately, there is still a fairly simple procedure, which is
based on trying to construct a subgraph Sg = (Vg, Eg,lg)
that yields equivalent ancestors of two given embeddings f;
and f5. The core idea of this procedure is that for such a sub-
graph S the mapping ¢ : Vi — Vg with v — f; ' (f1(v)),
where f5 ! is the inverse of f,, must be a bijective mapping.
More generally, g must be an automorphism of Sg, that is, a
subgraph isomorphism of Sg to itself. This view of equivalent
ancestors leads to the following test procedure:

Two (different) embeddings f; and fo

of a labeled graph S = (V, Es,ls)

into a labeled graph G = (Vig, Eg,lg).

Output: Whether f; and fy overlap harmfully.

1) Form the sets Vi = {v € Vg | Ju € Vs : v = f1(u)} and
Vo={veVg|IueVs:v= fa(u)}.

2) Form the sets Wy = {v € Vg | fi(v) € Vi N V2} and
Wy = {'U e Vs | fg(’l}) eWn m‘/g}

3) If Vg = Wiy N Wy = (), return false, otherwise return true.

Input:

Obviously, Vg, provided it is not empty, is the node set of a
subgraph S of S that induces equivalent ancestors of f; and
f2. On the other hand, any node v € Vg— Vg cannot contribute
to such ancestors, because it is either mapped to a node on
which f; and fo do not overlap (and thus g(v) is not defined)
or because there is no original w.r.t. g, that is, no node v with

g(u) = v (so that g is not bijective for v). Hence Vg is a

maximal set of nodes for which g is a bijection. Therefore:

if Vg # (), the embeddings f; and fy overlap harmfully and
thus are connected by an edge in the harmful overlap graph.

Otherwise any overlap is harmless and we need no edge.

Note that the edge set Er of the considered subgraph Sg
can be found by an analogous construction:

1) Form the sets 1 = {(vi,v2) € Eg | I(u1,uz) € Es :
(v1,v2) = (fi(w), fi(uz))} and Ey = {(v1,v2) € Eg |
(u1,u2) € Es : (v1,v2) = (f2(u1), fo(u2))}.

2) Let Fy = {(’Ul,vg) € FEg ‘ (fl(vl),fl(vg)) e Fin EQ}
and I = {(1}1,?}2) € FEg | (fg(vl),fg(vg)) c FiN EQ}.

3) Let Eg = 1 N Fs.

This construction of E'r ensures that the mapping g as defined

above is actually an automorphism of the subgraph Sg.

input graph: @ e e @ subgraph:

embedcings:
Fig. 5. A simple example of harmful overlap without identical images.

Note, though, that the above procedure assumes that the sub-
graph Sg, regardless of its structure, always induces equivalent
ancestors of two embeddings f; and f>. However, if the search
for frequent subgraphs is restricted to connected subgraphs, an
unconnected subgraph Sg should not be seen as giving rise
to equivalent ancestors, since then Sg is not considered in the
search. Unfortunately, if the subgraph Sg is not connected,
there may still be a connected subgraph of S that induces
equivalent ancestors. Hence we need an extended test.

For this extended test we can exploit the following property
of the bijective mapping g we defined above (reminder:
Yo € Vi g(v) = f5 H(f1(v))): let So = (Ve, Ec,lc) be an
arbitrary (but fixed) connected component of the subgraph Sg
and let W = {v € Vo | g(v) € Vo'} (that is, let W be the set
of nodes of the connected component S¢ that are mapped into
Sc itself). Then it is either W = () or W = V. (Intuitively:
a connected component is either mapped completely to itself
or completely to another connected component.)

We prove this property by contradiction: suppose that there
is a connected component S¢ for which W # () and W # V.
Then we can choose two nodes v1 € W and vy € Vo — W.
These two nodes are connected by a path in S¢, since S¢
is a connected component. On this path there must be an
edge (vq,vp) with v, € W and v, € Vo — W. (Along the
path there must be (at least) one transition from a node in W
to a node not in W, since its start is in W and its end is
not in W.) We know that (v,,v) € Eg (since E¢c C Fg)
and thus can infer that (g(v,),g(vp)) € Eg (since g is an
automorphism of Sg). Since g(v,) € Vi (because v, € W),
it follows g(v,) € Ve, because g(vp) is connected to g(vq).
However, this implies v, € W (due to the construction of W),
contradicting v, € Vo — W, which implies v, ¢ W.

With this property the test whether there is a connected sub-
graph that induces equivalent ancestors becomes very simple:
if there is such a subgraph at all, the connected component S¢
of Sk containing it must, as a whole, be such a subgraph
as well (otherwise we would have W # () and W # V).
Whether a connected component S¢ is such a subgraph can be
determined by checking for an arbitrary node v of S whether
g(v) is in S¢ or not. If it is, then we know that W = Vi
and that g, restricted to the nodes of S¢, is an automorphism
of Sc. Hence S¢ gives rise to equivalent ancestors. If, on the
other hand, g(v) is not in S¢, it must be W = () and neither
Sc nor any of its subgraphs induce equivalent ancestors.

The test can be further optimized by the following simple
insight: obviously two embeddings f; and f> overlap harm-
fully if 3v € Vs : fi(v) = f2(v). (There are, of course,
also other cases; Figure 5 shows an example. The subgraph
inducing equivalent ancestors can be arbitrarily complex even
if Vo € Vg : fi(v) # f2(v).) As this test can be performed

very quickly, it should be the first step. This has the additional
advantage that afterwards we can neglect isolated nodes (since
the only way in which the mapping g can be an automorphism
for an isolated node v is fi(v) = f2(v)), i.e., we can confine
our checks to nodes of Vg that are incident to at least one edge
in Ep. Therefore the optimized test for harmful overlap is:

Two (different) embeddings f; and fo
of a labeled graph S = (V, Es,ls)
into a labeled graph G = (Vg, Eg,).
Output: Whether f; and fy overlap harmfully.

1) If 3veS: fi(v) = fa(v), return true.

2) Form the edge set E'r as described above and the (reduced)
node set Vg = {v € Vg | Ju € Vs : (v,u) € Eg}.

3) Let S& = (VE,EL), 1 < i < n, be the connected com-
ponents of Sg = (Vg, Eg). If 351 <i<n:3JweVi:
f5 1 (fi(v)) € Vi, return true, otherwise return false.

Input:

VIII. MINIMUM NUMBER OF NODE IMAGES

Only very recently another definition of the support of a
subgraph in a single large graph was proposed, which is based
on the minimum number of different images of a node [4].

Definition 11: Let G = (Vg, Eg,lg) and S = (Vs, Eg,ls)
be two labeled graphs and let F' be the set of all subgraph
isomorphisms of S to G. Then the minimum number of node
images support (or MNI-support for short) of S wrt. G is
defined as min, ey, [{v € Vo | 3f € F : f(v) = u}|.

As examples consider again Figures 1 and 2. In the former,
the MNI-support is 1 for all shown subgraphs, because there is
only one node in the input graph to which the node labeled A
is mapped. In the latter, the MNI-support of the graph B-A-B
is 2: even though there are three images for either node
labeled B, there are only two images for the node labeled A.
Hence in these two cases MNI-support coincides with HO-
support. However, MNI-support can also be greater than HO-
support as the example in Figure 5 demonstrates: while the
HO-support of the graph A-A-B w.r.t. the graph B-A-A-B is 1,
its MNI-support is 2. More generally, it is fairly easy to show
that MNI-support is anti-monotone and an upper bound for
HO-support (if the overlap definition is based on nodes).

Obviously, MNI-support has the highly desirable advantage
that it avoids the costly maximum independent set computa-
tions needed for both MIS-support and HO-support. However,
it has the disadvantage that it counts both of certain equivalent
embeddings, which is certainly somewhat counterintuitive.
An example is the MNI-support of the graph A-A w.r.t. the
graph B-A-A-B (cf. Figure 5): since there are two possible
images for both nodes labeled A, the MNI-support is 2, even
though in an intuitive sense the graph A-A occurs only once.

IX. EXPERIMENTAL RESULTS

We implemented all described support definitions as part
of the MoSS program?, which is written in Java. This im-
plementation supports an exact computation of a maximum

2MoSS is available for download under the Gnu Lesser (Library) Public
License at http://www.borgelt.net/moss.html

600 #subgraphs

MNI-support
500 ——— HO-support
400 MIS-support

300 #graphs
200
100
0 T T T T T T T
200 250 300 350 400 450 500
Fig. 6. Experimental results on the IC93 data.
500 #subgraphs
400 MNI-support
——— HO-support
300 MIS-support
200
100
0 T T —

60 70 80 90 100 110 120 130 140 150 160

Fig. 7. Experimental results on the Tic-Tac-Toe win data.

independent node set of an overlap graph as well as a greedy
heuristic algorithm, which only very rarely yields results that
differ much from the exact results, but is considerably faster.
We applied this implementation to several data sets. Often
MIS-, HO-, and MNI-support gave the same results, which,
however, was mainly due to a lack of overlaps of embeddings.
Two examples in which MIS-, HO-, and MNI-support exhibit
clearly different behavior are the IC93 dataset [8], which we
interpreted for this application as a single large graph, of which
each of the 1283 molecules forms a connected component, and
the Tic-Tac-Toe win dataset, which is part of the SUBDUE
datasets [5] and consists of 626 connected components.
Results on these datasets are shown in Figures 6 and 7,
respectively, which depict the number of frequent subgraphs
(not restricted to closed subgraphs) over absolute minimum
support. In both diagrams the solid black line refers to HO-
support, the solid grey line to MIS-support, and the dashed
grey line to MNI-support. In Figure 6 we also included the
number of subgraphs found with standard support (number
of database graphs that contain the subgraph, dotted grey
line). While for the Tic-Tac-Toe dataset the increases in the
numbers of frequent subgraphs are moderate (around 5%),
the difference of the three support types on the IC93 dataset
is surprisingly large: with HO-support, there are up to 50%,
with MNI-support even up to 80% more frequent subgraphs
than with MIS-support. This behavior is mainly due to heavily
overlapping molecular fragments with several carbon atoms.

X. CONCLUSION

In this paper we studied how to define and compute the
support of a subgraph of a single large input graph. We
reviewed the MIS-support of [11] and provided a clear and
simple proof that it is anti-monotone. In addition, we argued
that MIS-support is sometimes too restrictive and suggested an
alternative definition (HO-support), which allows embeddings
to overlap in certain harmless ways. Only harmful overlaps,

which have the effect that the resulting support violates the
anti-monotone condition, prevent that both of two overlapping
embeddings are counted for the support of a subgraph. Our
experiments show that HO-support can sometimes lead to
considerably higher support values than MIS-support.

An important point is that HO-support is a kind of upper
bound for the support of a subgraph in a single large graph
if the support is to be anti-monotone and if of two equiva-
lent embeddings at most one should be counted (otherwise
MNI-support is a larger bound). It only prevents that two
embeddings are both counted if they can result from extending
equivalent ancestor embeddings (of which at most one was
counted). Although there are certain exceptions, these are
degenerate cases, which, as it seems to us, are safe to neglect.

REFERENCES

[1] C. Borgelt and M.R. Berthold. Mining Molecular Fragments: Finding
Relevant Substructures of Molecules. Proc. IEEE Int. Conf. on Data
Mining (ICDM 2002, Maebashi, Japan), 51-58. IEEE Press, Piscataway,
NJ, USA 2002

[2] C. Borgelt. On Canonical Forms for Frequent Graph Mining. Proc.
3rd Int. Workshop on Mining Graphs, Trees and Sequences (MGTS 05,
Porto, Portugal), 1-12. ECML/PKDD 2005 Organization Committee,
Porto, Portugal 2005

[3] DJ. Cook and L.B. Holder. Graph-Based Data Mining. IEEE Trans.
on Intelligent Systems 15(2):32—41. IEEE Press, Piscataway, NJ, USA
2000

[4] B. Bringmann and S. Nijssen. What is Frequent in a Single Graph?
Proc. 5th Int. Workshop on Mining and Learning with Graphs (MLG
2007, Florence, Italy), 183-186. University of Florence, Italy 2007

[5] D.J. Cook and L.B. Holder. SUBDUE datasets.
http://cygnus.uta.edu/subdue/download.htm

[6] PW. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacore
Discovery Using the Inductive Logic Programming System PROGOL.
Machine Learning, 30(2-3):241-270. Kluwer, Amsterdam, Netherlands
1998

[7] J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraphs
in the Presence of Isomorphism. Proc. 3rd IEEE Int. Conf. on
Data Mining (ICDM 2003, Melbourne, FL), 549-552. IEEE Press,
Piscataway, NJ, USA 2003

[8] Index Chemicus — Subset from 1993. Institute of Scientific Information,
Inc. (ISI). Thomson Scientific, Philadelphia, PA, USA 1993
http://www.thomsonscientific.com/products/indexchemicus/

[9] S. Kramer, L. de Raedt, and C. Helma. Molecular Feature Mining in
HIV Data. Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD 2001, San Francisco, CA), 136-143. ACM
Press, New York, NY, USA 2001

[10] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. Proc. 1st
IEEE Int. Conf. on Data Mining (ICDM 2001, San Jose, CA), 313-320.
IEEE Press, Piscataway, NJ, USA 2001

[11] M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large
Sparse Graph. Proc. 4th SIAM Int. Conf. on Data Mining (SDM 2004,
Lake Buena Vista, FL). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA 2004

[12] S. Nijssen and J.N. Kok. A Quickstart in Frequent Structure Mining Can
Make a Difference. Proc. 10th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD2004, Seattle, WA), 647-652. ACM
Press, New York, NY, USA 2004

[13] N. Vanetik, E. Gudes, and S.E. Shimony. Computing Frequent Graph
Patterns from Semistructured Data. Proc. IEEE Int. Conf. on Data Min-
ing (ICDM 2002, Maebashi, Japan), 458-465. 1EEE Press, Piscataway,
NJ, USA 2002

[14] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining.
Proc. 2nd IEEE Int. Conf. on Data Mining (ICDM 2003, Maebashi,
Japan), 721-724. 1EEE Press, Piscataway, NJ, USA 2002

[15] X. Yan and J. Han. Closegraph: Mining Closed Frequent Graph Patterns.
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD 2003, Washington, DC), 286-295. ACM Press, New York,
NY, USA 2003

