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ABDUCTIVE INFERENCE
WITH PROBABILISTIC NETWORKS

1 INTRODUCTION

Abduction is a form of non-deductive logical inference. Examples given by[Peirce,
1958], who is said to have coined the term “abduction”, include the following:

I once landed at a seaport in a Turkish province; and as I was walking up to the
house which I was to visit, I met a man upon horseback, surrounded by four
horsemen holding a canopy over his head. As the governour of the province
was the only personage I could think of who would be so greatly honoured,
I inferred that this was he. This was a hypothesis.

Fossils are found; say remains like those of fishes, but far in the interior of the
country. To explain the phenomenon, we suppose the sea once washed over
this land. This is another hypothesis.

Numberless documents and monuments refer to a conqueror called Napoleon
Bonaparte. Though we have not seen him, what we have seen, namely all
those documents and monuments, cannot be explained without supposing that
he really existed. Hypothesis again.

On the other hand, probabilistic networks[Pearl, 1992] are a method to struc-
ture a multivariate probability distribution and to compute efficiently (conditioned)
marginal distributions on subspaces. Hence, at first glance, there seems to be lit-
tle connection between abduction and probabilistic networks. Therefore we start
this chapter by showing how the two notions are connected through hypothesis
assessment and statistical explanations. In addition, we use these starting sections
to argue for a certain way of defining abductive inferences in contrast to inductive
ones (although, unfortunately, this involves repeating some parts of what was al-
ready discussed in the introductory chapter). We believe that this view could help
to avoid a lot of confusion that seems to prevail w.r.t. the term “abduction”.

Next we discuss a general model of abductive inference. However, this model
is not suited for implementation, because it needs too much storage space. Di-
rect approaches to simplify the model render it manageable, but require strong
independence assumptions that are hardly acceptable in applications. Therefore
a modeling technique is desired, by which we can take into account dependences
between the involved variables, but which nevertheless lets us exploit (conditional)
independences to simplify the model. One such technique, which has become very
popular nowadays, are probabilistic networks. We review this modeling technique
and discuss how probabilistic networks can be used for abductive inference.



2 CHRISTIAN BORGELT AND RUDOLF KRUSE

2 OUR CATEGORIZATION OF LOGICAL INFERENCES

Logic, in the most general sense, describes the structure of languages in which one
can argue. That is, logic is the (formal) theory of arguments, where anargument
is a group of statements that are related to each other. An argument consists of
one statement representing theconclusionand one or more statements that give
reasons supporting it. The latter statements are calledpremisses[Salmon, 1973].
The process of deriving the conclusion from the premisses (using an argument) is
called aninference. Arguments are studied by analyzing theinference ruleused to
draw the inference. Such rules are usually stated in the form ofargument schemes.
For example, the well-known inference rule ofmodus ponensis characterized by
the following argument scheme:

A → B
A

B

If a given argument can be constructed from this scheme by replacingA andB
with suitable statements, then themodus ponenswas used to draw the inference.

As already said in the introduction, abduction is a form of logical inference.
Therefore, in this section we briefly study the specific properties ofabductivein-
ferences in contrast todeductiveand inductive inferences (as we see them) by
discussing their characteristic features. We do so, because our interpretation of the
term “abduction” is a specific one that differs (although only slightly) from expli-
cations given by some other authors. Thus, the main aim of this section is to avoid
confusion by introducing precise notions. For a more detailed discussion of other
categorizations of logical inferences and especially of other criteria to distinguish
between induction and abduction than those we use, see the introductory chapter.

2.1 Deduction and Reduction

Łukasiewicz showed (according to[Bochenski, 1954]), that all logical inferences
can be divided into two classes, which he calleddeductionandreduction. The idea
underlying this division is the following: By exploiting logical equivalences we
can modify the premisses of all arguments in such a way that arguments with only
two premisses result. One of these premisses is aconditionalor an implication
(an if-then-statement), the other is equivalent either to the antecedent or to the
consequent of this conditional. Written as argument schemes these two cases look
like this:

Deduction: A → B
A

B

Reduction: A → B
B

A

(To avoid some technical problems, we implicitly assume throughout this chapter
that conditionals may or may not be (multiply) universally quantified. This saves
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the (always possible) derivation of e.g.A(c) → B(c) from ∀x : A(x) → B(x) for
some appropriate constantc.)

Obviously, both of these inference rules are based on the logical tautology
((A → B) ∧A) → B. However, they use it in different ways. The first scheme is
themodus ponensin its usual form. It corresponds exactly to the tautology, since
the inference is drawn in the direction of the implication fromA to B. The second
scheme looks like some kind of reversal of the first, since the inference is drawn
in the opposite direction. In the following we briefly study the properties of these
two kinds of inferences.

Deduction serves the purpose to make explicit all truths that are determined by a
set of statements. We can find these truths by constructing appropriate deductive
arguments. Deduction is the basis of the hypothetico-deductive method used in
science[Hempel, 1966]: A set of statements, the so-calledaxioms, is fixed. Then
one tries to find all consequences of the axioms using deductive inferences (in
which conclusions derived earlier can also be used as premisses). In the natural
sciences these consequences are eventually compared to experimental findings to
check the validity of the axioms (which, if the predicted experimental results do
not show up, are refuted by applying themodus tollens). (A more detailed discus-
sion can be found in the section on Peirce’s inferential theory in the introductory
chapter.) For this method to be acceptable, it is necessary that deductive infer-
ences yield only true statements provided that the premisses are true. This can be
guaranteed only, if no information is added to the information already present in
the premisses. (If information was added, we could not guarantee the truth of the
conclusion, simply because we would not know whether the additional informa-
tion is correct.) Obviously deduction fulfills these requirements. Thus, the basic
properties of deduction are that it is infallible, but it does not tell us anything new
(w.r.t. the premisses). These properties are a consequence of the fact that deductive
inferences corresponds exactly to tautologies.

Reductionserves the purpose to find explanations for statements that describe e.g.
observations made. Obviously, the second premiss of a reductive argument can be
obtained from the first premiss (the conditional) and the conclusion by a deductive
inference. This is the rationale underlying reductive arguments: The premissB
becomes a logical consequence and is thus “explained” by the conclusion (pro-
vided the other premiss, i.e., the conditional, is given). However, there is a serious
drawback: Reductive inferences are not truth preserving. Indeed, this type of infer-
ence is well-known in (deductive) logic as the fallacy of confirming the consequent
[Salmon, 1973]. The conclusion may be false, even if both premisses are true. This
is not surprising, since information about the statementA is added, namely, that
it is not possible thatA is false if B is true (although the conditional would be
true in this case). Obviously, this additional information could be false. Thus, the
basic properties of reduction are that it is fallible, but as a compensation it tells us
something new (w.r.t. the premisses). These properties are a consequence of the
fact that there is no tautology to which reductive inferences correspond.
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2.2 Induction and Abduction

Often abduction is defined as what we (following Łukasiewicz) called reduction.
All explanatory inferences, that is, all inferences yielding conclusions from which
one of the premisses can be derived deductively (given the other premiss) are then
called abductive. This approach is closely connected to the tradition of calling all
non-deductive arguments inductive arguments[Salmon, 1973], which seems to go
back to Aristotle[Losee, 1993] (see section 2.1 of the introductory chapter for a
more detailed discussion of this view).

Another approach, which traces back to[Peirce, 1958], contrasts induction and
abduction by associating them with different argument schemes, namely:

Induction: A
B

A → B

Abduction: A → B
B

A

(Obviously it can be argued that both schemes are based on the aforementioned
tautology((A → B) ∧ A) → B.) More details on this view can be found in
section 2.2 of the introductory chapter of this book.

Although we are more sympathetic to the second approach, we consider both
to be unacceptable. The first we reject, because it does not provide grounds on
which to distinguish between induction and abduction (see also below). However,
the two notions are not used interchangeably. In practice a distinction is made
(although it is often rather vague).

The second approach we reject because of the strange form given to the argu-
ment scheme of inductive inference, since it leads to all kinds of problems. In the
first place, where does the conclusion come from? It is not part of the premisses
as in the other two argument schemes. Why is “A → B” the conclusion and not
“B → A”? (Obviously this depends on the order of the premisses, i.e., on some-
thing that is irrelevant to the other two schemes.) If the resulting conditional is
(universally) quantified1, but the premisses are not, how are the constants chosen
that are to be replaced by variables? However, a more important objection is the
following: Łukasiewicz showed (according to[Bochenski, 1954]) that induction
is only a special case of reduction. A simple example (taken from[Bochenski,
1954]) will make this clear: Let us assume that we experimented with three pieces
of phosphorus,a, b, andc, and found that they caught fire below60oC. We infer
that all pieces of phosphorus behave in this fashion. What is the argument scheme
of this inference? Obviously it is the following:

If all pieces of phosphorus catch fire below60oC,
thena, b, andc will.

a, b, andc catch fire below60oC.

All pieces of phosphorus catch fire below60oC.

1As already said above, we implicitly assume that all conditionals may or may not be (multiply)
universally quantified.
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Clearly, this is a reduction. Thus, induction and abduction, the latter of which is
characterized by the reductive argument scheme in the second approach, would be
indistinguishable. Or, to put it differently: It sounds unreasonable to call the same
inference once an induction and once an abduction depending on the form of the
argument scheme, if the schemes can be transformed into each other. Note also,
that seeing induction as a special case of reduction removes the problem how we
arrive at the special form of the conclusion: It is a part of the first premiss. Of
course, we now face the problem where the first premiss comes from. However, it
is not a problem of logic where the premisses come from. In logic they are always
assumed to be given and it is merely studied how the conclusion is derived from
them. We see it as an advantage that the problem of how to generate the hypotheses
that enter the inferences is removed from the realm of logic. (Describing induction
as an inference leading fromA and B to A → B is a trial to incorporate the
hypothesis generation process into logic.)2

In contrast to the approaches discussed above, our own distinction between in-
duction and abduction refers to[Popper, 1934]3:

An inference is usually called an inductive inference or an induction, if it
goes fromparticular statements, which describe e.g. observations, experi-
ments, etc., togeneral statements, i.e., to hypotheses and theories.

That is, we do not base our distinction on the argument scheme used, since for both
induction and abduction it is the reductive scheme, but on the type of the statement
inferred, which indeed differs for these two types of inferences.

Note that this distinction is not contained in the second approach discussed
above. If we conclude fromA andB thatA → B, we will not necessarily have
inferred a general statement. IfA andB are particular statements, thenA → B is
also a particular statement (provided no quantifier is added). That it is often seen
as a general statement nevertheless is due to the fact that general laws often come
in the form of conditional statements. However, that a statement is alaw, i.e.,
that it is valid in general, is expressed by variables and quantifiers. Of course, we
could require the conclusion to be universally quantified, but, as already indicated,
which constants are to be replaced by variables is completely arbitrary and not
determined by logical rules.

With induction being an inference leading to a general statement, it is natural to
define abduction as its counterpart[Borgelt, 1992]:

Abduction is a reductive inference in which the conclusion is a partic-
ular statement.

Using a notion of formal logic, we may also say that abduction is a reductive in-
ference with the conclusion being aground formula. That is, the conclusion must

2Thus we place ourselves in the tradition that distinguishes thecontext of discoveryand thecontext
of justificationof (scientific) hypotheses[Losee, 1993] and declare that logic belongs to the latter.

3Our translation from the German, italics in the original.
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not contain variables, neither bound nor free. Using a term introduced in the in-
troductory chapter, we can say that we define abduction by requiring that the set
of abduciblesmust contain only ground formulae of a given formal language. We
do not admit existentially quantified formulae (as some other authors do), since
∃x : A(x) is equivalent to¬∀x : ¬A(x) and thus tantamount to a general state-
ment. By the restriction to ground formulae we want to make explicit that specific
facts are inferred andnot general laws (for which we need variables and quan-
tifiers). In contrast to this, induction infers general laws andnot specific facts.4

Hence, with induction one generalizes observations, with abduction one learns
about unobserved or even unobservable (particular) facts.

One may ask why an analogous distinction is not made for deductive inferences.
To this we reply that such a distinctionis made in the theory of the hypothetico-
deductive method of science. This distinction is necessary, because only particular
statements can be confronted with experimental findings. We can never observe di-
rectly a general law[Popper, 1934]. Thus we need to distinguish inferences which,
for example, derive statements of lower generality from statements of higher gen-
erality (in order to find more specific theories) from inferences which yield par-
ticular statements (which can be tested in experiments). However, as far as we
know, there are no special names for these two types of deductive inferences and
thus this distinction may slip attention. Unfortunately a closer inspection of this
astonishingly far reaching analogy is beyond the scope of this paper.

Inference
����)

PPPPq

Deduction Reduction
����

HHHj

Abduction Induction

Figure 1. Categories of logical inferences.

The classification scheme for logical inferences we arrived at is shown in figure 1.
The distinction between abductive and reductive inferences is based on the form of
the argument scheme, the distinction between inductive and abductive inferences
is based on the form of the conclusion. This scheme looks very much like the one
discussed in the section on Peirce’s syllogistic theory in the introductory chapter.
However, it should be noted that the distinction in the non-deductive branch is
based on a different criterion and hence the two schemes are not identical.

4It can be seen from the examples given by[Peirce, 1958] that he must have had something like this
in mind, since in his examples of abductive arguments the result is a particular statement, see e.g. the
examples cited in the introduction. However, he may have permitted existentially quantified formulae.
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3 HYPOTHESIS ASSESSMENT

As already mentioned above, a reductive—and thus an abductive—inference can
yield a false conclusion, even if the premisses are true. This is usually made ex-
plicit by calling the conclusion of a reductive argument ahypothesisor aconjec-
ture. Of course, we do not want our conclusions to be wrong. Therefore we look
for criteria to assess the hypotheses obtained by reductive arguments in order to
minimize the chances that they are wrong. This is a perfectly reasonable intention.
However, it has lead to fairly unpleasant situation: One of the main problems why
there is such confusion about what the term “abduction” means is the fact that
nearly nobody distinguishes clearly between the logical inference and the assess-
ment of its result. This can already be seen from a frequently used characterization
of abduction, namely, that it is an “inference to the best(!) explanation” (cf., for ex-
ample,[Josephson and Josephson, 1996]). That is, not all explanatory inferences
(even if their conclusions are only ground formulae, see above) qualify as abduc-
tive inferences. To qualify, they must yield a “better” explanation than all other
explanatory inferences (or at least an equally good one). However, it is clear that
depending on the domain of application different criteria may be used to specify
what is meant by “best”. Thus it is not surprising that there are as many different
interpretations of the term “abduction” as there are criteria to assess hypotheses.
In the preceding section we tried to give a purely logical definition of the term
abduction, which enables us to study now in a systematic way different criteria to
assess hypotheses without introducing any ambiguity w.r.t. the term “abduction”.

We do not claim our list of criteria to be complete, but only give some exam-
ples in order to make clear the main difficulties involved. (Note that for the most
part of this section we do not distinguish between abduction and induction, since
the criteria studied apply to all reductive arguments.) More details on hypothesis
assessment can be found in the introductory chapter.

Relation between antecedent and consequent.If we require only that a reductive
argument explains its second premise by yielding a hypothesis from which it can
be derived deductively (given the conditional), a lot of useless or even senseless
“explanations” are possible. For example, consider the conditional “If sparrows
can fly, then snow is white.” (which, from a purely logical point of view, is true due
to the “material” implication). However, we are not satisfied with the explanation
“sparrows can fly”, if we try to figure out why snow is white, because we cannot
see any connection between the two facts. The situation gets even worse, if we
replace the antecedent by a contradiction, since:ex contradictio quodlibet(from a
contradiction follows whatever you like). Therefore, from a logical point of view,
a contradiction is a universal explanation.

The problem is that we want an explanation to give a reason, or even better, a
cause for the fact to be explained.5 However, “reason” and “cause” are semantical

5Here the difference between the if-then in logic and the if-then in natural language is revealed most
clearly. In natural language most often a causal connection or a inherence relation is assumed between



8 CHRISTIAN BORGELT AND RUDOLF KRUSE

notions, referring to themeaningof statements. Yet the meaning of statements
cannot be captured by formal logic, which handles only the “truth functionality”
of compound statements.

Relation to other statements. Usually drawing an inference is not an isolated
process, but takes place in an “environment” of other statements, which are known
or at least believed to be true. These other statements can (but need not) have a
bearing on the conclusion of a reductive argument. They may refute or support it.
For example, the fact that clouds are white may be explained by the hypothesis that
they consist of cotton wool. However, we also know that cotton wool is heavier
than air. Thus we can refute the hypothesis (although indirectly, since we need a
(deductive) argument to make the contradiction explicit). On the other hand, if we
observe white animals, we may conjecture that they are swans. This conjecture is
supported, if we learn also that the animals can fly and have orange bills. That is,
a hypothesis gets more plausible, if several reductive arguments lead to it.

Parsimony (Ockham’s razor). Not only do we want explanations to give reasons
or causes and to be compatible with our background knowledge, we also want
them to be as simple as possible. For example, suppose that your car does not
start and that the headlights do not come on. Considering as explanations that both
headlights are burned outand that the starter is broken or that simply the battery
is empty, you would surely prefer the latter. The rationale of this preference is
expressed in Ockham’s razor6: pluralitas non est ponenda sine necessitate, that is,
multiple entities should not be assumed without necessity. (Note that this is also
a semantic criterion, although it may be turned into a syntactical one by fixing the
formal language and introducing a measure of complexity for the formulae.)

Probability. Consider the following two abductive arguments:

Water is (1) a liquid, (2) transparent, and (3) colorless.
This substance is (1) a liquid, (2) transparent, and (3) colorless.

This substance is water.

Tetrachloromethane is (1) a liquid, (2) transparent, and (3) colorless.
This substance is (1) a liquid, (2) transparent, and (3) colorless.

This substance is tetrachloromethane.

W.r.t. the criteria mentioned above they are equivalent. Nevertheless we prefer
the first, since in daily life we deal with water much more often than with tetra-
chloromethane. Due to this difference in frequency we judge the first conclusion
to be much moreprobablethan the second. This is one way in which the notion of
probabilityenters our discussion, namely as a means to assess hypotheses.

the antecedent and the consequent of a conditional. In formal logic, no such assumption is made.
6William of Ockham, 1280–1349.
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4 PROBABILISTIC INFERENCES

Up to now we assumed implicitly that the conditional that appears in deductive as
well as in reductive arguments is known to be absolutely correct. However, in real
world applications we rarely find ourselves in such a favorable position. To quote
a well-known example: Even the statement “If an animal is a bird, then it can
fly.” is not absolutely correct, since there are exceptions like penguins, ostriches
etc. To deal with such cases—obviously, confining ourselves to absolutely correct
conditionals would not be very helpful—we have to consider statistical syllogisms,
statistical generalizations, and (particular) statistical explanations.

4.1 Statistical Syllogisms

By statistical syllogism, a term which was already mentioned in the introductory
chapter, we mean a deductively shaped argument, in which the conditional is a
statistical statement. For example, consider the following argument:

80% of the beans in boxB are white.
This bean is from boxB.

This bean is white.

(To make explicit the conditional form of the first premise, we may rewrite it as:
“If x is a bean from boxB, thenx is white (with probability 0.8).”)

The most important thing to note here is that with a statistical conditional a
deductively shaped argument loses its distinctive mark, namely, it is no longer
infallible. Since 20% of the beans in boxB are not white, the conclusion may
be false, even though the premisses are true. It would be a genuine deductive
argument only, if the probability in the conditional were 1 (this is why we only
called it adeductively shapedargument).

Nevertheless we are rather confident that the conclusion of the argument is true,
since the probability of the bean being white is fairly high (provided the bean was
picked at random). We may express this confidence by assigning to the conclusion
a degree of belief(or adegree of confidence) equal to the probability stated in the
conditional. We may even call this degree of belief a probability, if we switch from
an empirical (or sometimes calledfrequentistic) interpretation of probabilities to
a subjective(or personalistic) interpretation[Savage, 1954], or if we interpret the
argument as a rule for decisions, which is to be applied several times. In the latter
case the degree of belief measures the relative frequency of those cases in which a
decision made according to this rule is correct (and thus can be seen as an empirical
probability).7

7Note that we cannot interpret the number 0.8 assigned to the conclusion of the argument as an
empirical probability for a single instance of the argument, since in a single instance the bean is either
white or it is not white. There is no random element involved and thus the probability of the bean being
white is either 0 or 1, even if we do not know whether it is 0 or 1.
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4.2 Statistical Generalizations

A statistical generalization, which is called an inductive generalization in the in-
troductory chapter, is an argument like, for instance:

If 50% of all children born are girls,
then 50% in this sample will be girls.

50% of the children in this sample are girls.

50% of all children born are girls.

Here the sample may be determined, for instance, as all children born in a specific
hospital. (Note that often the first premise (the conditional) is missing, although
the argument would not be logically complete without it.) Obviously, a statistical
generalization is the probabilistic analog of an inductive argument. It would be
a genuine inductive argument, if the percentages appearing in it were 100% (or
the probabilities were 1). Statistical generalizations are one of the main topics of
statistics, where they are used, for instance, to predict the outcome of an election
from polls. In statistics it is studied what it takes to make reliable the conditional
of the argument above (e.g. the sample has to berepresentativeof the whole pop-
ulation), what is the best estimate of parameters for the whole population (like the
relative frequency of 50% in the argument above—since it is, of course, logically
possible that the relative frequency of girls in the whole population is 60%, but in
the sample it is only 50%), and how to compute these best estimates.

4.3 (Particular) Statistical Explanations

We use(particular) statistical explanation8 as a name for the probabilistic analog
of an abductive inference. That is, a statistical explanation is an argument like

70% of all patients having caught a cold develop a cough.
Mrs Jones has a cough.

Mrs Jones has caught a cold.

Again, the above would be a genuine abductive argument, if the relative frequency
in the conditional were 100% (the conditional probability were 1).

Although this argument seems plausible enough, there is a problem hidden in
it, namely that we cannot assign adegree of beliefto the conclusion as easily as
we could for statistical syllogisms. The reason is that in a statistical syllogism
the inference is drawn in the direction of the conditional probability—just as in
a deductive argument the inference is drawn in the direction of the implication—
whereas in a statistical explanation it is drawn in the opposite direction—just as
in a reductive argument the inference is drawn opposite to the direction of the

8The wordparticular is added only to emphasize that the explanation must be a particular statement,
since statistical generalizations—due to their reductive structure—also yield statistical explanations. In
the following we drop it, since there is no danger of confusion.
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implication. Thus, to assign a degree of belief to the conclusion of a statistical
explanation, we have to invert the conditional probability usingBayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
,

whereP (B|A) is the conditional probability appearing in the first premise of the
argument (withA=̂ “The patientP has caught a cold.” andB=̂ “The patientP
has a cough.”) andP (A) andP (B) are the prior probabilities of the eventsA and
B, respectively.9

It is obvious that using Bayes’ rule we can always invert a conditional prob-
ability, provided the prior probabilities are known. That is, with Bayes’ rule we
can always transform a statistical explanation into a statistical syllogism, simply
by turning the conditional around. Thus, in probabilistic reasoning the difference
between abductively and deductively shaped arguments vanishes—which is not
surprising, since the distinctive mark of deductive inferences, their infallibility, is
lost (see above).

However, the distinction between arguments the conclusion of which is a gen-
eral statement and those the conclusion of which is a particular statement remains
valid, since it is next to impossible to know or even define the prior or posterior
probability of a general statement. This is especially true, if the conclusions to be
inferred are whole theories and consequently[Popper, 1934] has argued (convinc-
ingly, in our opinion) that there is no way to prefer, for instance, Einstein’s theory
of gravitation over Newton’s based on their respective probabilities. Therefore in
the following we confine ourselves to inferences of particular statements, which is
no real restriction, since our topic is abductive inference anyway.

5 A GENERAL MODEL OF ABDUCTIVE INFERENCE

In this section we introduce a general model of abductive inference incorporating
hypothesis assessment that is based on[Bylanderet al., 1991], but also closely
related to[Peng and Reggia, 1989]. Since this model cannot be implemented
directly (it would require too much storage space) we have to look for simplifica-
tions, which finally lead us to probabilistic networks.

5.1 Formal Definition

We start by giving a formal definition of an abductive problem. This definition is
intended to describe the framework in which the abductive reasoning takes place
by fixing the statements that may be used in abductive arguments and a mecha-
nisms to assess the hypotheses resulting from such arguments.

9Note that Bayes rule is of little value for genuine abductive arguments, since for these prior and
posterior probability must be the same (since they must be either 0 or 1) and thusP (A|B) = P (A).
That is, in order to apply Bayes’ rule in this case, we already have to know what we want to infer.
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DEFINITION 1. Anabductive problem is a tupleAP=〈Dall,Hall, e, pl , Dobs〉,
where

• Dall is a finite set of possible atomic data,

• Hall is a finite set of possible atomic hypotheses,

• e is a relation of2Dall and2Hall , i.e.,e ⊆ 2Dall × 2Hall ,

• pl is a mapping from2Dall × 2Hall to a partially ordered setQ, and

• Dobs ⊆ Dall is the set of observed data.

The setsDall andHall contain the statements that can be used in inferences, the
former the possible observations (ordata, which is why this set is denoted by the
letterD), the latter the possiblehypotheses. Since we deal with abductive infer-
ences we require all statements inDall andHall to be particular, i.e., expressible as
ground formulae. Note that we do not require the two sets to be disjoint, although
this requirement is useful for most applications.

The relatione (for explanation) connects sets of observations with sets of hy-
potheses which explain them. That is, it describes the set of conditionals that can
be used in abductive arguments (if(H,D) ∈ e, thenH → D). It thus contains
information about what is accepted as an explanation (cf. section 3).

The mappingpl (for plausibility) assesses an inference by assigning an element
of the setQ, which states thequality of the inferred (compound) hypothesis w.r.t.
the given data. It may be a partial mapping, since we need values only for the
elements of the relatione. In the following the setQ will always be the interval
[0, 1], as we deal only with probabilities and degrees of belief. However, this
restriction is not necessary and therefore we chose to make the definition more
general. Note that w.r.t. the mappingpl we may choose to add toDall statements
that do not need an explanation, but may have a bearing on the assessment of
possible hypotheses. For example, in medical diagnosis we register the sex of a
patient, although it is clearly not a fact to be explained by the diagnosis, simply
because the likelihood of certain diseases differs considerably for the two sexes.

Dobs is the set ofobserveddata, i.e., the set for which an explanation is desired.
Of course, this set is not actually a part of the framework for abductive reasoning,
which is fixed by the first four elements of the five-tuple. This framework may be
used with several different setsDobs and therefore it is reasonable to consider a
general representation that is independent ofDobs. However, it has to be admitted
that without a set of observations to be explained, there is noproblemto be solved,
and therefore, in contrast to[Bylanderet al., 1991], we chose to add it to the
definition.

Before we can proceed further, we have to say a few words about the interpre-
tation of subsets of the setsDall andHall, for instance, the interpretation ofDobs.
Given a setD ⊆ Dall, we assume thatall statements contained inD must hold,
i.e.,D is interpreted as a conjunction of its elements. This is straightforward, but
what about the statements inDall\D? Obviously it would be impractical to require
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that they are all false, since this is equivalent to requiring perfect knowledge about
all possible observations, which in applications is rarely to be had. Unfortunately,
we can neither assume that nothing is known about their truth value, because there
may be semantical relations between possible observations. For example,Dall

may contain the statements “This bean is white.”, “This bean is red.” and “This
bean is green.” As soon as we observe that the given bean is white, we know that
the other two statements are false. (Obviously the same problem arises, if we con-
sider whether a given setD of observations is satisfiable or whether it contains
mutually exclusive statements.) Since this is a problem on the semantical level,
it cannot be taken care of automatically in the formal model. Rather we have to
assume that the relatione is defined in such a way that it connects only consistent
sets of observations with consistent sets of hypotheses. In addition we have to as-
sume that the setDobs is consistent (which is no real restriction, since the observed
reality should be consistent).

We can support that these requirements are met, though, by introducing some
structure on the setsDall andHall. The simplest way to achieve this is to group
atomic observations and hypotheses in such a manner that the statements in each
group are mutually exclusive and exhaustive (to achieve the latter it may be neces-
sary to introduce additional atomic statements that cover the remaining situations).
After we did this, we can reconstruct the setsDall andHall as the Cartesian product
of the domains of certainvariables, each of which represents a group of mutually
exclusive and exhaustive statements. That a set of observations and hypotheses
is (formally) consistent can now easily be ensured by requiring that it must not
assign more than one value to a variable, i.e., must not select more than one state-
ment from the corresponding set of mutually exclusive statements. It should be
noted, though, that this approach only excludes formal (or syntactical) inconsis-
tencies, whereas factual inconsistencies (for instance, a nine year old girl with
two children or a car that weighs 10 grams) still have to be taken care of by the
explanation relatione.

An abductive problem is solved by finding the best explanation(s) for the data
observed. This motivates the next two definitions.

DEFINITION 2. In an abductive problemAP = 〈Dall,Hall, e, pl , Dobs〉 a set
H ⊆ Hall is called anexplanation (of the dataDobs), iff (H,Dobs) ∈ e.

Often an explanation is required to be parsimonious (see above). We may add
this requirement by defining

H is an explanation, iff(H,Dobs) ∈ e ∧ ¬∃H ′ ⊂ H : (H ′, Dobs) ∈ e,

that is,H is an explanation only, if no proper subset ofH is also an explanation.

DEFINITION 3. In an abductive problemAP = 〈Dall,Hall, e, pl , Dobs〉 an ex-
planationH is called abest explanation(of the dataDobs), iff there is no expla-
nationH ′ that is better thanH w.r.t. the mappingpl , i.e., iff

¬∃H ′ : (H ′, Dobs) ∈ e ∧ pl(H,Dobs) < pl(H ′, Dobs).
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Clearly, which explanation is selected depends on how the hypothesis assessment
function pl ranks the possible explanations. Therefore this function should be
chosen with special care. Fortunately, we can identify the ideal choice, which may
serve as a guideline.

DEFINITION 4. Theoptimal hypothesis assessment functionis

plopt(H,D) = P (H|D).

The best explanation underplopt is called themost probable explanation.

Strictly speaking, the notationP (H|D) used in this definition is formally incor-
rect, because the setsH andD are no events. However, this notation is intended as
an abbreviation forP

({
ω ∈ Ω |

∧
h∈H h(ω)

} ∣∣ {ω ∈ Ω |
∧

d∈D d(ω)
})

, whereΩ
is the underlying sample space. Here we view the statementsh andd as random
variables that assume the valuetrue, if they hold for the elementary eventω, and
the valuefalseotherwise.

The probability of the hypothesis given the data is the optimal hypothesis as-
sessment function, because it is easy to show that deciding on the hypothesis it
advocates is, in the long run, superior to any other decision strategy—at least w.r.t.
the relative number of times the correct decision is made. If the alternatives carry
different costs in case of a wrong decision, an different function may be better.
Nevertheless, the probability of the hypothesis given the data is still very important
in this case, because it is needed to compute the hypothesis assessment function
that optimizes the expected benefit.

Note that regarding a probabilistic assessment function as the best one possi-
ble does not exclude other uncertainty calculi. For a probabilistic approach to be
feasible, specific conditions have to hold, which may not be satisfied in a given ap-
plication. For example, if the available information about the modeled domain is
not precise enough to compute a probability distribution, other approaches have to
be considered. This justifies using, for example, possibility distributions[Dubois
and Prade, 1988] or mass assignments[Baldwin et al., 1995] for hypothesis as-
sessment. In this chapter, however, we assume that we can treat abductive prob-
lems probabilistically and therefore drop the subscriptopt in the following. An
approach based on possibility distributions, which is closely related to the one
presented here, can be found in the next chapter.

The relatione and the mappingpl of an abductive problem can easily be repre-
sented as a table in which the lines correspond to the possible sets of hypotheses
and the columns correspond to the possible sets of observations (or vice versa, if
you like). A sketch is shown in table 1. In this table each entry states the value
assigned by the mappingpl to the pair(H,D) corresponding to the table field,
provided that this pair(H,D) is contained in the relatione. For pairs(H,D) not
contained in the relatione the value of the mappingpl is replaced by a 0, which
serves as a kind of marker for unacceptable explanations. This way of marking ex-
planations presupposes that any acceptable explanation has a non-vanishing prob-
ability, which is a reasonable assumption.
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Table 1. Sketch of a possible representation of the relatione and the mappingpl
of an abductive problem. The zeros indicate unacceptable explanations, i.e., pairs
(H,D) not contained ine. Thepi are the conditional probabilitiesP (H|D).

pl ∅ {d1} {d2} {d3} · · · {d1, d2} {d1, d3} · · ·
∅ 1 0 0 0 · · · 0 0 · · ·

{h1} 0 p1 p6 p10 p13 p17

{h2} 0 p2 p7 0 p14 p18

{h3} 0 p3 0 p11 0 p19

...
...

...
...

{h1, h2} 0 p4 p8 0 p15 0
{h1, h3} 0 p5 p9 p12 · · · p16 p20 · · ·

...
...

...
...

Note that inconsistent sets of observations or hypotheses correspond to all zero
columns or lines and thus may be removed from the table. Note also that we
actually need to mark the acceptable explanations, because wecannotdefine the
relatione by

e =
{
(H,D) ∈ 2Hall × 2Dall | P (H|D) > 0

}
.

Wecannoteven define the relatione as

e =
{
(H,D) ∈ 2Hall × 2Dall | P (H|D) > P (H)

}
.

If we did so, we would accept unreasonable explanations. For example, if we learn
that one or several bathing accidents have occurred, there is a much higher prob-
ability that the ice-cream sales have been high recently than without the bathing
accidents. However, the high ice-cream sales are obviously not an acceptable ex-
planation for the bathing accidents.10 Generalizing, we cannot define the relatione
as shown above, because what makes an explanation acceptable is a semantical re-
lation between the hypotheses and the data. However, probability theory, just as
logic, cannot capture semantical relations. Therefore we have to indicate sepa-
rately which explanations are acceptable.

Solving an abductive problem with the representation just discussed is espe-
cially simple. All one has to do is to visit the table column that corresponds to the
observed data and to find the line of this column that holds the highest probability.
The set of hypotheses corresponding to this line is the most probable explanation
for the observed data. However, it is clear that for any real world problem worth
considering we cannot set up the table described above, since it would have too
many lines and columns. Therefore we have to look for simplifications.

10The reason for this correlation is the simple fact that most bathing accidents occur in summer,
because more people go bathing when it is warm. They also buy more ice-cream when it is warm.
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5.2 Simplifications

In the following we consider, in two steps, simplifications of the general model
introduced in the preceding section. The first simplification is based on the idea to
replace the explanation relatione by a function mapping from2Hall to 2Dall , which
assigns to a setH of hypotheses the union of all setsD of observations thatH can
explain. In this case we may just check for set inclusion to determine whetherH
explainsDobs. Of course, this simplification is not always possible, if we want the
result to be equivalent to the original abductive problem. Specific conditions have
to hold, which are given in the following definition.

DEFINITION 5. An abductive problemAP = 〈Dall,Hall, e, pl , Dobs〉 is called
functional, iff

1. ∀H ⊆ Hall : ∀D1, D2 ⊆ Dall :
((H,D1) ∈ e ∧D2 ⊆ D1) ⇒ (H,D2) ∈ e

2. ∀H ⊆ Hall : ∀D1, D2 ⊆ Dall :
((H,D1) ∈ e∧ (H,D2) ∈ e∧D1∪D2 is consistent) ⇒ (H,D1∪D2) ∈ e

Note that the first condition is no real restriction, since we interpret sets of obser-
vations as conjunctions. Consequently, if a setD ⊆ Dall can be explained by a
setH ⊆ Hall, all subsets ofD should also be explainable byH. The second con-
dition, however, is a restriction, since counterexamples can easily be found. For
instance, due to the sexual dimorphism in mallards (Anas platyrhynchos), we can
explain the observation of a female bird with webbings as well as the observation
of a bird with webbings and a shining green-black head by the hypothesis that the
bird is a mallard. However, the conjunction of the two observations cannot be ex-
plained by this hypothesis, since only male mallards have a shining green-black
head[Thiele, 1997].11

The relatione of a functional abductive problem can be replaced, as the term
“functional” already indicates, by a functionef defined as follows

∀H ⊆ Hall : ef (H) = {d ∈ Dall | ∃D ⊆ Dall : d ∈ D ∧ (H,D) ∈ e}.

With this function an explanation (for a consistent setDobs) can be defined—as
already indicated—as a setH ⊆ Hall, such thatDobs ⊆ ef (H).

The simplification that can be achieved for a functional abductive problem be-
comes most obvious, if the functionef is represented as a relatione1 of 2Hall and
Dall, which can be defined by

∀H ⊆ Hall : (H, d) ∈ e1 ⇔ d ∈ ef (H).

This relation can be represented as a table with one column for eachd ∈ Dall and
one line for eachH ⊆ Hall. Of course, lines corresponding to inconsistent sets

11The conjunction of the observations is not inconsistent, though, since in another kind of ducks,
tadorna tadorna, which exhibits no sexual dimorphism w.r.t. plumage, maleand female have a shining
green-black head[Thiele, 1997].
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Table 2. Sketch of a possible representation of the relatione and the mappingpl
of a D-independent abductive problem. The zeros indicate possible observations
that cannot be explained by the corresponding set of hypotheses.

pl d1 d2 d3 · · · dn

∅ p1 p2 p3 · · · p4

{h1} p5 0 p6 p7

{h2} p8 p9 0 0
{h3} 0 0 p10 p11

...
...

...
{h1, h2} p12 p13 p14 p15

{h1, h3} p16 0 p17 p18

...
...

...

of hypotheses can be removed, just as for the table used to represent the original
relatione. However, this table only represents the relatione in a more compact
form. To state the hypothesis assessment functionpl we still need a table with
2|Hall| lines and2|Dall| columns. In order to representpl with a table similar to the
one needed to represente1, we need much stronger assumptions.

DEFINITION 6. A functional abductive problemAP = 〈Dall,Hall, e, pl , Dobs〉
is calledD-independent, iff

∀H ⊆ Hall : ∀D ⊆ Dall :

D is consistent ⇒ P (D|H) =
∏
d∈D

P (d|H).

Intuitively, D-independence means that the probability of a possible observa-
tion d is independent of any other observations that may be present given any set
of hypothesesH. Note that the setH may be empty. That is, for allD ⊆ Dall we
also haveP (D) =

∏
d∈D P (d).

The relatione and the mappingpl of a D-independent abductive problem can
easily be represented as a table in which the lines correspond to possible sets of hy-
potheses and the columns correspond to possible (atomic) observations. A sketch
is shown in table 2. Each field of this table holds a conditional probabilityP (d|H).
Note that, as for table 1, we can delete from this table all lines that correspond to
inconsistent sets of hypotheses. From this table we can then compute the assess-
ment of any consistent set of hypotheses using Bayes’ rule, provided we also know
the prior probabilityP (H) of the set of hypotheses:

P (H|D) =
P (D|H)P (H)

P (D)
= P (H)

∏
d∈D

P (d|H)
P (d)

.



18 CHRISTIAN BORGELT AND RUDOLF KRUSE

Thus the best explanation is found by computingP (H|Dobs) for all (consistent)
setsH of hypotheses using the above formula and then selecting that setH for
which this probability is highest. This approach, although restricted to one element
sets{h}, was suggested in[Charniak and McDermott, 1985].

As we have shown, the representation of the explanation relatione and the
hypothesis assessment functionpl of an abductive problem can be considerably
simplified, if it is D-independent. However, the table of conditional probabilities
required is still too large to be stored for any reasonably sized real world problem,
simply because it still has too many lines. Therefore, in a second simplification
step, we consider independent abductive problems. In such problems the possible
hypotheses independently explain observations.

DEFINITION 7. A functional abductive problemAP = 〈Dall,Hall, e, pl , Dobs〉
is calledindependent, iff

∀H ⊆ Hall : ef (H) =
⋃

h∈H

ef ({h}),

whereef is the function by which the relatione can be represented in a functional
abductive problem (see above).

Of course, this is a very strong restriction. It requires that there is no interaction
of hypotheses in the sense that no combination of atomic hypotheses can to ex-
plain an observation, neither of the atomic hypotheses can explain on its own. In
addition, the explanatory powers of atomic hypothesis must not cancel each other
(there must not be “destructive interference”). This requirement excludes such
commonplace situations as the following: Suppose we have a computing center
that is equipped with its own emergency power supply. If we observe that the
computing center is not working, we can explain this neither by the assumption
that the electric power station is down nor by the assumption that the emergency
power supply is broken. Only a conjunction of both is an acceptable hypothe-
sis. On the other hand, cancellation must not occur, that is, one hypothesis must
not have a subtractive effect on another. This is common in medicine, though.
For example, in the domain of acid-base disorders, one disease might explain an
increased blood pH, and another might explain a decreased pH, but together the
result might be a normal pH ([Patilet al., 1982] as cited in[Bylanderet al., 1991]).

Although excluding interactions between hypotheses is a strong restriction, we
may choose to do so, because it enables us to simplify the representation of the
framework for abductive reasoning. In an independent abductive problem the re-
latione can be replaced by a relatione2, which is defined as follows:

∀h ∈ Hall : (h, d) ∈ e2 ⇔ d ∈ ef (h).

With this relation, an explanation can be defined as a consistent setH of hypothe-
ses, such that

Dobs ⊆ {d ∈ Dall | ∃h ∈ H : (h, d) ∈ e2}.
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The relatione2 can be represented as a simple table with|Hall| lines and|Dall|
columns. In this table an entry corresponding to a pair(h, d) is marked, if the
atomic hypothesish can explain the atomic datumd. From this table all possible
explanationsH of the observed dataDobs can easily be constructed, if it is taken
care that only consistent setsH are selected. However, as in the first simplification
step, only the relatione can be represented in a more compact form. To store
the hypothesis assessment functionpl , we still need a table with2|Hall| lines and
|Dall| columns. In order to representpl with a table similar to the one needed to
represente2, we need much stronger assumptions[Borgelt, 1992]:

DEFINITION 8. A D-independent abductive problemAP = 〈Dall,Hall, e, pl ,
Dobs〉 is calledHD-independent, iff

∀H ⊆ Hall : ∀d ∈ Dall :
H is consistent⇒ P (H|d) =

∏
h∈H

P (h|d) ∧ P (H) =
∏
h∈H

P (h).

The idea underlying this definition is the following: To compute the assessment of
a setH of hypotheses in aD-independent abductive problem we neededP (H) and
P (d|H). These probabilities force us to store a table with2|Hall| lines. However,
with the above relations, we can compute these probabilities from a much smaller
set of probabilities. ForP (H) this is obvious as the computation formula is given
in the definition. ForP (d|H) we have to apply Bayes’ rule:

P (d|H) =
P (H|d)P (d)

P (H)
= P (d)

∏
h∈H

P (h|d)
P (h)

.

Another application of Bayes’ rule to the factors of the product of the above for-
mula yields

P (d|H) = P (d)
∏
h∈H

P (d|h)P (h)
P (d)P (h)

= P (d)
∏
h∈H

P (d|h)
P (d)

.

Combining this formula and the one derived forD-independent abductive prob-
lems we arrive at the following formula to compute the conditional probability of
a setH of hypotheses given a setD of possible observations[Borgelt, 1992]:

P (H|D) =
∏

h′∈H

P (h′)
∏
d∈D

(∏
h∈H

P (d|h)
P (d)

)
.

As a consequence we only need to store the probabilitiesP (h), P (d), andP (d|h)
for all h ∈ Hall and alld ∈ Dall, that is, only(|Hall| + 1) · (|Dall| + 1) − 1
probabilities. These probabilities can be organized in a simple table as sketched in
table 3. In addition to this table we need the table that represents the relatione2,
because we cannot incorporate the relatione2 in this table by marking entries with
a zero (since we need all probabilities). Nevertheless, this representation is easily
manageable even for large setsHall andDall.
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Table 3. Sketch of a possible representation of the mappingpl of an HD-
independent abductive problem.

pl prior d1 d2 · · · dn

prior p01 p02 · · · p0n

h1 p10 p11 p12 p1n

h2 p20 p21 p22 p2n

...
...

...
...

hm pm0 pm1 pm2 · · · pmn

6 PROBABILISTIC NETWORKS

The simplifications introduced in the preceding section finally led to a manage-
able model of probabilistic abductive inference. However, the assumptions needed
to arrive at this model are hardly acceptable. In practice we rarely encounter a
problem in which all independence assumptions are satisfied. To cope with this
problem, the idea suggests itself to search for a model, in which we can take de-
pendences into account, but nevertheless can exploit all existing independences to
reduce the amount of storage needed and to make inferences in complex domains
tractable. Probabilistic networks are such a model.

6.1 Decomposition and Abductive Reasoning

Stated as concisely as possible, the basic ideas underlying probabilistic networks
are these: Under certain conditions a probability distributionP on a multi-
dimensional domain, which encodesprior or generic knowledgeabout this do-
main, can be decomposed into a set{P1, . . . , Pn} of probability distributions on
lower-dimensional subspaces. This decomposition is based on dependence and
independence relations between the attributes of the domain. If such a decom-
position is possible, it is sufficient to know the distributions on the subspaces to
compute all probabilities that can be computed using the original distributionP .
Since such a decomposition is usually represented as a network (or graph), it is
commonly called aprobabilistic networkor aprobabilistic graphical model. Rea-
soning in such a network consists in conditioning the represented probability dis-
tribution on the observed values of some attributes.

To elaborate a little: Bymulti-dimensional domainwe mean that each state
of the section of the world to be modeled can be described by stating the val-
ues of a finite setV = {A1, . . . , Am} of attributes. Each such attribute—or,
more precisely, the setdom(Ak) = {ak,1, . . . , ak,nk

} of its possible values—
forms a dimension of the domain. Of course, to form a dimension, the possible
values have to beexhaustiveandmutually exclusive. With these restrictions the
universe of discourseor frame of discernmentis the multi-dimensional domain



ABDUCTIVE INFERENCE WITH PROBABILISTIC NETWORKS 21

Ω = dom(A1)× · · · × dom(Am). Each possible state of this domain is described
by a tupleω = (a1,i1 , . . . , am,im

) containing the values which the attributes inV
assume for this state.

The probability distributionP on Ω assigns to each pointω ∈ Ω the (prior)
probability that the modeled section of the world is in a state corresponding to
that point. These probabilities are usually estimated by human domain experts or
computed from a statistical analysis of available data.

By decompositionwe mean that the probability distributionP on the domain
as a whole can be reconstructed from the distributions{P1, . . . , Pr} on lower-
dimensional subspaces, where a subspaceΩW ⊆ Ω is the joint domain of a subset
W ⊆ V of attributes, i.e.,ΩW =×A∈W dom(A). The distributions{P1, . . . , Pr}
on the subspaces assign conditional or marginal probabilities (depending on the
network type—see below) to projections of the tuplesω ∈ Ω to the corresponding
subspaces. From these probabilities the original probability distributionP on Ω
can be recomputed.

A decomposition of a probability distribution has several advantages, the most
important being that it can usually be stored much more efficiently and with less
redundancy than the original distribution. However, just being able to store a prob-
ability distribution more efficiently would not be of much use for reasoning tasks,
were it not for the possibility to draw inferences in the underlying domain using
only the distributions{P1, . . . , Pr} on the subspaces without having to reconstruct
the original distributionP . If we have obtainedevidential knowledgeabout the cur-
rent stateω0 of the domain under consideration, which consists in observations of
the values of some of the attributes, we canconditionthe represented probability
distribution on the observed values by passing the conditioning information from
subspace distribution to subspace distribution until all have been updated. This
process is usually calledevidence propagation.

Obviously, mapping our general model of abductive inference to probabilistic
networks is—for the most part—very simple. When considering the interpretation
of subsetsH andD of hypotheses and possible observations above, we already
mentioned that it is useful to form groups of mutually exclusive and exhaustive
statements to support checking for the requirement that these subsets are consis-
tent. These groups of statements correspond to the attributes considered in proba-
bilistic networks. We only have to join the setsHall andDall to form one universe
of discourse. (If we need the information where the attributes came from, we can
keep it in attribute markers.) The hypothesis assessment functionpl corresponds
directly to the probability distributionP on the domain, since from this proba-
bility distribution we can compute the probabilityP (H|D) for all setsH andD.
Thus the decomposition can be used to simplify the representation of the hypoth-
esis assessment functionpl . The observed dataDobs corresponds to the evidential
knowledge. The only element of an abductive problem for which there is no direct
analog is the explanation relatione, which identifies the acceptable explanations.

In the following sections we first review the theory of probabilistic networks in
more detail and later we turn to the problem of hypothesis selection.
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6.2 Conditional Independence

Whether and how a given probability distributionP can be be decomposed into
a set{P1, . . . , Pr} of distributions on subspaces is determined by the dependence
structure of the attributes of the domainΩ underlyingP . It is clear that attributes
that directly depend on each other must appear together at least once in a distribu-
tion of the decomposition. A separation is possible only, if they areconditionally
independent[Dawid, 1979; Pearl, 1992]. That is, if two attributes get independent,
if certain other attributes are fixed, their dependence is not genuine, but medi-
ated through other attributes. In this case these two attributes need not appear
together in a distribution of the decomposition, but it suffices that there is a “path”
connecting them through the mediating attributes. (This already suggests that a
decomposition may be representable as a network or graph.)

Conditional probabilistic independence is defined in accordance with the usual
notion of stochastic independence as follows:

DEFINITION 9. LetX, Y , andZ be three disjoint subsets of attributes inV . X is
calledconditionally independentof Y givenZ w.r.t. P , writtenX ⊥⊥Y | Z, iff

∀ω ∈ Ω : P (ωX∪Y | ωZ) = P (ωX | ωZ) · P (ωY | ωZ)

wheneverP (ωZ) > 0.

Here a conditional probability distribution is defined in the usual way, i.e., as

P (ωX | ωY ) =
P (ωX∪Y )
P (ωY )

.

The notion of conditional independence provides, as already mentioned, the con-
nection to a graph representation. It has been shown in general that a notion of
conditional independence satisfying certain axioms, which are known as thesemi-
graphoid axioms[Dawid, 1979; Spohn, 1980; Pearl and Paz, 1987; Smith, 1989],
can be used to define a graph structure on the set of attributes. These axioms are

symmetry: (X ⊥⊥Y | Z) =⇒ (Y ⊥⊥X | Z)

decomposition:(W ∪X ⊥⊥Y | Z) =⇒ (W ⊥⊥Y | Z) ∧ (X ⊥⊥Y | Z)

weak union: (W ∪X ⊥⊥Y | Z) =⇒ (X ⊥⊥Y | Z ∪W )

contraction: (W ⊥⊥Y | Z) ∧ (X ⊥⊥Y | Z ∪W ) =⇒ (W ∪X ⊥⊥Y | Z)

Thesymmetryaxiom states that in any state of knowledgeZ, if Y tells us nothing
new aboutX, thenX tells us nothing new aboutY . The decompositionaxiom
asserts that if two combined items of information are judged irrelevant toX, then
each separate item is irrelevant as well. Theweak unionaxiom states that learn-
ing irrelevant informationW cannot help the irrelevant informationY become
relevant toX. Thecontractionaxiom states that if we judgeW irrelevant toX
after learning some irrelevant informationY , thenW must have been irrelevant
before we learnedY . Together the weak union and contraction properties mean
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that irrelevant information should not alter the relevance of other propositions in
the system; what was relevant remains relevant, and what was irrelevant remains
irrelevant[Pearl, 1992]. It is plausible that any reasonable notion of conditional
independence should satisfy these axioms and, indeed, probabilistic conditional
independence does.

6.3 Graph Representation

Given an appropriate notion of conditional independence, i.e., one that satisfies
the semi-graphoid axioms, aconditional independence graphG = (V,E) can
be defined. Each node of this graph corresponds to an attribute of the underly-
ing domain. The topology of the graph, i.e., which edges are present and which
are missing, is used to represent an independence model, i.e., a set of condi-
tional independence statements, of the domain under consideration[Pearl, 1992;
Spirteset al., 1993]: The conditional independence of two sets of attributes given
a third is expressed byseparationof the corresponding node sets by the nodes that
correspond to the conditioning attributes.

What is to be understood by “separation” depends on whether the graph is cho-
sen to be directed or undirected. If it is undirected, separation is defined as follows:
If X, Y , andZ are three disjoint subsets of nodes in an undirected graph, thenZ
separatesX from Y , iff after removing the nodes inZ and their associated edges
from the graph there is no path, i.e., no sequence of consecutive edges, from a
node inX to a node inY . Or, in other words,Z separatesX from Y , iff all paths
from a node inX to a node inY contain a node inZ.

For directed graphs, which have to be acyclic, the so-calledd-separation crite-
rion is used[Pearl, 1992; Verma and Pearl, 1990]: If X, Y , andZ are three disjoint
subsets of nodes in a directed acyclic graph (DAG), thenZ is said tod-separate
X from Y , iff there is no path, i.e., no sequence of consecutive edges (of any
directionality), from a node inX to a node inY along which the following two
conditions hold:

1. every node with converging edges either is inZ or has a descendant inZ,

2. every other node is not inZ.

With the described notions of separation, we can define the so-calledMarkov prop-
ertiesof graphs[Whittaker, 1990]:

pairwise: Attributes, whose nodes are non-adjacent in the graph, are conditionally
independent given all remaining attributes.

local: Given the attributes of the adjacent nodes (the neighbors), an attribute is
conditionally independent of all remaining attributes.

global: Any two subsets of attributes, whose corresponding node sets are sep-
arated by a third node set, are conditionally independent given the at-
tributes corresponding to the nodes in the third set.
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Note that the local Markov property is contained in the global, and the pairwise
Markov property in the local.

Since the pairwise Markov property refers to the independence of only two
attributes, it would be most natural (at least for undirected graphs) to use it to define
an independence graph: If two attributes are dependent given all other attributes,
there is an edge between their corresponding nodes, otherwise there is no edge
[Whittaker, 1990]. But, unfortunately, the three types of Markov properties are not
equivalent in general, and it is obvious that we need theglobal Markov property
for inferences from multiple observations. However, the above definition can be
used, if—in addition to the semi-graphoid axioms—the following axiom holds:

intersection:(W ⊥⊥Y | Z ∪X) ∧ (X ⊥⊥Y | Z ∪W ) =⇒ (W ∪X ⊥⊥Y | Z)

The semi-graphoid axioms together with this one are called thegraphoid axioms.
If they hold for a given notion of conditional independence, an independence graph
can be defined via the pairwise Markov condition, since the intersection axiom al-
lows us to infer the global Markov property from the pairwise. If the intersection
axiom does not hold, the global Markov property has to be used to define an in-
dependence graph. If can be shown that a strictly positive probability distribution
satisfies the intersection axiom[Pearl, 1992] and therefore the probability distri-
bution on the domain to be modeled is often required to be strictly positive.

It is clear that an independence graph for a given domain is easy to find. For
example, the complete undirected graph, i.e., the graph in which every node is
connected directly to every other, always is an independence graph. Similarly, a
directed acyclic graph which becomes a complete undirected graph if the direc-
tions of the edges are neglected is a trivial independence graph. However, using
such graphs would not reduce the amount of data that needs to be stored (see be-
low). Therefore we have to add the condition that the independence graph has to
besparseor evenminimal, i.e., should contain as few edges as possible.

Whether directed acyclic graphs or undirected graphs are used is, to a certain de-
gree, a matter of taste. However, it should be noted that the two types of graphs rep-
resent conditional independence relations in fundamentally different ways. There
are undirected graphs that represent a set of conditional independence statements
that cannot be represented by a single directed acyclic graph, and vice versa.

6.4 Factorization

The conditional independence graph is also called thequalitativepart of a prob-
abilistic network, since it specifies which attributes are dependent and which are
independent, but not the details of the dependences. These are represented in the
quantitativepart of a probabilistic network which consists of a set of probability
distributions. W.r.t. the quantitative part of a probabilistic network the conditional
independence graph describes afactorizationof the joint probability distributionP
onΩ. The exact representation of the quantitative information and the factorization
formula depends on the type of the conditional independence graph.



ABDUCTIVE INFERENCE WITH PROBABILISTIC NETWORKS 25

Bayesian networks. The most popular kind of probabilistic networks in artifi-
cial intelligence is theBayesian network, also calledbelief network[Pearl, 1986;
Pearl, 1992]. A Bayesian network consists of a directed acyclic graph and a
set of conditional probability distributionsP (ωA | ωparents(A)), A ∈ V , where
parents(A) is the set of attributes corresponding to the parents of the node that
corresponds to attributeA. That is, there is one probability distribution for each
attribute and each distinct instantiation of its parent attributes in the graph. If an
attribute does not have any parents, its associated distribution is simply an uncon-
ditional distribution.

A Bayesian network describes a factorization of a strictly positive joint proba-
bility distribution P on Ω w.r.t. a directed acyclic graph into a set of conditional
probability distributions according to

∀ω ∈ Ω : P (ω) =
∏

A∈V

P (ωA | ωparents(A)).

These equations can easily be derived from the (generally valid)chain rule of
probability,

∀ω ∈ Ω : P (ω) =
m∏

i=1

P (ωAi | ω{A1,...,Ai−1}),

and a set of conditional independence statements. The reason is that a conditional
independence statementX ⊥⊥Y |Z implies

P (ωX | ωY ∪Z) = P (ωX | ωZ).

Therefore we can cancel from the conditions all attributes of which the attributeAi

is independent given the remaining attributes and thus arrive at the factorization
formula shown above. It should be noted, though, that the achievable simplifica-
tion may depend on the order of the attributes.

Markov networks. An alternative type of probabilistic networks uses undirected
graphs and is called aMarkov network[Lauritzen and Spiegelhalter, 1988; Pearl,
1992]. It represents so-called Markov random fields. Similar to a Bayesian net-
work a Markov network describes a factorization of the joint probability distribu-
tion P on Ω, but it uses apotential representation: A strictly positive probability
distributionP onΩ factorizes w.r.t. an undirected graphG = (V,E), iff

∀X ∈ cliques(G) : ∃φX : ∀ω ∈ Ω : P (ω) =
∏

X∈cliques(G)

φX(ωX),

wherecliques(G) is the set of all maximal cliques ofG, each of which is repre-
sented by the set of attributes whose corresponding nodes are contained in it. The
factor potentialsφX are strictly positive functions defined onΩX , X ⊆ V .

Whether a Bayesian network or a Markov network is chosen to model a given do-
main is, as already indicated above, to a certain degree a matter of taste. However,
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8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

Figure 2. Conditional independence graph of a graphical model for genotype de-
termination and parentage verification of Danish Jersey cattle in the F-blood group
system[Rasmussen, 1992].

since a Bayesian network is a directed graph, it is well-suited to represent direct
causal dependencies between variables: Often we can choose the directions of the
edges (and thus the “directions” of the conditional probabilities) in such a way that
they coincide with the direction of the causal influence. This is quite natural for
knowledge representation, especially in applications for diagnostic reasoning, i.e.,
abductive inference, and thus one may prefer Bayesian network models. How-
ever, the causal interpretation of Bayesian networks should be handled with care,
since it involves strong assumptions about the statistical manifestation of causal
dependences[Borgelt and Kruse, 1999].

6.5 An Example Network

As an example of a probabilistic network we consider an application for blood
group determination of Danish Jersey cattle in the F blood group system, the pri-
mary purpose of which is parentage verification for pedigree registration[Ras-
mussen, 1992]. The underlying domain is described by 21 attributes, eight of
which are observable. The size of the domains of these attributes ranges from two
to eight possible values and the total frame of discernment has26 · 310 · 6 · 84 =
92 876 046 336 possible states. This space is clearly much too large to be han-
dled as a whole and therefore a decomposition of the expert knowledge about this
domain is necessary to make reasoning feasible. Figure 2 lists the attributes and
shows the conditional independence graph of this graphical model, which was de-
signed by human domain experts (the graphical model is a Bayesian network and
thus the conditional independence graph is a directed acyclic graph). The grey
nodes correspond to the observable attributes.
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Table 4. Conditional probability distributions for a subgraph of the conditional
independence graph shown in Figure 2.

sire phenogroup phenogroup stated sire
correct true sire F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

In this example, a decomposition of the joint probability distribution accord-
ing to the conditional independence graph shown in figure 2 leads to a consider-
able simplification. Instead of having to determine the probability of each of the
92 876 046 336 elements of the 21-dimensional frame of discernmentΩ, only 306
conditional probabilities in subspaces of at most three dimensions need to be speci-
fied. An example of a conditional probability table is shown in table 4, which is for
the phenogroup 1 of the stated sire of a given calf conditioned on the phenogroup
of the true sire of the calf and whether the sire was correctly identified. The num-
bers in this table are derived from statistical data and the experience of domain
experts. The family of all 21 conditional probability tables forms the quantitative
part of the graphical model for the Danish Jersey cattle example.

6.6 Evidence Propagation

After a probabilistic network has been constructed, it can be used to do reasoning.
In the Danish Jersey cattle example, for instance, the phenogroups of the stated
dam and the stated sire can be determined and the lysis values of the calf can be
measured. With this information it becomes possible to assess whether the stated
parents of the calf are the true parents or whether the breeder has made a mistake
(or has attempted to deceive the registration office).

However, reasoning in a probabilistic network is not always completely straight-
forward. Considerations of efficiency make it often advisable to transform a graph-
ical model into a form that is better suited for propagating the evidential knowl-
edge and computing the resulting marginal distributions for the unobserved at-
tributes. We briefly sketch here a popular efficient reasoning method known as
clique tree propagation(CTP) [Lauritzen and Spiegelhalter, 1988; Castilloet al.,
1997], which involves transforming the conditional independence graph into a
clique tree. A well-known interactive software tool for probabilistic reasoning
in clique trees is HUGIN[Andersenet al., 1989].
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Figure 3. Triangulated moral graph (left) and clique tree (right) for the graphical
model shown in Figure 2. The dotted lines are the edges added when parents were
“married”.

The transformation into a clique tree is carried out as follows: If the conditional
independence graph is a directed acyclic graph, it is first turned into an undirected
graph by constructing its associatedmoral graph [Lauritzen and Spiegelhalter,
1988]. A moral graph is constructed from a directed acyclic graph by “marry-
ing” the parent nodes of all nodes (hence the name “moral graph”). This is done
by simply adding undirected edges between the parents. The directions of all
other edges are discarded. In general the moral graph satisfies only a subset of
the independence relations of the underlying directed acyclic graph, so that this
transformation may result in a loss of independence information. The moral graph
for the Danish Jersey Cattle example is shown on the left in figure 3. The edges
that were added when parents were “married” are indicated by dotted lines.

In a second step, the undirected graph is triangulated. (If the conditional inde-
pendence graph is an undirected graph right from the start, this is the first step to
be carried out.) An undirected graph is calledtriangulated, if all cycles contain-
ing at least four nodes have a chord, where a chord is an edge that connects two
non-adjacent nodes of the cycle. To achieve triangulation, it may be necessary to
add edges, which may result in a (further) loss of independence information. In
the Danish Jersey cattle example, however, the moral graph shown on the left in
figure 3 is already triangulated, so no new edges need to be introduced.

Finally, the triangulated graph is turned into a clique tree by finding the max-
imal cliques, where a clique (see above) is a fully connected subgraph, and it is
maximal, if it is not contained in another clique. In the clique tree there is one node
for each maximal clique of the triangulated graph and its edges connect nodes that
represent cliques having attributes in common. It should be noted that in general
the clique tree is not unique, because often different sets of edges can be chosen.
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The clique tree for the Danish Jersey cattle example is shown on the right in fig-
ure 3. Detailed information on triangulation, clique tree construction and other
related graph-theoretical problems can be found in[Castilloet al., 1997].

The quantitative part of a graphical model, of course, has to be transformed,
too. From the quantitative information of the original graphical model one has
to compute a marginal distribution for each of the subspaces represented by the
nodes of the clique tree. For the Danish Jersey cattle example, we have to compute
a marginal distribution for the subspace formed by the attributes 1, 3, 7, one for
the subspace formed by the attributes 1, 4, 8, and so on.

Having constructed a clique tree, which is merely a preliminary operation to
make evidence propagation more efficient, we can finally turn to evidence propaga-
tion itself. Evidence propagation in clique trees is basically an iterative extension
and projection process. When evidence about the value of an attribute becomes
available, it is first extended to a clique tree node the attribute is contained in. This
is done by conditioning the associated marginal distribution. We call this an exten-
sion, since by this conditioning process we go from restrictions on the values of a
single attribute to restrictions on tuples of attribute values. Hence the information
is extended from a single attribute to a subspace formed by several attributes. Then
the conditioned distribution is projected to all intersections of the clique tree node
with other nodes. Via these projections the information can be transferred to other
nodes, where the process repeats: First it is extended to the subspace represented
by the node, then it is projected to the intersections connecting it to other nodes.
The process stops when all nodes have been updated.

The propagation scheme outlined above and the subsequent computation of
posterior marginal distributions for the unobserved attributes can easily be im-
plemented by locally communicating node- and edge-processors. These processor
also serve the task to let pieces of information “pass” each other without interac-
tion. Such bypassing is necessary, if the propagation operations in the underlying
uncertainty calculus are not idempotent, that is, if incorporating the same infor-
mation twice can invalidate the results. This is the case in probabilistic reasoning.
This problem is also the reason why the clique graph is usually required to be a
tree: If there were loops, information could travel on two or more different paths
to the same destination and thus be incorporated twice.

Of course, clique tree propagation is not the only known evidence propaga-
tion scheme. Others include bucket elimination[Dechter, 1996; Zhang and Poole,
1996] and iterative proportional fitting[Whittaker, 1990]. Commonly used evi-
dence propagation algorithms differ from each other w.r.t. the network structures
they support. For example, both bucket elimination and iterative proportional fit-
ting can also be used with networks that contain cycles.

6.7 Hypothesis Selection

As already indicated at the beginning of this section, probabilistic networks mainly
provide means to represent the hypothesis assessment functionpl . However, in a



30 CHRISTIAN BORGELT AND RUDOLF KRUSE

probabilistic network there is no direct analog to the explanation relatione of our
general model of an abductive problem. That is, with a probabilistic network, we
can easily compute the plausibility of a given hypothesis, but we cannot check
whether the hypothesis is semantically acceptable.

In applications tailored for a specific application this is often irrelevant, because
from the application it can be clear what attributes we are interested in and there-
fore we only have to compute the most probable tuple of values for the subspace
formed by these attributes. As an example consider again the Danish Jersey Cattle
example discussed above. Its primary purpose is, as already mentioned, parentage
verification. That is, we are interested in the values of two variables, namely “Dam
correct?” and “Sire correct?”. All other unobservable variables are only there to
structure the available expert knowledge about the domain. For the two attributes,
however, which indicate whether the stated dam is the true dam and whether the
stated sire is the true sire, we compute the probability of all possible combinations
and select the most probable one. Actually, in the original network there is an
additional node “Parent correct?” which combines these hypotheses in a single at-
tribute. In the discussion above, we discarded this node, because it does not carry
real information, but only makes the clique tree unnecessarily complex. In cases
like these, where a set of attributes can be fixed in advance, a probabilistic network
approach to abductive reasoning is most powerful.

To identify the most probable tuple in a subspace formed by a set of attributes,
may not always be appropriate, though. If, for instance, not all acceptable (com-
pound) hypotheses consist of the same number of atomic hypotheses, we cannot
use it, because it may result in hypotheses too specific for a given problem. How-
ever, even in this case the probabilistic network alone may contain enough infor-
mation to select the best acceptable hypothesis. For example, the structure of the
network can provide information how to restrict the set of attributes we have to
take into account to form a (compound) hypothesis. Obviously, it is sufficient to
select a set of explanatory attributes (i.e., attributes derived fromHall) in such a
way that the observed attributes and the remaining attributes are conditionally in-
dependent given the selected attributes. A (compound) hypothesis formed from
these attributes has to be considered complete because due to the interpretation of
the semi-graphoid axioms (see above) the remaining attributes are irrelevant for
the observations. Of course, such a restriction does not guarantee that the selected
(compound) hypothesis is semantically acceptable, but it may help to restrict the
set of hypotheses one has to consider. The idea can be enhanced by the requirement
that a reasonable hypothesis should make the observed data more likely than it is
without it or that the observed data should make an acceptable hypothesis more
likely. However, as we showed with a simple example above, a higher likelihood
is not sufficient for a semantically acceptable hypothesis.

If these approaches, which try to do without additional information, are not
feasible, we have to add some structure to represent (a simplification of) the expla-
nation relatione. A very manageable structure results, if we have an independent
abductive problem and thus can represent the relatione as a simple table with
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Hall lines andDall columns. In this case the probabilistic network helps to avoid
the strong probabilistic independence assumptions underlyingD-independent and
HD-independent abductive problems. We only need the logical independence
assumptions needed to simplify the representation of the relatione. If even these
logical assumptions are too strong, we can enhance the table of the relatione for an
independent abductive problem by an explicit list of (compound) hypotheses, for
which “constructive” or “destructive inference” occurs, i.e., those (compound) hy-
potheses which can explain more than the sum of their elements and those, which
can explain less (examples of such situation we gave above). Provided this list is
of moderate size, the problem remains tractable. A more detailed discussion can
be found in[Bylanderet al., 1991; Borgelt, 1992].

6.8 Learning from Data

A probabilistic network is a powerful tool to support reasoning—as soon as it is
constructed. Its construction by human experts, however, can be tedious and time
consuming. Therefore recent research in probabilistic graphical models focused on
learning them from a database of sample cases. In accordance with the two compo-
nents of graphical models, one distinguishes betweenquantitativeandqualitative
(or structural) network induction.

Quantitative network induction for a given network structure consists in esti-
mating the joint probability distributionP , whereP is selected from a family of
parameterized probability distributions. A lot of approaches have been developed
in this field, using methods such as maximum likelihood, maximum penalized
likelihood, or fully Bayesian approaches, which involve different computational
techniques of probabilistic inference such as the expectation maximization (EM)
algorithm, Gibbs sampling, Laplace approximation, and Monte Carlo methods.
For an overview, see[Buntine, 1994; Spiegelhalteret al., 1993].

Qualitative network induction consists in learning a network structure from a
database of sample cases. In principle one could use the factorization property of
a probabilistic network to evaluate its quality by comparing for eachω ∈ Ω the
probability computed from the network with the relative frequency found in the
database to learn from. However, this approach is usually much too costly.

Other methods are based on linearity and normality assumptions[Pearl and
Wermuth, 1993], rely on the extensive testing of conditional independences (CI
tests)[Verma and Pearl, 1992], or use a Bayesian approach[Cooper and Her-
skovits, 1992; Lauritzenet al., 1993]. Unfortunately, the first group is fairly re-
strictive, CI tests tend to be unreliable unless the volume of data is enormous,
and with an increasing number of vertices they soon become computationally in-
tractable. Bayesian learning requires debatable prior assumptions (for example,
default uniform priors on distributions, uniform priors on the possible graphs) and
also tends to be inefficient unless greedy search methods are used.
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Nevertheless, several network induction algorithms have successfully been ap-
plied. The oldest example is an algorithm to decompose a multi-variate probability
distribution into a tree of two-dimensional distributions[Chow and Liu, 1968]. It
uses mutual information as an evaluation measure and optimum weight spanning
tree construction as a search method.

Another example is theK2 algorithm[Cooper and Herskovits, 1992], which
uses a greedy parent search and a Bayesian evaluation measure. Its drawback,
which consists in the fact that it needs a topological order of the attributes, can be
overcome by a hybrid algorithm[Singh and Valtorta, 1993], which combines CI
tests (to find a topological order) andK2 (to construct the Bayesian network with
respect to this topological order). Unfortunately,K2 can deal only with complete
and precise data. The treatment of missing values and hidden variables is clear
only from a theoretical point of view[Cooper and Herskovits, 1992].

A third algorithm, which uses a backward search strategy, has been described
in [Højsgaard and Thiesson, 1994].

Several evaluation measures, which can be used with optimum weight spanning
tree construction and greedy parent search as well as other search methods, are
surveyed in[Borgelt and Kruse, 1997].

7 SUMMARY

In this paper we considered how probabilistic networks can support abductive rea-
soning. Starting from a definition of an abductive inference as a reductive, i.e.,
explanatory inference whose conclusion is a particular statement, we showed how
probability theory enters ours consideration due to two reasons: In the first place,
if we want to handle real world problems, we have to take into account statisti-
cal conditionals. Secondly, in order to reduce the chances of an incorrect result,
we have to assess and compare the conclusions of abductive inferences. Based
on a general model of abductive inference we showed that a direct approach to
represent a hypothesis assessment function is not feasible and thus simplifica-
tions are required. Although straightforward simplifications lead to a manageable
model, they involve strong presuppositions which cannot reasonably be expected
to hold in applications. As a solution probabilistic networks suggest themselves as
well-established technique to decompose a multi-variate probability distribution
in order to make reasoning in high-dimensional domains possible. They are very
well-suited to represent the hypothesis assessment function of abductive problem
solving. However, it may be necessary to enhance them by a method to identify the
acceptable hypotheses, because the raw probabilistic information they represent is
often not sufficient for this task.

Department of Knowledge Processing and Language Engineering, Otto-von-
Guericke-University of Magdeburg, Germany.
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[Bochenski, 1954] I. M. Bochénski. Die zeitgen̈ossischen Denkmethoden. Franke-Verlag, T̈ubingen,
1954.

[Borgelt, 1992] C. Borgelt. Konzeptioneller Vergleich verschiedener numerischer und logischer An-
sätze abduktiver Inferenz. Diplomarbeit, TU Braunschweig, 1992.

[Borgelt and Kruse, 1997] C. Borgelt and R. Kruse. Evaluation measures for learning probabilistic
and possibilistic networks.Proceedings of the 6th IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE’97, Barcelona), Vol. 2:1034–1038. IEEE Press, Piscataway, NJ, 1997.

[Borgelt and Kruse, 1999] C. Borgelt and R. Kruse. A Critique of Inductive Causation.Proc. 5th
European Conf. on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (EC-
SQARU’99, London), LNAI 1638, 68–79. Springer, Heidelberg, 1999.

[Buntine, 1994] W. Buntine. Operations for learning with graphical models.Journal of Artificial
Intelligence Research2:159–225, 1994.

[Bylanderet al., 1991] T. Bylander, D. Allemang, M. C. Tanner and J. R. Josephson. The compu-
tational complexity of abduction.Artificial Intelligence49: 25–60. North-Holland, Amsterdam,
1991.

[Castilloet al., 1997] E. Castillo, J. M. Gutierrez and A. S. Hadi.Expert Systems and Probabilistic
Network Models. Springer, New York, NY, 1997.

[Charniak and McDermott, 1985] E. Charniak and D. McDermott.Introduction to Artificial Intelli-
gence. Addison-Wesley, Reading, MA, 1985.

[Chow and Liu, 1968] C. K. Chow and C. N. Liu. Approximating discrete probability distributions
with dependence trees.IEEE Trans. on Information Theory14(3):462–467. IEEE Press, Piscat-
away, NJ, 1968.

[Cooper and Herskovits, 1992] G. F. Cooper and E. Herskovits. A Bayesian method for the induction
of probabilistic networks from data.Machine Learning9:309–347. Kluwer, Dordrecht, 1992.

[Dawid, 1979] A. Dawid. Conditional independence in statistical theory.SIAM Journal on Computing
41:1–31, 1979.

[Dechter, 1996] R. Dechter. Bucket elimination: a unifying framework for probabilistic inference.
Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI’96, Portland,
OR), 211–219. Morgan Kaufman, San Mateo, CA, 1996.

[Dubois and Prade, 1988] D. Dubois and H. Prade.Possibility Theory. Plenum Press, New York, NY,
1988.

[Hempel, 1966] C. G. Hempel.Philosophy of Natural Science. Prentice-Hall, Englewood Cliffs, NJ,
1966.

[Højsgaard and Thiesson, 1994] S. Højsgaard and B. Thiesson. BIFROST — block recursive models
induced from relevant knowledge, observations, and statistical techniques.Computational Statistics
and Data Analysis, 1994.

[Josephson and Josephson, 1996] J. R. Josephson and S. G. Josephson.Abductive Inference — Com-
putation, Philosophy, Technology. Cambridge University Press, Cambridge, MA, 1996.

[Kruseet al., 1991] R. Kruse, E. Schwecke, and J. Heinsohn.Uncertainty and Vagueness in
Knowledge-based Systems: Numerical Methods (Series: Artificial Intelligence). Springer, Berlin,
Germany 1991

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with
probabilities on graphical structures and their application to expert systems.Journal of the Royal
Statistical Society, Series B, 2(50):157–224. Blackwell, Oxford, 1988.

[Lauritzenet al., 1993] S. L. Lauritzen, B. Thiesson and D. Spiegelhalter. Diagnostic systems created
by model selection methods — a case study.Proceedings of the 4th International Workshop on
Artificial Intelligence and Statistics (Fort Lauderdale, FL), pp. 93–105, 1993.

[Losee, 1993] J. Losee.A Historical Introduction to the Philosophy of Science (3rd edition). Oxford
University Press, Oxford, 1993.



34 CHRISTIAN BORGELT AND RUDOLF KRUSE

[Patilet al., 1982] R. S. Patil, P. Szolovits and W. B. Schwartz. Modeling knowledge of the patient
in acid-base and electrolyte disorders. In: P. Szolovits, ed.Artifical Intelligence in Medicine, pp.
191–226. Westview Press, Boulder, CO, 1982.

[Pearl, 1986] J. Pearl. Fusion, Propagation, and Structuring in Belief Networks.Artificial Intelligence
29:241–288, 1986.

[Pearl, 1992] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(2nd edition). Morgan Kaufman, San Mateo, CA, 1992.

[Pearl and Paz, 1987] J. Pearl and A. Paz. Graphoids: A Graph Based Logic for Reasoning about
Relevance Relations. In: B. D. Boulay et al., eds.Advances in Artificial Intelligence 2, pp. 357–
363. North Holland, Amsterdam, 1987.

[Pearl and Wermuth, 1993] J. Pearl and N. Wermuth. When can association graphs admit a causal in-
terpretation?Proceedings of the 4th International Workshop on Artificial Intelligence and Statistics
(Fort Lauderdale, FL), pp. 141–150, 1993.

[Peirce, 1958] C. S. Peirce. (C. Hartshorne, P. Weiss and A. Burks, eds.)Collected Papers of Charles
Sanders Peirce. Havard University Press, Cambridge, MA, 1958.

[Peng and Reggia, 1989] Y. Peng and J. A. Reggia.Abductive Inference Models for Diagnostic Prob-
lem Solving. Springer, New York, NY, 1989.

[Popper, 1934] K. R. Popper.Logik der Forschung. 1st edition: Julius Springer, Vienna, 1934. 9th
edition: J. C. B. Mohr, T̈ubingen, 1989. English edition:The Logic of Scientific Discovery, Hutchin-
son, London, 1959.

[Rasmussen, 1992] L. K. Rasmussen.Blood Group Determination of Danish Jersey Cattle in the
F-blood Group System (Dina Research Report 8). Dina Foulum, Tjele, 1992.

[Salmon, 1973] W. C. Salmon.Logic (2nd edition). Prentice-Hall, Englewood Cliffs, NJ, 1973.
[Savage, 1954] L. J. Savage.The Foundations of Statistics.J. Wiley & Sons, New York, NY, 1954.
[Singh and Valtorta, 1993] M. Singh and M. Valtorta. An algorithm for the construction of Bayesian

network structures from data.Proceedings of the 9th Conference on Uncertainty in Artificial Intel-
ligence (UAI’93), pp. 259–265. Morgan Kaufman, San Mateo, CA, 1993.

[Smith, 1989] J. Q. Smith. Influence Diagrams for Statistical Modeling.Annals of Statistics
17(2):654–672, 1989.

[Spiegelhalteret al., 1993] D. Spiegelhalter, A. Dawid, S. Lauritzen and R. Cowell. Bayesian Analy-
sis in Expert Systems.Statistical Science8(3):219–283, 1993.

[Spirteset al., 1993] P. Spirtes, C. Glymour and R. Scheines.Causation, Prediction, and Search
(Lecture Notes in Statistics 81). Springer, New York, NY, 1993.

[Spohn, 1980] W. Spohn. Stochastic independence, causal independence, and shieldability.Journal
of Philosophical Logic9:73–99, 1980.

[Thiele, 1997] W. Thiele. Wasserv̈ogel und Strandv̈ogel: Arten der K̈usten und Feuchtgebiete. BLV
Naturführer, Munich, 1997.

[Verma and Pearl, 1990] T. S. Verma and J. Pearl. Causal networks: semantics and expressiveness. In:
R. D. Shachter, T. S. Levitt L.N. Kanal, and J.F. Lemmer, eds.Uncertainty in Artificial Intelligence
4, pp. 69–76. North Holland, Amsterdam, 1990.

[Verma and Pearl, 1992] T. S. Verma and J. Pearl 1992. An algorithm for deciding if a set of observed
independencies has a causal explanation.Proceedings of the 8th Conference on Uncertainty in
Artificial Intelligence (UAI’92, Stanford, CA), pp. 323–330. Morgan Kaufman, San Mateo, CA,
1992.

[Whittaker, 1990] J. Whittaker.Graphical Models in Applied Multivariate Statistics. J. Wiley & Sons,
Chichester, 1990.

[Zhang and Poole, 1996] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian
network inference.Journal of Artificial Intelligence Research5:301–328, 1996.


