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Abstract The hubness phenomenon, as it was recently described, consists
in the observation that for increasing dimensionality of a data set the dis-
tribution of the number of times a data point occurs among the k nearest
neighbors of other data points becomes increasingly skewed to the right. As
a consequence, so-called hubs emerge, that is, data points that appear in the
lists of the k nearest neighbors of other data points much more often than oth-
ers. In this paper we challenge the hypothesis that the hubness phenomenon
is an effect of the dimensionality of the data set and provide evidence that it
is rather a boundary effect or, more generally, an effect of a density gradient.
As such, it may be seen as an artifact that results from the process in which
the data is generated that is used to demonstrate this phenomenon. We re-
port experiments showing that the hubness phenomenon need not occur in
high-dimensional data and can be made to occur in low-dimensional data.

1 Introduction

That working with high-dimensional data is difficult has been known for quite
some time now, although not all of the effects of a large number of dimensions
are completely understood yet. In 1961, R.E. Bellman was among the first
who recognized the various problems that arise in high-dimensional spaces,
for which he coined the term curse of dimensionality [1]. One property of this
“curse” is the fact that with an increasing number of dimensions the volume
of a unit hyperball grows considerably less quickly than the volume of a
unit hypercube. As a consequence, most distance metrics, like the Euclidean
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distance, suffer from a loss of relative contrast. This effect is also known as
distance concentration [2] and causes the relative difference in the distance of
a given query point to its nearest and its farthest neighbor to vanish.

Another (alleged) property of the curse of dimensionality is the emergence
of hubs, which was first described as a general problem in [10]. Here hubs
are defined as data points that appear unusually often among the k nearest
neighbors of other data points. Described in statistical terms, the distribution
of the number of times a data point occurs in the nearest neighbor lists
of other data points becomes skewed to the right. This phenomenon has
been examined and demonstrated to be present in many real-world data sets
in [11], where it was also analyzed how it affects a broad spectrum of machine
learning tasks and dimensionality reduction techniques. The core claim of
both papers, [10] and [11], is that the emergence of hubs is an intrinsic effect
of the dimensionality of the data—a view we dare to challenge here.

Our core claim in this paper is that the hubness phenomenon is an effect
of a density gradient, not an effect of the dimensionality of the data space.
Note, however, that if the data points are sampled from a region that is
bounded, there is necessarily a density gradient at the boundary of the re-
gion. Since the ratio of the size of the (hyper-)surface (i.e. the boundary) of a
region to its (hyper-)volume increases exponentially with the dimensionality
of the data space, the density gradient at the boundary is emphasized (in the
sense that it influences more data points) and thus makes the hubness phe-
nomenon more notable. This explains the observations of [11]. However, high
dimensionality alone is not sufficient to produce the hubness phenomenon as
we demonstrate by sampling from a boundary-less high-dimensional space,
for which the hubness phenomenon is essentially nonexistent. We also show
that the strength of the hubness phenomenon depends on the relative size of
the boundary of the sampling region. In addition, we show that introducing
sufficiently many boundaries (and thus many places with a density gradient)
in a low-dimensional sampling region creates the hubness phenomenon.

The remainder of this paper is organized as follows: in Section 2 we define
the hubness phenomenon and several measures by which we try to capture
its strength, thus obtaining proper means to quantify and compare this phe-
nomenon over different data sets. In Section 3 we describe our data generator,
that is, the procedures we employed to generate high-dimensional data sets
as well as the structure of these data sets. In Section 4 we describe the exper-
iments (on artificial data) we conducted and report and interpret our results.
Finally, in Section 5 we draw conclusions from our discussion.

2 Measuring Hubness

Before we can define measures for the strength of the hubness phenomenon,
we have to introduce the notions on which it is based. Let X = {x1, . . . ,xn}
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be an m-dimensional data set with n data points xi = (xi1, . . . , xim) for
i ∈ {1, . . . , n}. Furthermore, let Nk(x) ⊆ X−{x} be the set of the k nearest
neighbors (k < n) of x in X. That is, ∀y ∈ Nk(x) : ∀z ∈ X−Nk(x)− {x} :
d(x,y) ≤ d(x, z) and |Nk(x)| = k (assuming that ties are broken arbitrarily).

We consider mainly the Euclidean distance d(x,y) = (
∑n

j=1(xj−yj)2)
1
2 , but

in principle other distance measures may also be studied (cf. [11]).
The quantity ok(x) =

∑
y∈X 1INk(y)(x), where 1INk(y) is the indicator func-

tion of Nk(y) w.r.t. X (that is, 1INk(y)(x) = 1 if x ∈ Nk(y) and 0 otherwise),
counts the number of times the data point x occurs in the sets of nearest
neighbors of other data points.1 We call ok(x) the k-occurrence of the data
point x ∈ X. The hubness phenomenon can now be described as the obser-
vation that the distribution of the values ok(x) for x ∈ X is (considerably)
skewed to the right or that some data points have unusually high k-occurrence
values (i.e., considerably larger than the mean value, which is obviously k).

In order to obtain an objective evaluation of the strength of the hubness
phenomenon, we rely on a few very simple measures. The most straightfor-
ward approach is obviously to compute the skewness (or simply skew) of the
distribution of the ok(xi), i ∈ {1, . . . , n}, which is defined as

γ =
1
n

∑n
i=1(ok(xi)− ok)3(

1
n

∑n
i=1(ok(xi)− ok)2

)3/2 ,
where ok = k is the mean of the k-occurrence values (see [4] for a general defi-
nition of skewness). If γ > 0, the distribution is skewed to the right. However,
usually only (very) few of the points in a data set are hubs, that is, exhibit
high k-occurrence. Thus the skewness may not always be sensitive enough
to measure the phenomenon properly. On the other hand, the skewness is
computed from all data points and thus large values may result even if there
are no sizable hubs, namely if there is an asymmetry close to the mean.

An alternative approach that immediately suggests itself is to use the
largest k-occurrence in the data set. However, this measure has the disadvan-
tage that it is strongly affected by the randomness of the sampling process.
Thus it is only sufficiently expressive if averaged over a certain number of
runs. To obtain a better measure we average the k-occurrence of the fraction
q of data points with the highest k-occurrences, where q should be small.
The averaging makes the measure more robust, yet allows us to properly
capture the value of the highest k-occurrences.2 In our experiments we tried
q = 0.1%, q = 0.5% and q = 1%. Since this measure depends directly on the
number k of nearest neighbors that are considered, we finally divide by k:

1 Note that the sum need not exclude the data point x, because x /∈ Nk(x) by definition.
2 We refrained from using the (1 − q)-quantile (which would be a an even more robust

choice) because of the integer nature of the k-occurrences, which limits the number of

possible values, especially for small k (that is, for few nearest neighbors). In addition, the
(1− q)-quantile does not capture the distribution of values at and beyond it.
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h1(q) =
1

k|Ok(q)|
∑

x∈Ok(q)

ok(x),

where Ok(q) contains the bqnc data points with the highest k-occurrences.
Note that this measure captures the maximum k-occurrence for q = 1/n.

As an alternative, we consider what percentage of the data points have a
k-occurrence value at least β times the mean value k, that is, the percentage
of data points x ∈ X with ok(x) ≥ βk. Formally we have

h2(β) =
|{x ∈ X | ok(x) ≥ βk}|

|X|
· 100%.

In particular, we experimented with β = 2, β = 3 and β = 4. That is, if we
consider, for example, the 10 nearest neighbors, we compute what percentage
of the data points occurs in at least 20, 30, and 40 nearest neighbor lists. Note
that h2 highlights the number of hubs, while h1 focuses on their size.

3 Data Generation

The design of a data generator starts with the choice of a (pseudo-)random
number generator (RNG), usually for a uniform distribution. Here we rely on
a simple and very fast RNG producing 32 bit unsigned integer numbers, which
was suggested by G. Marsaglia [6]. This RNG computes the next (pseudo-)
random number from the previous five numbers, has a period of about 2160,
and seems to pass all standard quality tests for RNGs. We prefer this RNG
over the more fashionable Mersenne Twister [8] due to its simplicity and much
higher speed. We use this RNG to generate uniformly distributed (pseudo-)
random floating point numbers in the interval [0, 1) by generating two 32 bit
unsigned integers i1 and i2 and then computing r = i1 · 2−32 + i2 · 2−64, thus
filling all bits of the mantissa of a double precision floating point number. We
ensure that r ∈ [0, 1) by rejecting r and generating a new random number
should the (highly unlikely) event occur that (due to rounding) r = 1.

In order to obtain normally distributed (pseudo-)random numbers (which
we also need for sampling from (hyper-)spheres and (hyper-)balls, see below),
we employ the so-called polar method [7, 5], which consists in generating two
(pseudo-)random numbers x and y that are uniformly distributed in [−1, 1)
until s = x2 + y2 < 1, that is, until the point (x, y) lies inside a unit circle.
Then the transformed numbers x′ = ξx and y′ = ξy, where ξ =

√
−2 ln(s)/s,

are normally distributed with mean 0 and variance 1.
Our data generator can sample from a multivariate standard normal dis-

tribution as well as uniformly from a (hyper-)cube, a (hyper-)ball, and a
(hyper-)sphere (i.e., the surface of a (hyper-)ball). Sampling uniformly from
an m-dimensional (hyper-)cube [−1, 1)m (also called an m-cube) is trivial:
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Fig. 1 A data set with 2000 points
that were sampled uniformly from a

grid of small squares described by the

parameters η = 5 and α = 0.5 (see
the explanations in the main text).

simply generate m random coordinates x1, . . . , xm that are uniformly dis-
tributed in [0, 1) and transform them with x′i = 2xi − 1 for i = 1, . . . ,m.
Sampling from an m-dimensional standard normal distribution is equally
simple: use the polar method (see above) to generate m normally distributed
coordinates. The coordinates are combined in a vector x = (x1, . . . , xm).

For sampling uniformly from an m-dimensional (hyper-)sphere (also called
an m-sphere) we exploit the insight that a multivariate standard normal
distribution is spherically symmetrical. Therefore, if x1, . . . , xm are sampled
independently from a standard normal distribution, the vector x′ = x/||x||,
where x = (x1, . . . , xm) and ||x|| = (

∑m
i=1 x

2
i )

1
2 , is uniformly distributed on

an m-sphere [12]. In order to obtain points that are uniformly distributed over
an m-dimensional (hyper-)ball (also called an m-ball), we start by sampling
a vector x′ uniformly from an m-sphere (see above) and in addition generate
a (pseudo-)random number u that is uniformly distributed in [0, 1). Since
the radius r of a random vector that is uniformly distributed over an m-ball
satisfies P (r ≤ z) = zm, we can write r = u1/m. Therefore the vector x′′ = rx′

is uniformly distributed over an m-ball [12].
In addition to these basic data generation modes, our implementation sup-

ports sampling uniformly from a regular grid of small (hyper-)cubes with a
user-specified size. With this method we try to obtain a low-dimensional
space with a large boundary in order to show that the hubness phenomenon
can be produced in this way as well. The procedure is essentially the same as
for sampling uniformly from a hypercube, only that the hypercube is cut into
the requested number of small cubes and gaps are introduced by an appro-
priate transformation of the coordinates. To be precise: given a number η of
(hyper-)cubes per dimension and a fraction α, which specifies how much (per
dimension) of a grid cell is covered by the small (hyper-)cubes, we sample
m coordinates x1, . . . , xm uniformly from [0, 1) and transform them accord-
ing to x′i = 2(bηxic + α(ηxi − bηxic))/(η − 1 + α) − 1 for i = 1, . . . ,m. An
example of such a 2-dimensional grid-structured data set with 2000 points,
which was generated with η = 5 and α = 0.5, is shown in Figure 1.

Finally, our implementation supports jolting points that were sampled uni-
formly from a (hyper-)cube into a (hyper-)ball. Intuitively, this can be seen
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as “pushing in” the corners of the hypercube. Technically, this is achieved as
follows: let x = (x1, . . . , xm) be a data point in a (hyper-)cube. We deter-

mine z = maxi=1,...,m |xi| as well as ||x|| = (
∑m

i=1 x
2
i )

1
2 . Then x′ = zx/||x||

lies inside a (hyper-)sphere with radius 1. Of course, the distribution of the
resulting points is not uniform in the (hyper-)sphere, but denser near the
axes from the center towards the corners of the original (hyper-)cube. How-
ever, it is very interesting to see how this transformation affects the hubness
phenomenon, as the result is not quite what one might expect.

4 Experimental Results

With the four experiments we describe in the following we try to clarify the
inherent properties of the hubness phenomenon. In the first experiment we
show that hubness need not occur in high-dimensional spaces by sampling
from a finite, but boundary-less space. We demonstrate that it is rather di-
rectly related to a density gradient. In the second experiment we show that
hubs also occur in low-dimensional spaces and reveal the true cause of the
hubness phenomenon. The third experiment demonstrates the dependence
of the hubness phenomenon on artificially introduced density gradients, es-
pecially the size of the surface of the sampling region. Finally, the fourth
experiment examines the effect of jolting a (hyper-)cube into a (hyper-)ball.

Experiment 1: As already reported in [11], the distribution of the k-
occurrences becomes skewed to the right if a data set is sampled uniformly
from a high-dimensional hypercube, and even more so if the data set is sam-
pled from a high-dimensional normal distribution. Our experiments confirm
this observation, as can be seen from the curves labeled “cube” and “normal”
in Figure 2.3 For m ≥ 15, and certainly for m ≥ 20, all three hubness mea-
sures (skewness γ, h1(1%), i.e. the average k-occurrence, divided by k, of the
data points with the 1% highest k-occurrences, and h2(3), i.e. the percentage
of data points occurring in a least 3k = 30 nearest neighbor lists) clearly
indicate a strongly skewed distribution and the existence of sizable hubs.

It is remarkable that data sampled from a normal distribution exhibit a
much stronger hubness phenomenon than data sampled uniformly from a hy-
percube. This finding already provides a hint that the hubness phenomenon
is caused by a density gradient, because a normal distribution possesses a
strong density gradient everywhere, while data sampled from a hypercube
possess such a gradient only at its hyperfaces. As these faces cover a consid-
erable hyperarea for high-dimensional data, many data points are influenced
by the gradient they cause, but still fewer than in a normal distribution.

3 All such diagrams in this paper have been obtained by averaging over 200 runs in order

to reduce the effects of randomness and to achieve representative results.
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Fig. 2 The hubness phenomenon for different sampling distributions (multivariate normal

and uniformly from a (hyper-)cube, (hyper-)ball and (hyper-)sphere) and two data set sizes,
assessed by different hubness measures (as defined in Section 2).

A further hint is provided by the fact that data sampled uniformly from a
hyperball (see curves labeled “ball” in Figure 2) exhibit a much lesser hubness
phenomenon, which even is reduced again beyond m ≈ 30−40. Since the sam-
ple is still drawn uniformly, the different strength of the hubness phenomenon
must be due to the different shape of the sampling region. We believe that the
absence of “corners” (at which the density gradient is particularly high) and
the much smaller hypersurface relative to the enclosed hypervolume are the
reason for this effect. Since the hypersurface of a hyperball is much smaller
compared to that of a hypercube, fewer data points are affected.

However, the strongest argument that high dimensionality alone does not
cause a hubness effect is provided by the following consideration: an (m+ 1)-
dimensional hypersphere is essentially an m-dimensional space, but finite and
boundary-less. As a consequence, there is no density gradient anywhere, at
least if we confine ourselves to the topology of the hypersphere (which is
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equivalent to using an elliptic geometry). Although this does not pose any
problems (the shortest path between two points follows the meridian through
them and thus, for a unit hypersphere, its length is equal to the angle between
the points, measured in radians), we rely on the Euclidean distance in the
(m + 1)-dimensional space, which yields essentially the same result. As can
be seen from the curves labeled “sphere” in Figure 2, none of the measures
detects a hubness phenomenon, regardless of the number of dimensions.

Note that this finding explains why a (hyper-)ball exhibits a much less
pronounced hubness effect: for increasing dimensionality the mean Euclidean
norm of points sampled uniformly from a unit (hyper-)ball converges to 1 (see
Section 3: P (r ≤ z) = zm). Thus we may say that in high-dimensional spaces
almost all points in a (hyper-)ball lie close to its surface and thus almost on
a (hyper-)sphere. With this regard it is no longer surprising that the hubness
phenomenon reduces again for very high-dimensional (hyper-)balls.

Experiment 2: In our second experiment we show that the hubness phe-
nomenon also occurs in low dimensional spaces, although not as pronounced,
and reveal its true cause. In the diagram in Figure 3 the twelve largest hubs
have been collected from 250 data sets that were sampled uniformly from a
square. The darkness of the hubs encodes their k-occurrence, which shows
that there are not only more hubs close to the corners, but that these hubs
also tend to be larger (that is, they tend to have higher k-occurrences).

This effect is clearly due to the boundaries of the square and can be seen
as a kind of mirroring effect. Points close to the sides and corners do not have
as many options to choose their nearest neighbors compared to points in the
interior of the square. Therefore points that lie near points that are close to
the sides and corners are more likely to be chosen as nearest neighbors and
thus become hubs. Hubs are more frequent close to the corners, because here
up to 3/4 of the space (for a point exactly at the corner of square) are void
of points, while in the middle of a side only up to 1/2 of the space is void of
points. If one extrapolates this finding to more dimensions, it becomes clear
why hypercubes exhibit such a strong hubness phenomenon.
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Fig. 4 Hubness in 3-dimensional data sets sampled uniformly from a grid of cubes:
dependence on the number of cubes/grid cells per dimension (gap size α = 50%).
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Fig. 5 Hubness in 3-dimensional data sets sampled uniformly from a grid of cubes

(η = 8 cubes per dimension): dependence on the size of the gaps (measured per dimension).

Experiment 3: Our third experiment expands on our view that the size
(and shape) of the (hyper-)surface (and the density gradient it causes) pro-
duces the hubness phenomenon. If this view is correct, it should be possible to
create a hubness phenomenon in a low-dimensional space by sampling from a
region with a large boundary. Our core idea is to sample data from a grid of
squares or cubes. If the gaps between these squares or cubes are big enough,
so that a nearest neighbor is almost surely found in the same cube, there
should also be a certain, though weaker hubness phenomenon.

This effect is demonstrated in Figure 4, which shows how a grid of cubes
(gap size α = 50%) leads to a hubness effect with an increasing number of
cubes. The effect is weak, though, but can be detected with the skewness γ or
with the measure h2(2) used in the diagrams. Note that the effect is generally
bounded due to the topology of a 3-dimensional space, as can be seen from
the relation of the hubness phenomenon to the kissing number problem [3, 9].
A kissing number is the number of non-overlapping unit spheres that touch
another given unit sphere. As was already noticed in [11], this problem is
relevant for the hubness phenomenon, because a data point cannot be the
nearest neighbor of more data points than the kissing number of the space it
resides in. Since the kissing number for three dimensions is 12, sizable hubs
are extremely unlikely as they require highly symmetric point arrangements.
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Fig. 6 The hubness phenomenon for data that was sampled uniformly from a (hyper-)cube

and then jolted into a (hyper-)ball, as compared to sampling uniformly from a (hyper-)cube
or (hyper-)ball, assessed with the same measures as in Figure 2.

Note that for 10000 points the hubness phenomenon disappears again for
10 cubes per dimension. The reason for this effect is simply that under these
circumstances the average number of points per cube is 10 (as there are
10× 10× 10 = 1000 cubes). If 8 nearest neighbors are considered, almost all
points in a cube are the nearest neighbors of all other points in the same cube.
As a consequence, the location of the points relative to the boundary, which
is responsible for the hubness effect (see Experiment 2), becomes irrelevant.

Note also that the gaps between the cubes have to be large enough, as can
be seen in Figure 5: for small gaps there is basically no hubness effect, because
nearest neighbors may still be found in neighboring cubes, thus reducing or
even eliminating the effect of the cube surfaces/boundaries.

Experiment 4: Our last experiment reveals a somewhat unexpected behav-
ior that we discovered during our analysis. As we have seen in Experiment 1,
the skewness of the distribution of k-occurrences for data sampled uniformly
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from a (hyper-)cube is much stronger than for data sampled uniformly from a
(hyper-)ball. This led to the idea to “jolt” a (hyper-)cube into a (hyper-)ball
in order to check whether this operation reduces the hubness phenomenon.
Given our view of the causes of the hubness phenomenon, we certainly ex-
pected it to be reduced (because this operation significantly reduces the sur-
face of the sampling region), but that it was even reduced slightly below the
level of data that was sampled uniformly from a (hyper-)ball was somewhat
surprising (see Figure 6, curve labeled “jolted”). We rather expected it to lie
between a (hyper-)cube and a (hyper-)ball based on the argument that the
jolting introduces density gradients inside the (hyper-)ball.

However, on second thought, the effect becomes understandable. The jolt-
ing operation, even though it causes density gradients inside the (hyper-)ball,
also reduces the effect of the (remaining) (hyper-)surface, because it pushes
more data points into the interior of the (hyper-)ball, thus leaving less at the
surface that cause the hubness effect (cf. Experiment 2).

5 Conclusions

In this paper we demonstrated that the hubness phenomenon is not an effect
of the (high) dimensionality of a data set, but an effect of a density gradient.
However, a density gradient may be intrinsic to the data set (if the data is
not uniformly distributed) or it may be a boundary effect. Since a boundary
necessarily introduces a density gradient and the ratio of the size of the
boundary to the size of the enclosed space grows exponentially with the
dimensionality of the data space, high-dimensional bounded data is prone to
exhibit the hubness phenomenon. However, it is important to note that this
phenomenon can also be produced, though much weaker, in a low-dimensional
space by artificially increasing the size of the boundary. Another factor is the
shape of the boundary: “corners” intensify the effect, as can be seen from the
pronounced hubness phenomenon exhibited by (hyper-)cubes.

Software
Our implementation of the data generator and evaluation routines, which we
used for the experiments in this paper as well as the corresponding Python
scripts automating the experiments will soon be available for download at:
http://www.borgelt.net/hubness.html
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11. Radovanović M, Nanopoulos A, Ivanović M (2010) Hubs in Space: Popular Nearest

Neighbors in High-Dimensional Data. J. Machine Learning Research 11(Sep):2487–
2531. MIT Press, Cambridge, MA, USA

12. Rubinstein RY, Kroese DP (2007) Simulation and the Monte Carlo Method (2nd

ed.). J. Wiley & Sons, Chichester, United Kingdom


