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Abstract — Cell assemblies, defined as groups of neurons ex-
hibiting precise spike coordination, were proposed as a model
of network processing in the cortex. Fortunately, in recent
years considerable progress has been made in multi-electrode
recordings, which enable recording massively parallel spike
trains of hundred(s) of neurons simultaneously. However, due
to the challenges inherent in multivariate approaches, most
studies in favor of cortical cell assemblies still resorted to ana-
lyzing pairwise interactions. However, to recover the underly-
ing correlation structures, higher-order correlations need to be
identified directly. Inspired by the Accretion method proposed
by Gerstein et al. (1978) we propose a new assembly detec-
tion method based on frequent item set mining (FIM). In con-
trast to Accretion FIM searches effectively and without redun-
dancy for individual spike patterns that exceed a given support
threshold. We study different search methods, with which the
space of potential cell assemblies may be explored, as well as
different test statistics and subset conditions with which candi-
date assemblies may be assessed and filtered. It turns out that
a core challenge of cell assembly detection is the problem of
multiple testing, which causes a large number of false discov-
eries. Unfortunately, criteria that address individual candidate
assemblies and try to assess them with statistical tests and/or
subset conditions do not help much to tackle this problem. The
core idea of our new method is that in order to cope with the
multiple testing problem one has to shift the focus of statistical
testing from specific assemblies (consisting of a specific set of
neurons) to spike patterns of a certain size (i.e. with a certain
number of neurons). This significantly reduces the number of
necessary tests, thus alleviating the multiple testing problem.
We demonstrate that our method is able to reliably suppress
false discoveries, while it is still very sensitive in discovering
synchronous activity. Since we exploit high-speed computa-
tional techniques from frequent item set mining (FIM) for the
tests, our method is also computationally efficient.

Keywords — massively parallel spike trains, cell assembly,
synchronous spike patterns, higher-order correlation, frequent
item set mining, surrogate data, multi-variate significance test-
ing

1 Introduction
The principles of neural information processing are still under
intense debate. Although changes in the firing rates of individ-

ual neurons are observed in relation to stimuli and behavior,
the role of these changes in the joint information processing
executed by networks of neurons is not yet clear.

As a model of network processing, cell assemblies were
proposed [26], which are characterized as groups of neurons
exhibiting precise spike coordination. Since it can be shown
theoretically that synchronous firing is most effective in gen-
erating output spikes of downstream neurons [2, 30, 43], the
synfire chain was proposed as a more specific model of corti-
cal activity [4]. Experimental evidence from correlation anal-
yses showed that spike synchrony indeed occurs and in partic-
ular in relation to behavior and learning (e.g. [39, 28, 49, 15]).
However, these studies were limited to fairly small numbers of
neurons recorded simultaneously, and thus it was not possible
to uncover the (full) underlying correlation structure.

Fortunately, in recent years considerable progress has been
made in multi-electrode recordings (e.g. [37, 11]), which en-
able to record the activity of hundred(s) of neurons simul-
taneously. However, due to the challenges inherent in mul-
tivariate approaches (especially the combinatorial explosion
of the spike patterns that need to be checked), most studies
in favor of cortical cell assemblies still resorted to analyzing
pairwise interactions. Although in this way the existence and
functional relevance of pairwise interactions could be demon-
strated in various cortical systems and behavioral paradigms
(e.g. [29, 16, 35, 13, 19]), which can also be used to discover
correlated groups of neurons by subsequent clustering (e.g.
[7, 16]), higher-order correlations need to be identified directly
in order to recover the (full) correlation structures.

Higher-order correlations can be addressed on different lev-
els, based on (correlation) statistics of recorded parallel spike
trains and corresponding statistical tests, which focus on the
following aspects: (a) test whether higher-order spike corre-
lation is present, possibly with a lower bound on the order,
but without identifying the participating neurons (e.g. [46, 47,
32]); (b) test for individual neurons whether they participate
in synchronous spiking activity, but without identifying the
groups of correlated neurons [8]; (c) test for the presence of
correlation as predicted by a specific correlation model (syn-
fire chain, [4]), that is, spatio-temporal spike patterns or prop-
agation of synchronous spiking activity (e.g. [3, 21, 42, 17]);
(d) actually identify the members of cell assemblies that ex-
hibit synchronous spiking activity (e.g. [18, 13, 38, 44]).

In this paper we focus on the last category and solve three
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major challenges simultaneously: (a) detect and identify mem-
bers of an active cell assembly directly as significant spike
synchrony patterns (b) with an efficient and reliable statistical
method that (c) is applicable to massively parallel spike trains,
i.e. in the order of hundred(s) of spike trains or more.

In order to motivate and justify our new method, we study
different search methods, with which the space of potential cell
assemblies may be explored, and different test statistics and
subset conditions with which candidate assemblies may be as-
sessed and filtered. It turns out that a core challenge of cell
assembly detection is the problem of multiple testing, which
causes a large number of false discoveries. That is, many neu-
ron groups are reported as cell assemblies that actually are not.
Unfortunately, criteria that address individual candidate cell
assemblies and try to assess them with statistical tests and/or
subset conditions do not help much to tackle this problem.

Based on these results, we propose a new assembly detec-
tion method. The core idea of this method is that in order
to cope with the multiple testing problem we shift the focus
of statistical testing from specific assemblies (consisting of a
specific set of neurons) to assemblies of a certain size (that is,
with a certain number of neurons, thus pooling different sets of
neurons). This significantly reduces the number of necessary
tests, thus alleviating the multiple testing problem. Note, how-
ever, that only the focus of the statistical testing is shifted—the
assemblies reported by our method are still specific sets. We
demonstrate that our method is able to reliably suppress most
false discoveries, while still being very sensitive in discovering
synchronous activity. Since we exploit high-speed computa-
tional techniques from frequent item set mining (FIM) for the
tests, our method is also computationally efficient, even if we
are faced with hundred(s) of parallel spike trains.

The remainder of this paper is structured as follows: in Sec-
tion 2 we introduce some notation and preliminaries on time-
bin discretization and spike synchrony. In Section 3 we briefly
review the Accretion methodology [18], which forms the start-
ing point of our investigation. In Section 4 we briefly intro-
duce frequent item set mining (FIM) [22, 10], a data mining
technique closely related to Accretion, which has a concep-
tually similar objective. In Section 5 we compare Accretion
and FIM, reveal the redundancy in Accretion’s search scheme,
and show how ideas from FIM can be used to eliminate it.
Section 6 introduces several assembly detection criteria and
how they can be incorporated into FIM approaches. In Sec-
tion 7 these criteria are evaluated on artificially generated data,
comparing FIM and Accretion and demonstrating that the de-
tection quality suffers severely from false discoveries brought
about by multiple testing. Building on the insights gained we
then introduce our novel methodology in Section 8. Finally,
we conclude the paper with a discussion of the merits of our
method over the previously investigated approaches.

2 Notions and Notation

Throughout this paper we work with a finite set N of neurons.
Our raw data is a collection of N (simulated) spike trains of to-
tal duration T , each consisting of a list of spike times in (0,T ].

In order to characterize and quantify synchrony among si-

0 (not B) 1 (B) sum
0 (not A) n00 n01 n0∗
1 (A) n10 n11 n1∗
sum n∗0 n∗1 n∗∗

Table 1: A 2×2 contingency table for binary events A and B.

multaneous spike trains even in the presence of temporal im-
precision (regardless of whether it stems from the recording
equipment or is a feature of the recorded process) we work on
discretized spike data (e.g. [23], “exclusive binning”). That is,
we partition the time interval (0,T ] under consideration into
time bins of equal length. Spikes (or, more precisely, spike
times) corresponding to distinct neurons in N—say, to a sub-
set A ⊆ N—are considered synchronous (i.e., a synchronous
event for A, or simply A-event) if they lie in the same time bin.
The amount of synchrony of a group of neurons A ⊆ N (i.e.,
the amount of synchrony observed in the corresponding col-
lection of spike trains) is simply the number of time bins that
contain at least one A-event (that is, we “clip” bin entries to 1
if more than one spike of one neuron falls into a time bin).

3 Accretion
The starting point of our investigation is a statistical technique
proposed in [18], which aims at identifying neural assemblies
(called functional groups in [18] and intuitively understood as
groups of neurons that tend to show significant synchronous
spiking) in parallel spike trains. This method is accretional in
nature, and therefore generally referred to as Accretion in the
following: sequences of neurons are formed and extended by
an iterative application of a statistical independence test be-
tween a new neuron and an already accreted sequence of neu-
rons, based on the number of joint spiking events.

Accretion relies on Pearson’s χ2 independence test to assess
whether paired observations of two sets A and B of neurons, as
expressed in a contingency table (see Table 1), are independent
of each other. The counts in Table 1 range over the number of
time bins: for example, n11 is the number of time bins that
contain both an A-event and a B-event.1 Formally, Pearson’s
χ2 statistic is defined as follows, with the counts from Table 1,
for disjoint sets of neurons A,B⊆ N:

χ
2(A,B) = n∗∗

(n1∗n∗1−n∗∗n11)
2

n1∗n0∗n∗1n∗0
.

Accretion considers two sets A and B as showing significant
synchronous spiking activity according to Pearson’s χ2 test
if the null hypothesis of independence can be rejected with
a significance level of α = 0.01 = 1%, that is, if χ2(A,B) ≥
χ2

1,1−α
≈ 6.635, where χ2

1,1−α
is the 1−α = 99% quantile of

the χ2 distribution with one degree of freedom. Equivalently,
but often more conveniently, we may compute the p-value of
the χ2 test, which is defined by the relation χ2

1,1−p = χ2(A,B).
In this case the test result is significant if p≤ α .

1Recall that an A-event occurs only if every neuron in A has a spike in the
time bin. That is, “not A” means that not all neurons in A have a spike in the
time bin and not that no neuron in A has a spike in the time bin.
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Note, however, that Accretion considers this test result only
if n11n∗∗ > n1∗n∗1, that is, if there are more synchronous spik-
ing events than are to be expected under independence. Other-
wise the two (sets of) neurons are regarded as not correlated.
The difference to relying entirely on the test result is marginal,
though, because of the asymmetry of the distribution.

In its first step, Accretion tests all pairs formed by singletons
A,B⊂N (that is, |A|= |B|= 1) and selects all two-element se-
quences that show significant synchronous spiking (according
to the test criterion described above). Subsequent steps (try
to) expand accreted sequences in all possible ways by adding
another neuron. That is, in the nth step, n < |N|, sequences
formed in the (n− 1)th step (that is, sequences of neurons
in sets A ⊂ N with |A| = n) are expanded by all singletons
B⊂ N \A (that is, |B|= 1) and tested for independence. Those
that show significant synchrony (w.r.t. Pearson’s χ2 test and
a chosen significance level α) are selected and possibly ex-
panded further in later steps. Significant sequences that cannot
be expanded anymore (because no additional neuron passes a
test for significant synchrony with them) are finally reported
as (candidates for) neural assemblies.

Note that the original Accretion limits significant expan-
sions to two. That is, the branching factor of the search is two:
any significant sequence gives rise to at most two expanded
sequences. Although it is tempting to ascribe this constraint
to limitations of the computer hardware at the time (1978) and
thus to omit it, it is actually still needed today due to the re-
dundant search scheme of Accretion (see below for details).
Nevertheless we ignore this branching restriction for the fol-
lowing considerations in order to avoid some technical, but
largely irrelevant complications. That is, we assume for now
that any additional neuron that passes a synchrony test with an
accreted sequence gives rise to an expanded sequence.

Without a branching restriction, we can formalize the im-
plicit characterization of a neural assembly underlying Accre-
tion in terms of subset conditions. We say that A ⊆ N consti-
tutes a synchronous group if it satisfies the following:

• If |A| = 2 then the two singleton subsets of A must show
significant synchrony (as evaluated by Pearson’s χ2 inde-
pendence test w.r.t. a significance level α , see above).

• If |A| > 2 then there has to exist a subset B ⊂ A with
|B| = |A|− 1 that is a synchronous group and that shows
significant synchrony with the remaining neuron in A, that
is, with A \B (again as evaluated by Pearson’s χ2 test).
(Note the recursive structure of this definition.)

Accretion reports as neural assemblies only significant se-
quences that cannot be expanded anymore. That is, it never
reports proper prefixes (and thus subsets) of a detected assem-
bly. Hence we may say that Accretion regards as neural assem-
blies maximal synchronous groups. Here “maximal” expresses
that there does not exist a superset that is also a synchronous
group.

As an example, Figure 1a shows an extremely simple binned
parallel spike train for four neurons a, b, c, and d (that is, N =
{a,b,c,d}) and 10 time bins. For each time bin the neurons
having a spike in it are marked. Figure 1b shows how this data
is processed by Accretion in three steps, using a significance
level α = 0.2. (Clearly, due to the very low number of time

(a) 1 2 3 4 5 6 7 8 9 10
6 spikes
6 spikes
6 spikes
5 spikes

a
b
c
d

(b) step sequences s E(s) test: sets p-value (χ2)
1 ab,ba 5 3.6 {a},{b} 0.065

ac,ca 4 3.6 {a},{c} 0.598
ad,da 3 3.0 {a},{d} 1.000
bc,cb 4 3.6 {b},{c} 0.598
bd,db 3 3.0 {b},{d} 1.000
cd,dc 4 3.0 {c},{d} 0.197

2 abc,bac 4 3.0 {a,b},{c} 0.197
abd,bad 3 2.5 {a,b},{d} 0.527
cda,dca 3 2.4 {c,d},{a} 0.429
cdb,dcb 3 2.4 {c,d},{b} 0.429

3 abcd,bacd 3 2.0 {a,b,c},{d} 0.197

(c)
a b c d

b c d a c d a b d a b c
c d b d b c c d a d a c b d a d a b b c a c a b
d c d b c b d c d a c a d b d a b a c b c a b a

Figure 1: Accretion example: (a) Spikes of four neurons
N = {a,b,c,d} in 10 time bins. A gray square indicates the
presence of a spike in an time bin. (b) Accretion for the data
shown in (a) for a significance level α = 0.2. Column s states
the actual, column E(s) the expected number of joint spiking
events under independence. The p-values shown in green are
significant. (c) Graphical representation of the process shown
in (b) in the search space. Selected paths are marked in green.

bins, no significant results could be obtained for α = 0.01.)
As a result, Accretion reports the four sequences abcd, bacd,
cd and dc, which are the maximal synchronous groups.

As a further illustration Figure 1c shows the complete search
space of the Accretion method for this example, that is, all se-
quences that are potentially explored. The green nodes cor-
respond to significant test results (with the empty sequence—
root node—and the singletons being considered significant by
default). Gray nodes are visited, but do not yield significant
test results. White nodes are not visited. Accretion reports the
sequences corresponding to the deepest green nodes, listing all
neurons on the path from the root to these nodes.

4 Frequent Item Set Mining

Frequent item set mining (FIM) was originally motivated by
the desire to find regularities in the shopping behavior of cus-
tomers (of supermarkets, mail-order companies, on-line shops
etc.) by identifying sets of products that are frequently bought
together (market basket analysis, see the seminal paper [5] and
the surveys [22, 10]). Conceptually, this task is obviously the
same as finding sets of neurons that (frequently) fire together
in parallel spike trains, which establishes the relevance of FIM
for detecting neural assemblies in parallel spike trains.

Formally, we consider an item base I = {i1, ..., in}, n ∈ N,
and a database T = {t1, ..., tm} of transactions, m ∈ N, where
tk (the k th transaction) is a pair 〈k,Jk〉 consisting of a unique
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mathematics market basket analysis spike train analysis

item product neuron
item base set of products set of neurons
transaction id customer time bin
transaction set of products bought set of neurons firing

by a customer in a time bin
frequent set of products frequently set of neurons frequently
item set bought together firing together

Table 2: Meaning of basic notions of frequent item set mining.

one assembly:
acde

1
2
3
4
5
6
7
8
9

10

a b c d e

disjoint assemblies:
acd be

1
2
3
4
5
6
7
8
9

10

a b c d e

overlapping assemblies:
acd bce

1
2
3
4
5
6
7
8
9

10

a b c d e

Figure 3: Parallel spike trains with five neurons a,b,c,d,e and
10 time bins containing different neural assemblies.

identifier k and a subset of items Jk ⊆ I. In our context the
item base I is the set N of neurons and the transactions are de-
termined by the time bins into which we partition the record-
ing time interval (0,T ]: the set of neurons with spike times
lying in the k th time bin constitutes Jk in the k th transaction
tk = 〈k,Jk〉 ∈T . Table 2 summarizes the correspondences.

A transaction t = 〈k,Jk〉 ∈ T is said to support a subset
J ⊆ I if J ⊆ Jk. The number of transactions in T that sup-
port J is called the support of J in T and is denoted by sT (J)
(or simply by s(J) whenever T is clear from the context).
Frequent item sets are defined based on some user-specified
threshold smin: J is called frequent in T if sT (J)≥ smin.

The FIM problem consists in finding all subsets of I that are
frequent (in our context: all sets of neurons A ⊆ N that show
frequent synchronous emission of spikes, that is, a number of
spike-time coincidences at least smin). The search for all such
item sets exploits that the support operator s is anti-monotone:
for J1,J2 ⊆ I and J1 ⊆ J2 we have s(J2) ≤ s(J1). As a conse-
quence, if s(J1) < smin we also know s(J2) < smin. In words:
no superset of an infrequent item set can be frequent. This
statement is also known as the Apriori property.

The search space is P(I), the power set of I (that is, the
collection of all of I’s subsets). P(I) together with the subset
relations between its elements is a partially ordered set, which
is conveniently represented as a Hasse diagram (see Figure 2a).
The search through P(I) is made irredundant by assigning a
unique parent to each item set, which turns the search space
into a tree (see Figure 2b and 2c for two variants). In such a
search tree every item set can be reached on exactly one path
and therefore it is visited at most once in the search. Details
about efficient algorithms and data structures to actually carry
out the search can be found, for example, in [22, 10].

As an illustration, Figure 3 shows three data sets with dis-
tinct neural assemblies. Figure 4 shows, in the search space
structured as a tree according to Figure 2b, the frequent item

(a)
a b c d

b c d a c d a b d a b c
c d b d b c c d a d a c b d a d a b b c a c a b
d c d b c b d c d a c a d b d a b a c b c a b a

(b)
a b c d

b c d a c d a b d a b c
c d b d b c c d a d a c b d a d a b b c a c a b
d c d b c b d c d a c a d b d a b a c b c a b a

Figure 5: Redundancy in Accretion: (a) Unconstrained search
for an assembly of 4 neurons. In nodes with the same color the
same statistical test (leaf against path) is carried out. (b) Ac-
cretion search (whole tree) versus FIM search (red). The red
part corresponds to Figure 2b, the red and gray part together to
Figure 2a (all possible paths to the set {a,b,c,d} in the Hasse
diagram are spelled out in this tree).

sets that can be found in these data sets for smin = 3 (blue and
red nodes). If, in analogy to Accretion, only the maximal fre-
quent item sets are reported (i.e., no superset is frequent), FIM
yields the sets in the nodes marked in red. Note that the search
can be pruned with the Apriori property (that is, no supersets
of infrequent item sets are explored) without affecting the re-
sult: all frequent item sets can still be reached from the root.

5 Avoiding Redundant Search

As explained above, Accretion derives sequences of neuron ids
composing spike patterns rather than sets, which we are actu-
ally interested in. As a consequence, it suffers from consid-
erable redundancy. This is demonstrated in Figure 5a, which
shows the search carried out for a data set with 4 neurons if all
tests yield significant results. The same set of all four neu-
rons is considered 4! = 24 times (since the search tree has
24 leaves). Even worse, the same statistical test is executed
multiple times: leaves having the same color correspond to the
same test (the leaf neuron is tested against the set of neurons
on the path leading to it).

Clearly, this redundancy stems from the fact that the Ac-
cretion test ignores the order of the already accreted neurons.
Note that it is the main reason why Accretion still needs a
branching restriction even with modern computer hardware:
without it, an assembly with n neurons is considered n! times,
which becomes infeasible already for moderately large n.

However, even if we ensure that each test is executed only
once, the same set of n neurons is still considered n times (four
times in Figure 5a, corresponding to the four colors). Although
the tests differ, it would suffice to consider each set only once
(executing n tests on it if desired). In contrast to this, FIM
works on sets and with the search space structured as a tree
(see Figure 2b or 2c), it guarantees that each set is visited at
most once (no redundancy). The potential improvements are
illustrated in Figure 5b, which show the search space of Accre-
tion for 4 neurons. Marked in red is the part that is (potentially)
explored by FIM (cf. also Figure 2b).
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(a)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(b)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(c)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 2: The search space for five neurons N = {a,b,c,d,e}. (a) Hasse diagram: a graph in which each possible set is a node
and any two sets I,J ⊆ N with I ⊂ J are connected by an edge if and only if 6 ∃K : I ⊂ K ⊂ J. (b) A selection of edges from
the Hasse diagram that reduces it to a search tree. Parents are assigned based on the alphabetical order of the neuron identifiers
according to parent(I) = I \ {max(I)}. (c) An alternative selection of edges from the Hasse diagram that also reduces it to a
search tree. Parents are assigned based on the alphabetical order of the neuron identifiers according to parent(I) = I \{min(I)}.

(a)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(b)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(c)

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 4: The search for the data sets shown in Figure 3 illustrated with search trees. Assemblies are shown in red, all subsets
of the assemblies are shown in blue, demonstrating that there always exists a path that only visits frequent subsets.

6 Criteria for Assembly Detection

FIM prunes the search and selects results based only on the
support of item sets. As a consequence, it may produce re-
sults that are not considered by Accretion. For example, a
set of neurons may be frequent simply because the member
neurons have many spikes and thus are likely to exhibit (non-
significant) synchronous spiking. The statistical tests in Accre-
tion eliminate such cases. However, various forms of statisti-
cal testing can fairly easily be added to FIM as a further eval-
uation criterion, because the support values of different item
sets are all that is needed to compute the test statistics.

In addition, Accretion requires a path of significant test re-
sults, which we described above in terms of subset conditions.
However, such subset conditions may also be added to FIM
and we even study several variants below.

6.1 Statistical Testing

Accretion’s sequence-based scheme fixes the test to be carried
out: the neuron added last is tested against the set of already
accreted neurons. In FIM, since each set is considered at most
once, we have a choice of n tests, where n is the number of
neurons in the set: each neuron may be tested against the n−1
other neurons. Note that Accretion carries out these tests in
different branches of the search tree. Note also that in FIM’s
search tree (cf. Figure 2b or 2c) there is also a neuron added
last, but this neuron depends on an essentially arbitrary global
order of the neurons and thus should not determine the test.

Most naturally, we should use an aggregate of the results
of the n tests to evaluate a set of n neurons. Following the

general principle of statistics to consider the worst case, it is
most appropriate to use the maximum of the p-values of the
n tests. That is, a set of n neurons is judged to exhibit signif-
icant synchrony if the largest p-value of the n tests does not
exceed the chosen significance level α . In other words, the
“most independent” neuron determines the evaluation of the
set. Note that Accretion effectively evaluates a set rather by
the “least independent” neuron, because a set of neurons is al-
ready reported if one of the search tree paths leading to it yields
a significant test result. That is, Accretion uses the minimum
of the p-values, thus considering, in a certain sense, the best
case. Note also that Fisher’s method of combining p-values
bearing on the same overall hypothesis [14] is an alternative to
taking the maximum.

Apart from this adapted test procedure, we may ask whether
Pearson’s χ2 independence test is the most appropriate choice.
This test assumes that the (discrete) probability of observed
frequencies (in the contingency table) can be approximated by
the (continuous) χ2 distribution. Due to the approximation,
some error is introduced, which may lead to incorrect test de-
cisions. The approximation error is generally the larger, the
lower the number of degrees of freedom, which is only one for
our case of a 2× 2 contingency table. In addition, for such
a table an acceptable approximation requires that all expected
counts are at least 5. This renders the test not very well suited
for rare events like spike coincidences. As a consequence, it is
worthwhile to look for alternatives, which include:

• Yates’s correction for continuity (or Yates’s χ2 test).
Replace the χ2 value of Pearson’s test with

χ
2
Yates(A,B) = n∗∗

(|n1∗n∗1−n∗∗n11|−0.5n∗∗)2

n1∗n0∗n∗1n∗0
.
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This correction increases the p-value and thus prevents
an overestimation of significance, especially if the contin-
gency table has a cell with an expected count less than 5.

• G-statistic (or G-test).
A likelihood-ratio based statistical significance test that
replaces the χ2 value of Pearson’s test with

G(A,B) = 2n∗∗
1

∑
i=0

1

∑
j=0

ln
ni j

ni∗n∗ j
.

The G-statistic achieves a better approximation to the the-
oretical χ2 distribution, especially if n11n∗∗ > 2n1∗n∗1.

• Fisher’s exact test.
Compute the p-value by summing over the (exact) proba-
bilities of contingency tables with the same marginals that
are at least as extreme as the actual table. Although there
are alternatives, we rely on the most common choice that
“at least as extreme as” means “at most as probable as.”
This test avoids approximation, but is costly to compute.

Note that for both Yates’s test and the G-test the test decision is
made (as for Pearson’s test) with a χ2 distribution with one de-
gree of freedom. That is, the p-value is defined by the relations
χ2

1,1−p = χ2
Yates(A,B) and χ2

1,1−p = G(A,B), respectively.

6.2 Subset Conditions
Since support is anti-monotone (and thus the Apriori property
holds), FIM guarantees that all sets of neurons exhibiting at
least smin spike coincidences are explored. Accretion’s search,
however, is guided by statistical test results (or the underlying
p-values), which do not have this property: if a set of neurons
does not exhibit significant synchronous spiking, we have no
guarantee that there are no supersets that are significant. The
p-value of an independence test on a superset may be higher
or lower than the p-value of a test on the set (that is, p-values
are neither monotone nor anti-monotone). Nevertheless, Ac-
cretion does not explore any such supersets, which can reduce
the results. Above (in Section 3), we formalized this behavior
by subset conditions that a set of neurons has to satisfy in order
to be regarded a synchronous group.

Since the FIM search does not impose any such subset con-
ditions, we are free to explore alternatives:

• No subset conditions. A set A ⊆ N of neurons is a syn-
chronous group if all subsets B ⊂ A with |B| = |A| − 1
show significant synchrony with the remaining neuron
in A, that is, with A\B. In other words, A passes the sta-
tistical test described above (and, of course, s(A)≥ smin).

• Weak subset conditions. A set A ⊆ N of neurons is a
synchronous group if it satisfies the condition of the first
point and, for a user-specified minimum set size r, satis-
fies either |A| ≤ r or, if |A| > r, that at least one subset
B⊂ A of cardinality |B|= |A|−1 is a synchronous group.

• Strong subset conditions. A set A ⊆ N of neurons is
a synchronous group if it satisfies the condition of the
first point and, for a user-specified minimum set size r,
satisfies either |A| ≤ r or, if |A|> r, that all subsets B⊂ A
of cardinality |B|= |A|−1 are synchronous groups.

Figures 6a and 6b illustrate weak subset conditions in the FIM
search space for the set {a,c,d,e} (in red) for r = 2 and r = 3,
respectively. In Figure 6a we have a path from {a,c,d,e} down
to the pair {c,d} (dark blue) and, in Figure 6b, down to the
triplet {a,c,d} (dark blue). Weak subset conditions mean that
there exist such paths containing only synchronous groups.

Figures 6c and 6d illustrate strong subset conditions in the
FIM search space for the set {a,c,d,e} (in red) for r = 2 and
r = 3, respectively. In Figure 6c we have paths from the set
{a,c,d,e} down to all pairs contained in it (dark blue) and,
in Figure 6d, down to all triplets contained in it (dark blue).
Strong subset conditions mean that all such paths contain only
synchronous groups (weak only asks for at least one path).

Note that weak subset conditions, for r = 2, are in fact very
similar to Accretion’s subset conditions, because Accretion ex-
plores a certain sequence only if all of its prefixes produced
significant test results. These prefixes form the path required
by weak subset conditions. The difference is, of course, that
Accretion only requires the one test with the last added neuron
to be significant, while we require of a synchronous group that
all tests of single neurons against all others are significant.

6.3 Maximal and Closed Synchronous Groups

Following Accretion, we may report as (candidate) neural as-
semblies the maximal synchronous groups, that is, those syn-
chronous groups for which no superset is a synchronous group.
However, such a choice may lose valuable information: if
the data contains a significant number of synchronous spiking
events of a neural assembly A, it is not unlikely that by chance
a neuron a /∈ A produces a spike at a few of these events. This
may render the set A∪{a} a synchronous group (if the number
of accidentally synchronous spikes is large enough, for which
2 or 3 spikes may already suffice—see experiments below).
In such a case, the subset A exhibits (many) more synchronous
spiking events, which are not considered if only A∪{a} is re-
ported as the maximal synchronous group.

This problem can be addressed by drawing on a notion that
is well known in FIM, namely so-called closed frequent item
sets. A frequent item set is called closed if no superset has the
same support (while it is maximal if no superset is frequent).
Since it is unlikely that accidentally synchronous spikes of
a neuron a /∈ A occur together with all synchronous spiking
events of an assembly A, a restriction to closed sets still reports
the actual assembly A. Therefore we may report closed syn-
chronous groups, which are synchronous groups no superset
of which is a synchronous group with the same support. Note
that we do not lose anything in this way, because all maximal
synchronous groups are obviously closed.

Note also that closed synchronous groups avoid certain un-
intuitive effects of changing the minimum support smin: while
increasing the minimum support may render certain sets maxi-
mal which were not maximal before (as supersets may be sup-
pressed), it only eliminates closed sets with a lower support.
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(a)
a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(b)
a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(c)
a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

(d)
a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Figure 6: Illustration of different types of subset conditions (cf. Figure 4a): (a) Weak subset conditions down to pairs; (b) Weak
subset conditions down to triplets; (c) Strong subset conditions down to pairs; (d) Strong subset conditions down to triplets.

7 Experimental Results
We report results for our assembly detection methods on two
types of data: independent parallel spike trains (to check for
false positives) and parallel spike trains with correlated subsets
of neurons (to check for false negatives).

• Independent spike trains. 1000 trials, each with 100 par-
allel spike trains (|N| = 100), were generated indepen-
dently as Poisson processes with a constant rate of 20Hz.
The duration of all trials was 3 seconds and the length of
the time bins was 3ms (1000 time bins).

• Correlated spike trains. Trials that contain potential as-
semblies were generated by injecting synchronous spikes
for a subset of the neurons into 100 parallel spike trains,
which were independently generated as Poisson pro-
cesses with a constant rate of 20Hz for the neurons out-
side the subset and a constant rate of 20Hz minus the rate
of the synchronous spikes for the neurons in the selected
subset. The size z of the neuron subset was varied from 2
to 9, the number c of injected synchronous spiking events
also from 2 to 9, and thus a total of 64 pairs 〈z,c〉 were
tested. For each pair 1000 trials were generated (3s dura-
tion, 3ms time bin length, i.e., 1000 time bins), resulting
in a total of 64,000 data sets with injected assemblies.

On these data sets we compared Accretion and different FIM-
based approaches, namely with no subset conditions as well
as weak and strong subset conditions down to pairs (that is,
r = 2). For each approach we tried all of the statistical tests
considered above: Pearson’s χ2-test, Yates’s test, G-test and
Fisher’s exact test. In addition, we executed FIM without any
statistical test (and thus without any subset conditions). That
is, the minimum support smin was the only selection criterion,
for which smin = 2 was generally chosen (including the meth-
ods with subset conditions and statistical tests).

Figure 7 shows the results on independent spike trains in
the form of pattern spectra (like those used for spatio-temporal
spike patterns in [21]). Each bar chart refers to a detection
method (Accretion or FIM with different subset conditions;
row of the chart grid) and a test statistic (column) and shows
the decimal logarithm of the average number of detected pat-
terns (in the sense of maximal synchronous groups) subdivided
according to the size z of the group of neurons underlying the
pattern (number of contained neurons) and the number c of
coincident spiking events (number of time bins with a spike
from all neurons in the group). For comparisons, a further bar
chart at the bottom shows the result of applying FIM without
any subset conditions nor statistical testing (that is, simply an
average count of all maximal frequent item sets).

Since the data was generated as independent Poisson pro-
cesses, all detected patterns are clearly false discoveries or
false positives. The number of such false discoveries is fairly
high (note that due to the logarithmic scale, 1, 2 and 3 on the
vertical axis stand for 10, 100 and 1000 patterns, respectively,
per trial). Even fairly pronounced cases like three neurons
with five coincident spiking events or five neurons with three
coincident spiking events occur in several of the trials. The
alternative test statistics (Yates, G-test and Fisher instead of
Pearson’s χ2) reduce the number of false discoveries (as ex-
pected, because they are less prone to overestimating signifi-
cance), but are far from solving the problem, especially, since
they are effective mainly for small patterns with few coinci-
dences. Subset conditions have a similar effect: weak subset
conditions achieve essentially the same result as original Ac-
cretion (as expected, see above) and thus suppress some of the
false discoveries made without them. However, only strong
subset conditions are able to bring the false discoveries down
to an acceptable level (assuming that pair patterns are gener-
ally ignored).

Unfortunately, strong subset conditions are no solution ei-
ther, because they almost prevent discoveries altogether, even
correct ones. This can be seen in Figure 8, which shows the
results on correlated spike trains as the rate (computed over
1000 trials) of false negatives for all detection methods, again
subdivided according to the group size z and the number c of
(injected) coincidences. (Note that the actual number of coin-
cidences in the data may be higher, because the injected co-
incidences may be supplemented by accidental coincidences,
but also lower, due to “clipping” caused by the time binning.)
An injected pattern is counted as a false negative if it is not
contained in any of the maximal synchronous groups reported
by a method. That is, it is counted as detected even if it is not
exactly among the reported patterns, but only a superset (with
additional neurons) has been discovered.

Despite this somewhat lax criterion, FIM with strong subset
conditions is hardly able to detect the injected patterns, unless
a not too large assembly (fairly few neurons) exhibits a fairly
large number of coincidences. Even clear cases like 8 neurons
firing together 7 times are not detected. The reason, however,
is obvious: with strong subset conditions and r = 2, all pairs
contained in a group of neurons have to test positive in order
for the group to qualify as a pattern. The more neurons there
are in a group, the more pairs there are and thus the more likely
it is that one of them is, by accident, not significant, unless the
number of (injected) coincidences is fairly large. The situation
is improved with r = 3, but the detection rate still suffers for
larger assemblies (see Figure 9a), and the more so if we con-
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no test Figure 7: Independent spike trains: decimal logarithm of the average number

of (significant) patterns found in 1000 trials (white squares: zero patterns,
gray bars: higher than chart). Each row of the chart grid corresponds to a
detection method (diagram titles, top line; “None”, “Weak 2” and “Strong 2”
refer to subset conditions used with FIM, r = 2), each column to a statistical
test (diagram titles, bottom line). The diagram on the left shows the result of
pure FIM (no subset conditions, no statistical test, smin = 2).

sider larger time bins (Figure 9b). Furthermore, higher firing
rates worsen the situation as well (Figure 9c).

Accretion and FIM with weak subset conditions exhibit bet-
ter detection capabilities, but are far from impressive either.
Only if we abandon subset conditions, the detection rate is
significantly improved (few false negatives). Note that FIM
without subset conditions and relying only on minimum sup-
port (no statistical tests) necessarily detects all injected pat-
terns, unless the coincident spiking events are reduced to less
than two by “clipping” due to the time binning.

In general, the tougher the subset conditions of the assembly
detection method (including a lower value of r) the lower the
number of false positives, but the higher the rates of false neg-
atives. Alternative statistical tests have a similar effect: Yates’s
test, G-test and Fisher’s exact test reduce the number of false
positives, but at the price of higher rates of false negatives. The
same holds for the significance level (not shown, but obvious):
the lower α , the fewer false discoveries are made, but at the
price of fewer correct discoveries (more false negatives). If

we take into account what false positives are suppressed (by
whatever approach), namely mainly small patterns with few
coincidences (back corners of the bar charts), while larger pat-
terns with more coincidences are essentially unaffected, one
may wonder whether statistical tests and subset conditions are
actually worth the effort (because both increase the computa-
tion time considerably compared to a pure FIM approach).

Generally we can say that the core problem of a reliable
detection of neural assemblies is the large number of false
positives, which the discussed methods cannot reduce with-
out severely harming the detection sensitivity of the method.
This number of false discoveries may appear to be surprising
at first sight, because we used a significance level of α = 1%.
However, this applies only to an individual test, whereas we
are executing a huge number of tests in the search. That is, we
face the problem of multiple testing, due to which we lose an
effective control over the significance level. In simple terms: if
we execute 1000 (independent) tests with α = 1%, we should
expect about 1000 · 1% = 10 positive test results, simply as
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Figure 8: Correlated spike trains: false negative rates over 1000 trials, each
with a specific injected pattern, characterized by an assembly size z and a
number c of injected coincidences. Rows and columns of the chart grid as in
Figure 7. An injected neural pattern is counted as not detected (false negative)
if it is not contained in any of the maximal synchronous groups produced by
the used detection method. Pure FIM (see diagram on the left) necessarily
always detects all injected patterns perfectly, unless they are reduced to less
than two coincidences by “clipping” caused by the time binning.

chance events, signifying nothing. In our search, however, we
even execute millions of tests. For example, 100 recorded neu-
rons allow for

(100
3

)
= 161,700 triplets and

(100
4

)
= 3,921,225

quadruplets. As a consequence, even though it is very unlikely
that, say, four specific neurons fire together three times if they
are independent (such an event has a p-value of less than 10−6

in our experimental setup with the testing methodology de-
scribed above), it is fairly likely that we observe some set of
four neurons firing together three times. Indeed, in our experi-
ments we see, on average, more than one such pattern per trial.

Unfortunately, because of the excessive number of tests ex-
ecuted in the search, standard methods to handle the mul-
tiple testing problem (the like Bonferroni correction [9, 1],
the Holm-Bonferroni method [27], or the Benjamini-Hochberg
procedure [6]; see [12] for an overview) require p-values so
low that they are extremely unlikely to be obtained from ac-
tual data, and also lead to a very high rate of false negatives:
effectively we cannot expect to make any discoveries anymore.

As a consequence, we have to change the testing methodology
in order to obtain a suitable method (see the next section).

Finally, the diagrams in Figure 7 show that a detection based
on maximal synchronous groups causes strange effects: while
pure FIM reports no pairs with 9 coincidences and only few
with 8, all other methods detect several such pairs (or at least
more than pure FIM). The reason is that these patterns are,
of course, present in the data, but they are not maximal fre-
quent item sets. These patterns rather have supersets with 3 or
4 neurons (exhibiting fewer coincidences), which are reported
by pure FIM and thus eliminate the pairs. These supersets are
suppressed, though, by the statistical tests or the subset condi-
tions of the other detection methods, rendering the pairs maxi-
mal. Note that these patterns are found with pure FIM if we re-
port the closed synchronous groups (closed frequent item sets)
as demonstrated in Figure 9e as compared to Figure 9d (which
repeats the bottom left bar chart of Figure 7). Note that the pat-
tern counts are affected the less (by reporting closed patterns

9
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(b) false negatives, 5ms bins
conditions to triplets, r = 3
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(c) false neg., 3ms bins, 40Hz
conditions to triplets, r = 3
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(d) false positives, 3ms bins
maximal frequent item sets
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Figure 9: Selected other false pos-
itive and false negative results,
demonstrating the effect of the pa-
rameter r (that is, the lower size
limit for the subset conditions),
the effect of the time bin width
and the firing rate in combina-
tion with strong subset conditions
down to triplets, and the effect
of using closed instead of maxi-
mal sets or synchronous groups.
Note the logarithmic scale (deci-
mal logarithm) of the vertical axis
of the false positive bar charts.

instead of maximal) the larger the patterns, even if a statistical
test is used (see Figure 9f for an example).

8 Assembly Detection with FIM
Based on the insights gained in the previous section, we pro-
pose now an assembly detection method based on (pure) FIM
that reduces the problem of multiple testing considerably. In
this method we no longer look at specific neuron groups,
which is the main reason for the huge number of tests. Rather
we rely on the rationale that a pattern of a certain size z and ex-
hibiting a certain number c of coincident spiking events can-
not reliably identify an assembly if a counterpart—that is, a
neuron group with the same size z (but possibly different com-
position) and the same number c of coincidences—occurs in
properly generated surrogate data (rendering the neurons inde-
pendent). The reason is that the occurrence of a counterpart in
surrogate data demonstrates that the pattern could be a chance
event and thus that it is not significant. To be more specific,
our assembly detection method works as follows:

• FIM on Original Data. We apply FIM to our original
(binned) data and report all closed frequent sets of neu-
rons together with their support, where a neuron set is
called closed if all of its supersets have a lower support.
We prefer closed over maximal sets due to the reasons
pointed out above, especially the loss of support informa-
tion incurred by reporting only maximal sets. We recom-
mend smin = 2, but higher values may also be used.

• FIM on Surrogate Data. In order to determine which
closed frequent neuron sets found in the original data may
be due to chance events, we generate surrogate data sets.
That is, we create modifications of the original data that
are intended to keep all of their essential features except
spike synchrony—the feature we are testing for. (For a
survey and analysis of the methodology to generate sur-
rogate data from parallel spike trains, see, for example,
[33, 34, 24].) To each surrogate data set we apply FIM

and collect the closed frequent sets together with their
support. More specifically, we collect the signatures 〈z,c〉
(size z and coincidences c) of found patterns. Afterward
we eliminate from the closed frequent neuron sets found
in the original data all sets for which a counterpart (that is,
same size z and same number c of coincidences, but pos-
sibly different composition, that is, different underlying
set of neurons) was found in a surrogate data set, since
such sets could be chance events (see below for a more
detailed justification and discussion of this procedure).

Note that this procedure still suffers from a certain amount of
multiple testing: every pair 〈z,c〉 that is found by FIM in the
original data gives rise to one test. However, the pairs 〈z,c〉
are much fewer than the specific neuron sets that are consid-
ered in all methods discussed above. As a consequence, simple
approaches like Bonferroni correction [9, 1] become feasible.
That is, we divide the desired overall significance level α by
the number n of tests to obtain the significance level α ′ = α/n
for each individual test. Since in practice we can expect to find
only a few dozen pairs 〈z,c〉 in the data to analyze, we obtain
significance levels α ′ that leave us good chances of making de-
tections. The number n of tests (that is, 〈z,c〉 pairs) may even
be reduced further by the insight that patterns with signatures
like 〈2,2〉, 〈3,2〉, 〈2,3〉 etc. are certainly discovered in the data,
but we do not consider these patterns as candidates for assem-
blies right from the start. Only pairs 〈z,c〉 with sufficiently
large z and/or c need to be counted, for which we are actually
willing to accept the underlying neuron sets as assemblies.

Technically, the significance level α enters the testing proce-
dure as the number of surrogate data sets to be generated. For
example, if we choose α = 1% and there are n = 30 pairs 〈z,c〉
in the original data which we actually want to submit to a test,
we have to generate k = n/α = 3000 surrogate data sets. The
reason is that of the results on the original data we keep only
such neuron sets for which we do not see a counterpart in any
of the surrogate data sets. That is, if we do not observe any oc-
currence of a specific pair 〈z,c〉 in k = 3000 surrogate data sets,
then we can estimate the probability of this pair 〈z,c〉 occurring
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{1,2,3,4,5,6,7,81,85} : 2 {2,3,5,6} : 8 {2,3,7} : 8
{1,2,3,4,5,6,7,35} : 4 {2,3,4,35} : 5 {2,5,7} : 8
{1,2,3,4,5,6,7,93} : 3 {2,3,6} : 9 {3,4,7} : 8
{1,2,3,4,5,6,7} : 7 {2,3,4} : 8

Table 3: Closed frequent neuron sets found in data with an in-
jected assembly with 7 neurons and 7 coincidences, after filter-
ing with surrogate data; support/coincidences after the colon.

by accident as less than p = 1/k = 1/3000. This is the p-value
of the test and since it is p ≤ α ′ = α/n = 0.01/30 = 1/3000,
any pattern with the signature 〈z,c〉 is significant.

Note that the resulting procedure is computationally feasible
due to the sophisticated high-speed implementations that are
available for closed frequent item set mining.2 Even running
FIM on thousands of surrogate data sets takes only a few min-
utes on modern computer hardware. In addition, this process
can easily be parallelized, since the surrogate data sets can be
processed independently, while collecting the 〈z,c〉 pairs from
all surrogate data sets takes negligible time.

As an example of detecting assemblies with this procedure,
we consider a trial with 100 parallel spike trains with an in-
jected assembly of 7 neurons (labeled {1,2,3,4,5,6,7}) and
7 coincidences, generated as described in Section 7 for corre-
lated data (20Hz firing rate, duration 3s, time bin length 3ms,
that is, 1000 time bins). We generate 10,000 surrogate data
sets by means of spike-time randomization (see, e.g., [34]; this
simple approach is acceptable here due to the stationary pro-
cess). The average number of closed patterns found with FIM
in these surrogate data sets, subdivided by their size z and num-
ber c of coincidences (support) is shown in Figure 10a. After
removing from the result on the original data all closed sets
with signatures 〈z,c〉 that occur in surrogate data, we obtain
the sets shown in Table 3.

This is a fairly typical result (although it was specifically
selected to cover all relevant effects): the injected assembly
is detected, but also some other sets, which, however, are all
related to the injected assembly. Due to chance coincidences
of neurons outside of the assembly (here: neurons 35, 81, 85,
93) with some of the coincident spiking events of the assem-
bly, we see a few supersets of the assembly, with lower sup-
port. Due to chance coincidences (resulting from background
spikes) of some of the assembly neurons, we also see subsets
of size 3 and 4, with a support exceeding the injected coin-
cidences by 1 or 2. Finally, we see a set overlapping the as-
sembly ({2,3,4,35}), which results from neuron 35 firing to-
gether with 4 coincident spiking events of the assembly and the
one additional coincident spiking event of the neurons {2,3,4}
(which is caused by background spikes). Note that there are no
sets that are unrelated to the injected assembly. How this re-
sult set can be reduced to the (most likely) assembly will be
the topic of a subsequent paper (see [48]).

However, compared to, say, Accretion, this result is al-
ready a huge improvement: running Accretion with a branch-
ing restriction of 2 on the same data yields (after remov-
ing duplicates—recall the redundancy of Accretion’s search
scheme) 66 sets, only 7 of which are related to the injected
assembly (3 are supersets, 4 are overlapping patterns), while

2See, for example, fimi.ua.ac.be/src or www.borgelt.net/fpm.

the assembly itself is not in the output. The unrelated patterns
have sizes ranging from 2 to 5 neurons and exhibit between
2 and 9 coincidences. Without a branching restriction, Accre-
tion yields even 105 sets, 30 of which are related to the injected
assembly (5 supersets, 25 overlapping patterns).

In order to illustrate the detection capabilities of our method,
Figure 10 collects various results for data sets with injected as-
semblies with different sizes z and coincidences c. Figure 10b
shows the average number of patterns that are detected in data
sets with an injected assembly with 7 neurons and 7 coinci-
dences (averages over 1000 runs). Figure 10c shows analogous
results for 6 neurons and 6 coincidences. Figure 10d shows
the false negative rate (fraction of runs in which neither the as-
sembly itself nor a superset is in the result set) for individual
injected assemblies, covering all possible 〈z,c〉 combinations
in {2, . . . ,9}2 (averages over 1000 runs). Note that false nega-
tives occur basically only for 〈z,c〉 combinations that occur in
surrogate data (see Figure 10a). Clearly, this is unavoidable.

The few false negatives represented by the blue squares are
due to “clipping” caused by the time binning, which reduces
the injected number of coincidences and thus creates a 〈z,c〉
pair that occurs in surrogate data. Note that for some signa-
tures that occur in the surrogate data (e.g., 〈z,c〉 = 〈8,2〉 and
〈z,c〉 = 〈3,7〉) the injected assembly is sometimes detected,
even though these signatures occur in surrogate data. The
reason are chance coincidences, either of the whole set (for
small z) or of an additional neuron with all coincident spiking
events (for small c), which creates a pattern with a signature
that is not eliminated by surrogate filtering.

Figures 10e–h give an idea of what and how many patterns
are to be expected in the result for data with a single injected
assembly, subdivided according to the size z and the coinci-
dences c of the assembly. Not surprisingly, supersets become
more frequent with an increasing number c of coincident spik-
ing events, subsets more frequent with an increasing size z of
the injected assembly. Overlapping patterns are much fewer
(note the logarithmic scale!) and their number grows with both
the size z and the coincidences c. A clear benefit of our method
is that it almost never produces patterns unrelated to the in-
jected assembly (see Figure 10h): in the total of 64,000 data
sets that the bar charts represent (1000 data sets per bar), only
5 patterns were detected that were not related to the assembly.

9 Discussion

We started this paper by reviewing and analyzing the so-
called Accretion method [18] for identifying neural assemblies
from (discretized) parallel spike trains. Inspired by Accretion,
we presented alternative assembly detection methods built on
modifications and/or refinements of the two main constituents
of Accretion: the statistical test to determine significance of
the neuronal patterns built in the process and the subset condi-
tions that a set of neurons needs to satisfy in order to be consid-
ered a neural assembly. Subset conditions alternative to those
of Accretion were implemented with the help of frequent item
set mining (FIM). By working on sets instead of sequences in a
tree-like search space, FIM overcomes Accretion’s redundan-
cies and proves to be more efficient: it yields shorter execution

11



(a) pat
tern

siz
e z

coincidences c

lo
g(

#p
at

te
rn

s)

−4
−3
−2
−1

0
1
2
3

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

frequent
patterns

(b) pat
tern

siz
e z

coincidences c

av
g.

#p
at

te
rn

s

0

0.2

0.4

0.6

0.8

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

7 neurons
7 coins.

(c) pat
tern

siz
e z

coincidences c

av
g.

#p
at

te
rn

s

0

0.2

0.4

0.6

0.8

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

6 neurons
6 coins.

(d) ass
em

bly
siz

e z

coincidences c

ra
te

0

0.2

0.4

0.6

0.8

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

false
negativ.

(e) ass
em

bly
siz

e z

coincidences c

lo
g(

#p
at

te
rn

s)

−3

−2

−1

0

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

superset
patterns

(f) ass
em

bly
siz

e z

coincidences c

lo
g(

#p
at

te
rn

s)

−3

−2

−1

0

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

subset
patterns

(g) ass
em

bly
siz

e z

coincidences c

lo
g(

#p
at

te
rn

s)

−3

−2

−1

0

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

overlap
patterns

(h) ass
em

bly
siz

e z

coincidences c

lo
g(

#p
at

te
rn

s)

−3

−2

−1

0

1

2
3

4
5

6
7

8
9

2 3 4 5 6 7 8 9

additional
patterns

Figure 10: Assembly detection with surrogate data filtering based on size/coincidence signatures 〈z,c〉: (a) decimal logarithm of
the average number of patterns found in 10,000 surrogate data sets; (b) and (c) average numbers of patterns detected in 1000 data
sets with injected assemblies with 〈z,c〉= 〈7,7〉 and 〈z,c〉= 〈6,6〉, respectively (gray squares indicate signatures that occur in
the surrogates and are therefore eliminated); (d) false negatives for injected assemblies with different 〈z,c〉 combinations; (e)–
(h) decimal logarithm of the average number of patterns with different relations to the injected assembly: (e) proper supersets
of the injected assembly, (f) proper subsets of the injected assembly, (g) patterns with at least two neurons from the injected
assembly and at least one other neuron, (h) patterns having none or at most one neuron in common with the injected assembly.

times even though the search is actually exhaustive, because
no branching restriction is employed.

The results of our tests on trials with both independent spike
trains (generated as independent Poisson processes) and corre-
lated spike trains (generated as independent Poisson process
with injected spike coincidences) showed high rates of false
positives and false negatives for Accretion. Some of the FIM-
based models that were built on alternative subset conditions
and/or statistical tests performed better in terms of false pos-
itives but, generally, any such improvement was paid for by
an increase in the number of false negatives. FIM alone, with
no subset conditions and no statistical test, is not significantly
worse than the other models since, although it yields the largest
amount of false positives, it produces essentially no false nega-
tives. Overall, the significance criteria employed by all of these
models do not properly take into account the multiple testing
problem, since they focus on tests of individual patterns. As a
consequence, a high rate of false discoveries (false positives)
and/or false negatives is always to be expected.

In the view of such results we proposed an alternative as-
sembly detection method, based solely on FIM, which ad-
dresses the multiple testing problem properly. It is based on
analyzing (with FIM) surrogate data that is generated from the
original spike trains. The (closed) neurons sets that are found
(with FIM) in the original data are then filtered by removing
all patterns for which a counterpart occurs in surrogate data,
that is, for which a pattern with the same size z and the same
number c of coincidences (support) was found in some surro-
gate data set. The rationale underlying this approach is that a
pattern with a counterpart in surrogate data could be a chance
event and thus should not be considered significant.

Since we employ sophisticated and high-speed implemen-
tations of FIM algorithms to find the closed neuron sets, our
method is efficient even though it requires to generate and an-

alyze a substantial number of surrogate data sets. For example,
generating and analyzing the 10,000 surrogate data sets under-
lying Figure 10a takes about 2 minutes on standard modern
computer hardware, even without parallelization. This enables
us to apply the method in a sliding window fashion in order to
follow the dynamics of assembly activity.

This paper presented the basic approach of frequent item set
mining and relevant statistics to detect and identify spike syn-
chrony patterns in massively parallel spike data. In a subse-
quent paper (in preparation) we will report about further stud-
ies of dependencies on various analysis parameters (e.g. time
bin size) and on features of the data (e.g. level of firing rates,
various non-stationarities, deviations from Poisson processes
etc. [24]). However, our previous studies in other contexts (e.g.
[33, 34]) and preliminary studies of our FIM-based method
make us confident that we can account for such aspects by us-
ing surrogates that incorporate such features, e.g. local spike
dithering or shift-surrogates [33, 20, 38].

Maximum-entropy models recently found application in the
context of identification of the correlation structure in paral-
lel spike trains. A general difference of methods based on
maximum-entropy models in comparison to our approach is,
that they evaluate if correlation structures exist at all by com-
paring to non-existent correlations, whereas our approach aims
to detect specific correlation structures. Although [41] claims
that spike correlations found in experimental data are fully
explained by pairwise correlations only, [45] discusses in its
study that existent higher-order correlations may be missed
since they contribute only to a small percentage in the ex-
planatory power. [40] showed in an extensive study that the
estimates of the correlation structure estimated by maximum
entropy models strongly depends on the existent parameters, in
particular the size of the data set, and thus may lead to wrong
conclusions on the correlation structure with a bias towards
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pairwise correlations. Thus we do not expect that maximum-
entropy models would be able to extract assemblies of such
small size of neurons and small number of occurrences of cor-
related spiking within a large number of neurons as it is possi-
ble with our approach.

In [13] a modification of Accretion was suggested as a way
to improve its performance. The idea is to use the p-value of
an independence test (e.g., Pearson’s χ2) as the distance be-
tween two neurons (or sets of neurons) in a hierarchical ag-
glomerative clustering algorithm. In general, such clustering
starts with each of the given objects (here: neurons) in its own
cluster. In each subsequent step it greedily merges the two
clusters with the smallest distance, provided this distance is no
greater than a user-specified maximum distance. For the Ac-
cretion variant, distances are measured by the p-value of an
independence test and thus this maximum distance is simply
the chosen significance level α . Once no neuron groups can
be merged any more, the method returns all clusters with more
than one neuron. This method could be referred to as a “ma-
trix version” of Accretion, because hierarchical agglomerative
clustering is usually implemented as operating on a distance
matrix, from which the rows (and corresponding columns) of
the two clusters (here: sets of neurons) to be merged are re-
moved and replaced by a row (and a column) representing the
new cluster that resulted from the merger.

The matrix version of Accretion has the clear advantage that
there is no branching. It executes at most n−1 steps for n neu-
rons (after which all neurons would be merged into a single
cluster) and cannot produce more than bn/2c clusters (unless
singletons are counted as well). It may also be argued that
it sometimes carries out more meaningful statistical tests, be-
cause it may merge two clusters both of which already contain
two or more neurons, while Accretion always tests an already
accreted group of neurons against a single new neuron.

However, these advantages are more than equalized by sev-
eral disadvantages. Although the matrix version generally
yields fewer results due to its greedy search scheme, it may
still produce many false positives, because the problem of false
positives lies mainly in the potential number of tests (i.e. the
size of the search space) and the nature of the statistical tests
and not in the actual number of tests that are executed. In ad-
dition, since the matrix variant also reports maximal sets, one
almost never obtains an injected assembly exactly, but rather
a superset (like in standard Accretion). Finally, as a hierar-
chical agglomerative clustering approach, it necessarily yields
disjoint sets of neurons as (candidates of) assemblies. This
leads to an unavoidable loss of results in case of overlapping
assemblies, but may also rip an assembly apart if a bad merger
is chosen due to the data characteristics, which is particularly
likely when merging neurons into pairs.

The faster execution of the matrix version of Accretion is
certainly attractive, but with the sophisticated, high-speed FIM
implementations that are available, which make our method
fairly efficient, there is no need to accept any of its drawbacks.

The only feature currently missing from our FIM-based ap-
proach is a way to reduce the found pattern set to the (most
likely) assembly or assemblies. While a human can easily spot
the actual assembly (or assemblies) by looking at the (usually
reasonably small) output (see, for example, Table 3), an au-

tomatic method is desirable. We are currently working on a
paper [48] that presents and compares several suggestions of
such pattern set reduction methods, which proved to be highly
promising in preliminary experiments.
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Software and Additional Material
The FIM library underlying the Python scripts with which we
carried out our experiments is available at:

http://www.borgelt.net/pyfim.html

The actual Python and shell scripts as well as more extensive
result diagrams are available at:

http://www.borgelt.net/accfim.html
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