
GenDR: A Generalized Differentiable Renderer

Felix Petersen1 Bastian Goldluecke1 Christian Borgelt2 Oliver Deussen1

1University of Konstanz 2University of Salzburg

Abstract

In this work, we present and study a generalized family
of differentiable renderers. We discuss from scratch which
components are necessary for differentiable rendering and
formalize the requirements for each component. We instan-
tiate our general differentiable renderer, which generalizes
existing differentiable renderers like SoftRas and DIB-R,
with an array of different smoothing distributions to cover
a large spectrum of reasonable settings. We evaluate an
array of differentiable renderer instantiations on the popu-
lar ShapeNet 3D reconstruction benchmark and analyze the
implications of our results. Surprisingly, the simple uniform
distribution yields the best overall results when averaged
over 13 classes; in general, however, the optimal choice of
distribution heavily depends on the task.

1. Introduction
In the past years, many differentiable renderers have

been published. These include the seminal differentiable
mesh renderer OpenDR [1], the Neural 3D Mesh Ren-
derer [2], and SoftRas [3] among many others. Using a dif-
ferentiable renderer enables a multitude of computer vision
applications, such as human pose estimation [4], camera in-
trinsics estimation [5], 3D shape optimization [2], 3D re-
construction [2], [3], [6], and 3D style transfer [2].

A fundamental difference between different classes of
differentiable renderers is the choice of the underlying 3D
representation. In this work, we focus on differentiable
3D mesh renderers [1]–[3], [6]; however, the aspects that
we investigate could also be applied to other differentiable
rendering concepts, such as rendering voxels [7], point
clouds [8], surfels [9], signed distance functions [10], and
other implicit representations [11], [12].

Differentiable mesh renderers can be constructed in dif-
ferent ways: either using an exact and hard renderer with
approximate surrogate gradients or using an approximate
renderer with natural gradients. Loper et al. [1] and Kato et
al. [2] produce approximate surrogate gradients for their
differentiable renderer, while their forward rendering is
hard. In contrast, other differentiable renderers approxi-

mate the forward rendering in such a way that they produce
a natural gradient. This can be achieved by modeling or ap-
proximating a renderer under a probabilistic perturbation,
which is continuous and makes the renderer differentiable.
For that, Rhodin et al. [13] model it with a Gaussian dis-
tribution, while Liu et al. [3] model it with the square root
of a logistic distribution, Petersen et al. [14] use a logis-
tic distribution, and Chen et al. [6] use the exponential dis-
tribution. While this variational interpretation of perturb-
ing by a respective distribution is not stressed in some of
these papers [3], [6], we believe it is important because it
explicitly allows comparing the characteristics of the dif-
ferentiable renderers. Moreover, the methods that only ap-
proximate gradients can also be seen as approximately mod-
elling a perturbation: the gradient computed for the Neural
3D Mesh Renderer [2] is approximately a perturbation by
a uniform distribution. Note that, here, the solutions for
rendering under perturbations are obtained analytically in
closed-form without sampling.

In this work, we introduce a generalized differentiable
renderer (GenDR). By choosing an appropriate probabil-
ity distribution, we can (at least approximately) recover
the above differentiable mesh renderers, which shows that
a core distinguishing aspect of differentiable renderers is
the type of distributions that they model. The choice of
probability distribution herein is directly linked to the sig-
moid (i.e., S-shaped) function used for the rasterization.
For example, a Heaviside sigmoid function corresponding
to the Dirac delta distribution yields a conventional non-
differentiable renderer, while a logistic sigmoid function of
squared distances corresponds to the square root of a lo-
gistic distribution. Herein, the sigmoid function is the cu-
mulative distribution function (CDF) of the corresponding
distribution. In this work, we select and present an array of
distributions and examine their theoretical properties.

Another aspect of approximate differentiable renderers
is their aggregation function, i.e., the function that ag-
gregates the occupancy probabilities of all faces for each
pixel. Existing differentiable renderers commonly aggre-
gate the probabilities via the probabilistic sum (⊥P (a, b) =
a + b − ab or 1 −

∏
t∈T (1 − pt)), which corresponds to

the probability that at least one face covers the pixel as-



suming that probabilities pt for each triangle t are stochas-
tically independent (cf. Eq. 4 in [3] or Eq. 6 in [6]). In
the field of real-valued logics and adjacent fields, this is
well-known as a T-conorm, a relaxed form of the logi-
cal ‘or’. Two examples of other T-conorms are the max-
imum T-conorm ⊥M (a, b) = max(a, b) and the Einstein
sum ⊥E(a, b) = (a + b)/(1 + ab), which models the rel-
ativistic addition of velocities. We generalize our differen-
tiable renderer to use any continuous T-conorm and present
a variety of suitable T-conorms.

In total, the set of resulting concrete instances arising
from our generalized differentiable renderer and the pro-
posed choices amounts to 1 242 concrete differentiable ren-
derers. We extensively benchmark all of them on a shape
optimization task and a camera pose estimation task. Fur-
ther, we evaluate the best performing and most interesting
instances on the popular ShapeNet [15] 13 class single-
view 3D reconstruction experiment [2]. Here, we also in-
clude those instances that approximate other existing dif-
ferentiable renderers. We note that we do not introduce a
new shading technique in this paper, and rely on existing
blended shaders instead.

We summarize our contributions as follows:

• We propose a generalized differentiable mesh renderer.

• We identify existing differentiable renderers (approxi-
mately) as instances of our generalized renderer.

• We propose a variety of suitable sigmoid functions and
T-conorms and group them by their characteristics.

• We extensively benchmark 1 242 concrete differen-
tiable renderers, analyze which characteristics and
families of functions lead to a good performance, and
find that the best choice heavily depends on the task,
class, or characteristics of the data.

2. Related Work
The related work can be classified into those works

that present differentiable renderers and those which ap-
ply them, although there is naturally also a significant over-
lap. For additional details on differentiable rendering ap-
proaches, cf. the survey by Kato et al. [16].

Analytical Differentiable Renderers. The first large
category of differentiable renderers are those which produce
approximate gradients in an analytical and sampling-free
way. This can either happen by surrogate gradients dur-
ing backpropagation, as in [2], or by making the forward
computation naturally differentiable by perturbing the dis-
tances between pixels and triangles analytically in closed-
form [6], [17], [18]. Our work falls into this category and
is of the second case. Existing works each present their
renderer for a specific distribution or sigmoid function. We
formally characterize the necessary functions to a differen-
tiable renderer and present an array of options.

Monte-Carlo Differentiable Renderers. An alternative
to analytical differentiable renderers are those which are
based on Monte-Carlo sampling techniques. The first ex-
ample for this is the “redner” path tracer by Li et al. [19],
who use edge sampling to approximate the gradients of their
renderer. Loubet et al. [20] build on these ideas and repa-
rameterize the involved discontinuous integrands yielding
improved gradient estimates. Zhang et al. [21] extend these
ideas by differentiating the full path integrals which makes
the method more efficient and effective. Lidec et al. [22] ap-
proach Monte-Carlo differentiable rendering by estimating
the gradients of a differentiable renderer via the perturbed
optimizers method [23].

Applications. Popular applications for differentiable
renderers are pose [1]–[3], [5], [6], [22], [24], shape [2],
[18], [21], [24], material [25], [26], texture [3], [6], [20],
and lighting [21] estimation. Here, the parameters of an
initial scene are optimized to match the scene in a refer-
ence image or a set of reference images. Another interest-
ing application is single-view 3D shape prediction without
3D supervision. Here, a neural network predicts a 3D rep-
resentation from a single image, and the rendering of the
image is compared to the original input image. This learn-
ing process is primarily guided by supervision of the object
silhouette. It is possible to omit this supervision via adver-
sarial style transfer [27]. Other applications are generating
new 3D shapes that match a data set [28], [29] as well as
adversarial examples in the real world [30].

In our experiments, we use optimization for pose and
shape to benchmark all proposed differentiable renderer
combinations. As the single-view 3D mesh reconstruction
is a complex experiment requiring training a neural net-
work, we benchmark our method on this task only for a
selected subset of differentiable renderers.

T-norms and T-conorms. T-norms and T-conorms
(triangular norms and conorms) are binary functions that
generalize the logical conjunction (‘and’) and disjunction
(‘or’), respectively, to real-valued logics or probability
spaces [31], [32]. A generalization of ‘or’ is necessary in
a differentiable renderer to aggregate the occlusion caused
by faces. The existing analytical differentiable renderers all
use the probabilistic T-conorm.

3. Generalized Differentiable Renderer
In this section, we present our generalized differentiable

mesh renderer. With a differentiable renderer, we refer
to a renderer that is continuous everywhere and differen-
tiable almost everywhere (a.e.). Note that, in this context,
continuity is a stricter criterion than differentiable a.e. be-
cause formally (i) conventional renderers are already differ-
entiable a.e. (which does not mean that they can provide any
meaningful gradients), and (ii) almost all existing “differen-
tiable” renderers are not actually differentiable everywhere.



Let us start by introducing how a classic hard rendering
algorithm operates. The first step is to bring all objects into
image space, which is typically a sequence of affine trans-
formations followed by the camera projection. This step is
already differentiable. The second step is the rasterization:
For each pixel, we need to compute the set of faces (typ-
ically triangles) which cover it. If the pixel is covered by
at least one face, the face that is closest to the camera is
displayed.

3.1. Differentiable Occlusion Test

To make the test whether a pixel p is occluded by a face t
differentiable, we start by computing the signed Euclidean
distance d(p, t) between pixel and face boundary. By con-
vention, pixels inside the triangle have a positive distance,
pixels outside the triangle a negative distance. For pixels
exactly on the boundary, the distance to the face is 0.

For a hard occlusion test, we would just check
whether d(p, t) is non-negative. In a differentiable renderer,
we instead introduce a perturbation in the form of a prob-
ability distribution with density f together with a tempera-
ture or scale parameter τ > 0. We then evaluate the proba-
bility that the perturbed distance d(p, t)−τϵ is non-negative,
where ϵ is distributed according to f . Thus, we compute the
probability that t occludes p as

Pϵ∼f (d(p, t)− τϵ ≥ 0) = Pϵ∼f (ϵ ≤ d(p, t)/τ)

=

∫ d(p,t)/τ

−∞
f(x) dx = F

(
d(p, t)

τ

)
,

(1)

where F is the CDF of the distribution f and thus yields a
closed-form solution for the desired probability (provided
that F has a closed-form solution or can be appropriately
approximated). In a differentiable renderer, we require F
being continuous. Typically, F has the S-shape of a sig-
moid function, see Table 1. Therefore, we refer to CDFs as
sigmoid functions in this paper.

Most existing differentiable renderers use sigmoid func-
tions or transformations thereof, see Section 4, to softly
evaluate whether a pixel lies inside a triangle. This accords
to the probabilistic interpretation in Equation (1) where the
probability distribution is defined via the sigmoid function
used in each case. Here, the logistic sigmoid function is a
popular choice of such a sigmoid function. Note that, re-
cently, it has frequently been referred to as “the” sigmoid in
the literature, which is not to be confused with the original
and more general terminology.

Example 1 (Logistic Sigmoid). FL(x) = 1/(1+exp(−x))
is the logistic sigmoid function, which corresponds to the
logistic distribution.

3.2. Aggregation

The second step to be made differentiable is the aggre-
gation of multiple faces. While this is conventionally done

via a logical ‘or’, the differentiable real-valued counterpart
is a T-conorm. T-conorms are formally defined as follows.

Definition 2 (T-conorm). A T-conorm is a binary opera-
tion ⊥ : [0, 1]× [0, 1] → [0, 1], which satisfies

• associativity: ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c),

• commutativity: ⊥(a, b) = ⊥(b, a),

• monotonicity: (a ≤ c)∧(b ≤ d) ⇒ ⊥(a, b) ≤ ⊥(c, d),

• 0 is a neutral element ⊥(a, 0) = a.

Remark 3 (T-conorms and T-norms). While T-conorms ⊥
are the real-valued equivalents of the logical ‘or’, so-called
T-norms ⊤ are the real-valued equivalents of the logical
‘and’. Certain T-conorms and T-norms are dual in the sense
that one can derive one from the other using a comple-
ment (typically 1 − x) and De Morgan’s laws (⊤(a, b) =
1−⊥(1− a, 1− b)).

Let us proceed by stating the T-conorm which is used in
all applicable previous approximate differentiable renderers
with natural gradients.

Example 4 (Probabilistic Sum). The probabilistic sum is a
T-conorm that corresponds to the probability that at least
one out of two independent events occurs. It is defined as

⊥P (a, b) = a+ b− ab. (2)

An alternative to this is the Einstein sum, which is based
on the relativistic addition of velocities.

Example 5 (Einstein Sum). The Einstein sum is a T-conorm
that corresponds to the velocity addition under special rel-
ativity:

⊥P (a, b) =
a+ b

1 + ab
. (3)

Combining the above concepts, we can compute the oc-
cupancy or coverage of a pixel p given a set of faces T as

AO(p, T ) =⊥
t∈T

F ( d(p, t)/τ ) . (4)

3.3. Shading

The coloring of faces is handled via the Phong model
or any other shading model, which is already differentiable.
In the literature, Chen et al. [6] compare different choices.
Finally, to aggregate the coloring of each pixel depending
on the distance of the face to the camera (depth), there are
two popular choices in the literature: no depth perturba-
tions and taking the closest triangle (like [1], [2], [6]) and
Gumbel depth perturbations (like [3], [18]). Only the lat-
ter choice is truly continuous, and the closed-form solution
for Gumbel depth perturbations is the well known softmin.
As there are (i) no closed-form solutions for adequate al-
ternatives to Gumbel perturbations in the literature, and (ii)



Figure 1. Taxonomy of probabil-
ity distributions corresponding to
sigmoid functions. The subdi-
visions are chosen wrt. proper-
ties that have a categorically dif-
ferent influence on the behavior
of the corresponding renderer.
The order of splits when going
down in the tree (which could be
chosen differently, e.g., symmet-
ric/asymmetric could be the first
split) reflects the importance of
the properties.

Taxonomy of Distributions

Finite Support

Exact

Dirac Delta
(Heaviside)

Continuous

Uniform
Cubic Hermite

Wigner Semicircle

Infinite Support

Symmetrical

Exponential Conv.

Gaussian
Laplace
Logistic

Hyperbolic secant (Gudermannian)

Linear Conv.

Cauchy
Reciprocal

Asymmetrical

Two-Sided

Gumbel-Max
Gumbel-Min

One-Sided

Exponential
Gamma

Levy

Heaviside Uniform Cubic Hermite Wigner Semicircle Gaussian Laplace

Logistic Logistic (squares) Hyperbolic secant Cauchy Cauchy (squares) Reciprocal

Gumbel-Max Gumbel-Min Exponential Exponential (Rev.) Levy Levy (Rev.)

Gamma (p = 0.5) Gamma (p = 1) Gamma (p = 2) Gamma (p = .5) (Rev.) Gamma (p = 1) (Rev.) Gamma (p = 2) (Rev.)

Gamma (p = 0.5) Gamma (p = 1) Gamma (p = 2) Gamma (p = .5) (Rev.) Gamma (p = 1) (Rev.) Gamma (p = 2) (Rev.)
(squares) (squares) (squares) (squares) (squares) (squares)

Table 1. Visualization of a selection of sigmoid functions, which are the CDFs of probability distributions. For each distribution, we
display a single rendered triangle to demonstrate their different effects.

these two options have been extensively studied in the liter-
ature [1]–[3], [6], [18], [22], in this work we do not modify
this component and focus on the differentiable silhouette
computation and aggregation. While we implement both
options in GenDR, in our evaluation, we perform all exper-
iments agnostic to the choice of shading aggregation as the
experiments rely solely on the silhouette.

4. Instantiations of the GenDR
Let us proceed by discussing instantiations of the gener-

alized differentiable renderer (GenDR).
Distributions. Figure 1 provides a taxonomy of the dis-

tributions and sigmoid functions that are visualized in Ta-
ble 1. We classify the distributions into those with finite
support as well as others with infinite support, where the
support is the set of points for which the PDF is greater

than zero. Note that the CDFs are constant outside the
support region. Among the distributions with finite sup-
port, there is the exact Dirac delta distribution correspond-
ing to the Heaviside function, which yields a discrete, non-
differentiable renderer. There are also continuous distribu-
tions allowing meaningful gradients, but (due to finite sup-
port) only in a limited proximity to each face. Here, we
have, among others, the uniform distribution, which corre-
sponds to a piecewise linear step function. The derivative of
the uniform distribution is equivalent or very similar (due to
minor implementation aspects) to the surrogate gradient of
the Neural 3D Mesh Renderer [2]. The distributions with
infinite support can be categorized into symmetrical and
asymmetrical. Among the symmetrical distributions, the
Gaussian, the Laplace, the logistic, and the hyperbolic se-
cant have an exponential convergence behavior or exponen-



T-conorm equal to / where continuous contin. diff. strict idempotent nilpotent Archimedean ↑ / ↓ wrt. p

(Logical ‘or’) ∨ (✗) (✗) — (✓) — — —
Maximum ⊥M ✓ ✗ ✗ ✓ ✗ ✗ —
Probabilistic ⊥P = ⊥H

1 = ⊥A
1 ✓ ✓ ✓ ✗ ✗ ✓ —

Einstein ⊥E = ⊥H
0 ✓ ✓ ✓ ✗ ✗ ✓ —

Hamacher ⊥H
p p ∈ (0,∞) ✓ ✓ ✓ ✗ ✗ ✓ ↓

Frank ⊥F
p p ∈ (0,∞) ✓ ✓ ✓ ✗ ✗ ✓ ↓

Yager ⊥Y
p p ∈ (0,∞) ✓ ✗ ✗ ✗ ✓ ✓ ↑

Aczél-Alsina ⊥A
p p ∈ (0,∞) ✓ ✓ ✓ ✗ ✗ ✓ ↑

Dombi ⊥D
p p ∈ (0,∞) ✓ ✓ ✓ ✗ ✗ ✓ ↑

Schweizer-Sklar ⊥SS
p p ∈ (−∞, 0) ✓ ✓ ✓ ✗ ✗ ✓ —

Table 2. Overview over a selection of suitable T-conorms, which we also benchmark.

(a) (b) (c) (d)

Figure 2. Plot of four selected T-conorms. From left to right: Maximum, Probabilistic, Einstein, and Yager (w/ p = 2). While (b) and (c)
are smooth, the Yager T-conorm (d) is non-smooth, it plateaus and the value is constant outside the unit circle.

tial decay of probability density. On the other hand, there
is also the Cauchy distribution which has a linear conver-
gence. This yields a significantly different behavior. We
include the algebraic function x 7→ x/(2 + 2|x|) + 1/2
and call it reciprocal sigmoid. This also has a linear con-
vergence. Finally, we consider asymmetrical distributions
with infinite support. The Gumbel-Max and Gumbel-Min
are extreme value distributions [33] and two-sided, which

Figure 3. Visual comparison of different instances of GenDR. In
each image, moving from left to right increases the temperature
or scale τ of the distribution. Left: we use a logistic distribution
to perturb the triangles and use different T-norms for aggregation
(top to bottom: ⊥M ,⊥P ,⊥Y

2 ,⊥A
0.5). Right: for the two first rows,

we use a uniform distribution and use ⊥Y
2 and ⊥A

0.5. For the last
two rows, we use a Cauchy distribution and use ⊥P and ⊥Y

2 .

means that their support covers both positive and negative
arguments. The exponential, Gamma, and Levy distribu-
tions are one-sided distributions. Here, it is important to not
only consider the original distributions but also their mir-
rored or reversed variants, as well as shifted variations as
can be seen in the last three rows of Table 1.

SoftRas [3] squares the absolute part of the distance be-
fore applying the logistic sigmoid function and thus models
the square roots of logistic perturbations. Instead of modi-
fying the argument of F , we instead interpret it as applying
a transformed counterpart CDF Fsq, which is more in line
with the probabilistic interpretation in Equation (1). More
precisely, we compute the occlusion probability as

Fsq(d(p, t)/τ) := F (|d(p, t)| · d(p, t)/τ) . (5)

That means that for each choice of F , we obtain a coun-
terpart Fsq. A selection of these for different CDFs F is
visualized in Table 1 denoted by “(squares)”. For a mathe-
matical definition of each sigmoid function, see SM B.

Aggregations. Table 2 provides an overview over se-
lected T-conorms and displays their properties. The logical
‘or’ is not a T-conorm but the discrete and discontinuous
equivalent, which is why we include it here. While there are
also discontinuous T-conorms such as the drastic T-cornom,
these are naturally not suitable for a differentiable renderer,
which is why we exlude them. All except for the Max and
Yager T-conorms are continuously differentiable.



Renderer Distribution T-conorm

OpenDR [1] Uniform (backward) —
N3MR [2] Uniform (backward) —
Rhodin et al. [13] Gaussian ⊥P

SoftRas [2] Square-root of Logistic ⊥P

Log. Relax [14] Logistic ⊥P

DIB-R [6] Exponential ⊥P

Table 3. Differentiable renderers that are (approximately) special
cases of GenDR. OpenDR and N3MR do not use a specific T-
conorm as their forward computation is hard.

The top four rows in Table 2 contain individual T-
conorms, and the remainder are families of T-conorms.
Here, we selected only suitable ranges for the parameter p.
Note that there are some cases in which the T-conorms coin-
cide, e.g, ⊥P = ⊥H

1 = ⊥A
1 . A discussion of the remaining

properties and a mathematical definition of each T-conorm
can be found in SM C. Figure 2 displays some of the T-
conorms and illustrates different properties. In Figure 3, we
display example renderings with different settings and pro-
vide a visual comparison on how the aggregation function
affects rendering.

Existing Special Cases of GenDR. In Table 3, we list
which existing differentiable renderers are conceptually in-
stances of GenDR. These renderers do each have some other
differences, but one key difference lies in the type of distri-
bution employed. Differences regarding shading are also
discussed at the end of Section 3.

5. Experiments1

5.1. Shape Optimization

Our first experiment is a shape optimization task. Here,
we use the mesh of an airplane, and render it from 24 az-
imuths using a hard renderer. The task is to optimize a mesh
(initialized as a sphere) to fit the silhouette of the airplane
within 100 optimization steps. Limiting the task to 100 op-
timization steps is critical for two reasons: (i) The task can
be considered to be solved perfectly with any differentiable
renderer that produces the correct gradient sign within a
large number of steps, but we are interested in the quality
of the gradients for the optimization task and how efficient
each renderer is. (ii) The total evaluation is computationally
expensive because we evaluate a total of 1 242 renderers and
perform a grid search over the distribution parameters for
each one to provide a fair and reliable comparison.

Setup. For optimization, we use the Adam opti-
mizer [34] with parameters β1 = 0.5, β2 = 0.95. For each
setting, we perform a grid search over three learning rates
(λ ∈ {10−1.25, 10−1.5, 10−1.75}) and temperatures τ ∈
{10−0.1·n |n ∈ N, 0 ≤ n ≤ 80}. Here, λ = 10−1.5 ≈ 0.03

1The source code will be available at github.com/Felix-Petersen/gendr.

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Shape Optimization

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Shape Optimization

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 4. Results for the 24-view airplane shape optimization task.
The optimization is done within a tight budget of 100 steps and the
metric is the loss, i.e., lower (=yellow) is better. Top: original set
of distributions F . Bottom: the respective counter-parts Fsq in the
same location. The marginal histograms display participation in
the top 10% combinations.

performs best in almost all cases. As for the scale hyperpa-
rameter, it is important to use a fine-grained as well as large
grid because this behaves differently for each distribution.
Here, we intentionally chose the grid larger than the range
of reasonable values to ensure that the best choice is used
for each setting; the extreme values for the scale were never
optimal. We perform this evaluation from five different el-
evation angles {−60◦,−30◦, 0◦, 30◦, 60◦} as independent
runs, and average the final results for each renderer instance.
Additional results for the experiment applied to the model
of a chair can be found in SM D.

Results. In Figure 4, we display the results of our eval-
uation. We can observe that the regular distributions F
typically perform better than the counterpart Fsq, except
for the case of Cauchy and reciprocal sigmoid, which are
those with a linear convergence rate. We explain this by
the fact that by squaring the distance before applying the

https://github.com/Felix-Petersen/gendr


Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)
Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Camera Pose Optimization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5. Results for the tea pot camera pose optimization task.
The optimization is done with a temperature τ that is scheduled to
decay. The metric is fraction of camera poses recovered, while the
initialization angle errors are uniformly sampled from [15◦, 75◦].
The figure shows the original set of distributions F , the plot for
the respective Fsq can be found in SM D.

sigmoid function, the function has a quadratic convergence
rate instead. As the linearly converging functions also per-
form poorly in comparison to the exponentially converging
functions (Gaussian, Laplace, Logistic, Gudermannian), we
conclude that linear convergence is inferior to quadratic and
exponential convergence. Columns 1− 3 contain the distri-
butions with finite support, and these do not perform very
well on this task. The block of exponentially decaying dis-
tributions (columns 4 − 7) performs well. The block of
linearly decaying distributions (columns 8 − 9) performs
badly, as discussed above. The block of Levy distributions
(last 4 columns) performs even worse because it has an even
slower convergence. Here, it also becomes slightly better in
the squared setting, but it still exhibits worse performance
than for linear convergence.

Comparison of Distributions. Gumbel, exponential,
and gamma distributions do not all perform equally well,
but Gumbel-Min, the reversed exponential, and the reversed
gamma are all competitive. Confer Table 1 where it be-
comes clear that this is because Gumbel-Max, exponential
and gamma have all of their mass inside the triangle, i.e.,
they yield smaller faces. This is problematic because in
this case, it can cause gaps between neighboring triangles,
which hinders optimization. As the reverse counterparts
yield larger faces and do not suffer from this problem, they
perform better. Note that, in this respect, the asymmetrical
distributions have an advantage over the symmetrical distri-
butions because symmetrical distributions always have an
accumulated density of 0.5 at the edge, and thus the size of
the face stays the same. We can see that, among the asym-
metrical distributions, Gamma performs best.

Comparison of T-conorms. We find that ⊥M and “av-
erage” (which is not a T-conorm but was used as a baseline
in [3]) perform poorly. Also, ⊥Y

4 , ⊥A
2 , ⊥A

4 , ⊥D
2 , ⊥D

4 , ⊥SS
−2 ,

and ⊥SS
−4 perform poorly overall. This can be explained as

they are rather extreme members of their respective T-norm
families; in all of them, the pth power is involved, which
can become a problematic component, e.g., x4 is vanish-
ingly small for x = 0.5. Interestingly, the gamma and
the exponential distributions still perform well with these,
likely since they are not symmetric and have an accumu-
lated probability of 1 on the edge. Notably, the Yager T-
conorm (p = 2) performs very well, although having a
plateau and thus no meaningful gradient outside the unit
disc, see Figure 2.

Finally, we compute histograms of how many times
each respective distribution and T-conorm is involved in the
best 10% of overall results. This is independent for the top
and bottom plots. We can observe that Gamma (p = 0.5,
Reversed) performs the best overall (because it is more ro-
bust to the choice of T-conorm). Among the T-conorms, we
find that ⊥Y

2 and ⊥D
0.5 perform best. The probabilistic and

Einstein sums perform equally, and share the next place.

5.2. Camera Pose Optimization

In our second experiment, the goal is to find the camera
pose for a model of a teapot from a reference image. The
angle is randomly modified by an angle uniformly drawn
from [15◦, 75◦], and the distance and camera view angle are
also randomized. We sample 600 pairs of a reference im-
age and an initialization and use this set of settings for each
method. For optimization, we use Adam with a learning rate
of either 0.1 or 0.3 (via grid search) and optimize for 1000
steps. During the optimization, we transition an initial scale
of σ = 10−1 logarithmically to a final value of σ = 10−7.
This allows us to avoid a grid search for the optimal scale,
and makes sense since an initially large σ is beneficial for
pose optimization, because a smoother model has a higher
probability of finding the correct orientation of the object.
This contrasts with the setting of shape estimation, where
this would be fatal because the vertices would collapse to
the center.

Results. In Figure 5, we display the results of this ex-
periment. A corresponding image of the counterpart dis-
tributions Fsq as well as results for the experiment applied
to the model of a chair can be found in SM D. The met-
ric is the fraction of settings which achieved matching the
ground truth pose up to 3◦. We find that in this experiment,
the results are similar to those in the shape optimization ex-
periment. Note that there are larger yellow areas because
the color map ranges from 0% to 90%, while in the shape
optimization plot the color map ranges in a rather narrow
loss range.



Airplane Bench Dresser Car Chair

Un
ifo

rm

Ga
us

sia
n

Lo
gi

st
ic

Lo
gi

st
ic 

(s
qu

ar
es

)

Ca
uc

hy

Ca
uc

hy
 (s

qu
ar

es
)

Gu
m

be
l-M

in

Ga
m

m
a 

(R
)

Ga
m

m
a 

(R
, s

qu
ar

es
)

Ex
po

ne
nt

ia
l (

R)

Display Lamp Speaker Rifle Sofa

Probabilistic

Einstein

Yager (p=2)

Table Phone Vessel Mean

60

62

64

47

48

49

50

68

70

72

72

74

76

50

51

52

58

59

60

61

44

45

46

65.5

66.0

66.5

64

65

66

67

66

68

44

46

48

75.0

77.5

80.0

58.5

59.0

59.5

60.0

60

61

62

Figure 6. Single-view reconstruction results for each of the 30 selected renderers as a 3D IoU (in %) heatmap for each class. While the
uniform distribution (w/ ⊥P ) performs best on average and the square root of logistic (w/ ⊥P ,⊥E) performs second-best on average, the
optimal setting depends on the characteristics of the respective classes. For the ‘Airplane’ class, the Gamma distribution performed best
and this is also the distribution that performed best in the airplane shape optimization experiment in Section 5.1. For classes of furniture
with legs, such as ‘Bench’, ‘Chair’, and ‘Table’, we find that the Gaussian distribution consistently performs best. The pairs of similar
classes ‘Display’+‘Phone’, ‘Dresser’+‘Speaker’, and ‘Vessel’+‘Rifle’ also show a similar performance patterns. For example, dresser and
speakers tend to be cuboid, while rifles and vessels tend to be rather long and slim. Considering the Guassian distribution, it is interesting
to see that for some classes ⊥P and ⊥E perform better, while for other classes ⊥Y

2 performs much better.

Method AirplaneBench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

Kato et al. [2] N3MR (Uniform Backward) 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6015
Liu et al. [3] SoftRas (Square-root of Logistic) 0.6419 0.5080 0.7116 0.7697 0.5270 0.6156 0.4628 0.6654 0.6811 0.6878 0.4487 0.7895 0.5953 0.6234
Chen et al. [6] DIB-R (Exponential) 0.570 0.498 0.763 0.788 0.527 0.588 0.403 0.726 0.561 0.677 0.508 0.743 0.609 0.612

Probabilistic + Uniform (≈[1], [2]) 0.6456 0.4855 0.7113 0.7696 0.5276 0.6126 0.4611 0.6651 0.6773 0.6835 0.4514 0.8148 0.5971 0.6232
Probabilistic + Logistic (=[14]) 0.6396 0.5005 0.7105 0.7471 0.5288 0.6022 0.4586 0.6639 0.6742 0.6660 0.4666 0.7771 0.5980 0.6179
Probabilistic + Logistic (squares) (=[3]) 0.6416 0.4966 0.7175 0.7386 0.5224 0.6147 0.4550 0.6673 0.6771 0.6818 0.4529 0.8186 0.5984 0.6217
Probabilistic + Exponential (R) (=[6]) 0.6321 0.4857 0.7123 0.7298 0.5178 0.5983 0.4611 0.6642 0.6713 0.6546 0.4700 0.7717 0.6005 0.6130
Probabilistic + Gaussian (≈[13]) 0.5922 0.5020 0.7104 0.7561 0.5297 0.6080 0.4399 0.6668 0.6533 0.6879 0.4961 0.7301 0.5894 0.6125
Probabilistic + Gamma (R) 0.6473 0.4842 0.7093 0.7220 0.5159 0.6033 0.4665 0.6626 0.6719 0.6505 0.4642 0.7778 0.5978 0.6133
Einstein + Gamma (R, squares) 0.6438 0.4816 0.7174 0.7284 0.5170 0.6111 0.4654 0.6647 0.6760 0.6546 0.4626 0.8189 0.5973 0.6184
Yager (p=2) + Cauchy (squares) 0.6380 0.5026 0.7047 0.7359 0.5188 0.5976 0.4617 0.6612 0.6726 0.6619 0.4819 0.7560 0.6006 0.6149

Table 4. Selected single-view reconstruction results measured in 3D IoU.

5.3. Single-View 3D Reconstruction

Setup. Finally, we reproduce the popular ShapeNet
single-view 3D reconstruction experiment from [2], [3], [6],
[14]. We select three T-conorms (⊥P ,⊥E ,⊥Y

2 ) and 10 dis-
tributions (Uniform, Gaussian, Logistic, Logistic (squares),
Cauchy, Cauchy (squares), Gumbel-Min, Gamma (R, p =
0.5), Gamma (R, p = 0.5, squares), and Exponential (R)).
These have been selected because they have been used in
previous works, are notable (Cauchy, Gumbel-Min, Ein-
stein), or have performed especially well in the aircraft
shape optimization experiment (Gamma, Yager). For each
setting, we perform a grid search of τ at resolution 100.5.
Further experimental details can be found in SM A.

Results. In Figure 6, we display and discuss the class-
wise results for all 30 selected renderers. In Table 4, we
show the (self-) reported results for existing differentiable
renderers in the top block. In the bottom block, we display
our results for the methods that are equivalent (=) or very
similar (≈) to the six existing differentiable renderers. The
differences for equivalent methods can be explained with
small variations in the setting and minor implementation
differences. Additionally, we include three noteworthy al-
ternative renderers, such as the one that also performed best
on the prior airplane shape optimization task. We conclude

that the optimal choice of renderer heavily depends on the
characteristics of the 3D models and the task. Surprisingly,
we find that the simple uniform method achieves consis-
tently good results and the best average score.

6. Discussion and Conclusion
In this work, we generalized differentiable mesh render-

ers and explored a large space of instantiations of our gener-
alized renderer GenDR. We found that there are significant
differences between different distributions for the occlusion
test but also between different T-conorms for the aggrega-
tion. In our experiments, we observed that the choice of ren-
derer has a large impact on the kind of models that can be
rendered most effectively. We find that the uniform distri-
bution outperforms the other tested distributions on average,
which is surprising considering it simplicity. Remarkably,
the uniform distribution had already been used implicitly
for the early surrogate gradient renderers but was later dis-
carded for the approximate differentiable renderers.

Acknowledgments. This work was supported by the DFG
in the Cluster of Excellence EXC 2117 (Project-ID 390829875)
and the SFB Transregio 161 (Project-ID 251654672), and the
Land Salzburg within the WISS 2025 project IDA-Lab (20102-
F1901166-KZP and 20204-WISS/225/197-2019).



References
[1] M. M. Loper and M. J. Black, “OpenDR: An approximate

differentiable renderer,” in Proc. European Conference on
Computer Vision (ECCV), 2014.

[2] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh ren-
derer,” in Proc. International Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2018.

[3] S. Liu, T. Li, W. Chen, and H. Li, “Soft Rasterizer: A
Differentiable Renderer for Image-based 3D Reasoning,”
in Proc. International Conference on Computer Vision
(ICCV), 2019.

[4] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,
and M. J. Black, “Keep it smpl: Automatic estimation of 3d
human pose and shape from a single image,” in Proc. Eu-
ropean Conference on Computer Vision (ECCV), 2016.

[5] A. Palazzi, L. Bergamini, S. Calderara, and R. Cucchiara,
“End-to-end 6-DoF object pose estimation through differ-
entiable rasterization,” in Proc. European Conference on
Computer Vision Workshops (ECCVW), 2019.

[6] W. Chen, J. Gao, H. Ling, et al., “Learning to predict
3D objects with an interpolation-based differentiable ren-
derer,” in Proc. Neural Information Processing Systems
(NeurIPS), 2019.

[7] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspec-
tive transformer nets: Learning single-view 3D object re-
construction without 3D supervision,” in Proc. Neural In-
formation Processing Systems (NeurIPS), 2016.

[8] E. Insafutdinov and A. Dosovitskiy, “Unsupervised learn-
ing of shape and pose with differentiable point clouds,” in
Proc. Neural Information Processing Systems (NeurIPS),
2018.

[9] W. Yifan, F. Serena, S. Wu, C. Öztireli, and O. Sorkine-
Hornung, “Differentiable surface splatting for point-based
geometry processing,” ACM Transactions on Graphics,
vol. 38, no. 6, 2019.

[10] Y. Jiang, D. Ji, Z. Han, and M. Zwicker, “SDFDiff: Differ-
entiable rendering of signed distance fields for 3D shape
optimization,” in Proc. International Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[11] S. Liu, S. Saito, W. Chen, and H. Li, “Learning to infer
implicit surfaces without 3d supervision,” 2019.

[12] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware
Neural Scene Representations,” in Proc. Neural Informa-
tion Processing Systems (NeurIPS), 2019.

[13] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and C.
Theobalt, “A versatile scene model with differentiable vis-
ibility applied to generative pose estimation,” in Proc. In-
ternational Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[14] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen,
“Learning with Algorithmic Supervision via Continuous
Relaxations,” in Proc. Neural Information Processing Sys-
tems (NeurIPS), 2021.

[15] A. X. Chang, T. Funkhouser, L. Guibas, et al., “ShapeNet:
An information-rich 3D model repository,” Computing Re-
search Repository (CoRR) in arXiv, 2015.

[16] H. Kato, D. Beker, M. Morariu, et al., “Differentiable ren-
dering: A survey,” arXiv preprint arXiv:2006.12057, 2020.

[17] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and
A. Jacobson, “Adversarial geometry and lighting using a
differentiable renderer,” Computing Research Repository
(CoRR) in arXiv, 2018.

[18] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-
Or, “Pix2Vex: Image-to-Geometry Reconstruction us-
ing a Smooth Differentiable Renderer,” arXiv preprint
arXiv:1903.11149, 2019.

[19] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differ-
entiable Monte Carlo ray tracing through edge sampling,”
ACM Transactions on Graphics (Proc. SIGGRAPH Asia),
vol. 37, no. 6, pp. 1–11, 2018.

[20] G. Loubet, N. Holzschuch, and J. Wenzel, “Reparameteriz-
ing discontinuous integrands for differentiable rendering,”
ACM Transactions on Graphics (Proc. SIGGRAPH Asia),
2019.

[21] C. Zhang, B. Miller, K. Yan, I. Gkioulekas, and S. Zhao,
“Path-space differentiable rendering,” in ACM Transac-
tions on Graphics (Proc. SIGGRAPH), 2020.

[22] Q. L. Lidec, I. Laptev, C. Schmid, and J. Carpentier,
“Differentiable rendering with perturbed optimizers,” in
Proc. Neural Information Processing Systems (NeurIPS),
2021.

[23] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert,
and F. Bach, “Learning with Differentiable Perturbed Op-
timizers,” in Proc. Neural Information Processing Systems
(NeurIPS), 2020.

[24] N. Ravi, J. Reizenstein, D. Novotny, et al., “Acceler-
ating 3d deep learning with pytorch3d,” arXiv preprint
arXiv:2007.08501, 2020.

[25] G. Liu, D. Ceylan, E. Yumer, J. Yang, and J.-M. Lien,
“Material editing using a physically based rendering net-
work,” in Proc. International Conference on Computer Vi-
sion (ICCV), 2017.

[26] L. Shi, B. Li, M. Hašan, et al., “MATch: Differentiable
material graphs for procedural material capture,” in ACM
Transactions on Graphics (Proc. SIGGRAPH), 2020.

[27] F. Petersen, B. Goldluecke, O. Deussen, and H. Kuehne,
“Style Agnostic 3D Reconstruction via Adversarial Style
Transfer,” in IEEE Winter Conference on Applications of
Computer Vision (WACV), 2022.

[28] P. Henzler, N. Mitra, and T. Ritschel, “Escaping plato’s
cave using adversarial training: 3D shape from unstruc-
tured 2D image collections,” in Proc. International Con-
ference on Computer Vision (ICCV), 2019.

[29] C. H. L. Paul Henderson Vagia Tsiminaki, “Leveraging 2d
data to learn textured 3d mesh generation,” in Proc. In-
ternational Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.



[30] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and
A. Jacobson, “Beyond pixel norm-balls: Parametric ad-
versaries using an analytically differentiable renderer,”
in International Conference on Learning Representations
(ICLR), 2019.

[31] E. P. Klement, R. Mesiar, and E. Pap, Triangular norms.
Springer Science & Business Media, 2013, vol. 8.

[32] E. van Krieken, E. Acar, and F. van Harmelen, “Analyz-
ing differentiable fuzzy logic operators,” Artificial Intelli-
gence, vol. 302, p. 103 602, 2022.

[33] S. Coles, An introduction to statistical modeling of extreme
values, ser. Springer Series in Statistics. Springer-Verlag,
2001.

[34] D. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in International Conference on Learning Rep-
resentations (ICLR), 2015.



A. Implementation Details
For the single-view 3D reconstruction experiment, we

closely orient ourselves on the setup by Liu et al. [1]. We
use the same model architecture [1] and also train with a
batch size of 64 for 250 000 steps using the Adam opti-
mizer [2] We also schedule the learning rate to 10−4 for
the first 150 000 steps and use a learning rate of 3 · 10−5 for
the remaining training. At this point (after the first 150 000
steps), we also decrease the temperature τ by a factor of 0.3.

Using different learning rates (as an ablation) did not im-
prove the results.

B. Distributions
In this section, we define each of the presented distribu-

tions / sigmoid functions. Figure 5 displays the respective
CDFs and PDFs.

Note that, for each distribution, the PDFs f is defined
as the derivative of the CDF F . Also, note that a reversed
(Rev.) CDF is defined as FRev.(x) = 1 − F (−x), which
means that FRev. = F for symmetric distributions. The
square-root distribution Fsq is defined in terms of F as in
Equation (5). Therefore, in the following, we will define
the distributions via their CDFs F .

Heaviside

x 7→

{
0 if x < 0

1 otherwise
(6)

Uniform

x 7→


0 if x < −1

0.5 · (1 + x) if − 1 ≤ x ≤ 1

1 otherwise

(7)

Cubic Hermite

x 7→


0 if x < −1

3y2 − 2y3 if − 1 ≤ x ≤ 1

1 otherwise

(8)

where y := (x+ 1)/2.

Wigner Semicircle

x 7→


0 if x < −1
1
2 + x

√
1−x2

π + arcsin(x)
π if − 1 ≤ x ≤ 1

1 otherwise

(9)

Gaussian
x 7→ 1

2

(
1 + erf

(
x√
2

))
(10)

Laplace

x 7→

{
1
2 exp (x) if x ≤ 0

1− 1
2 exp (−x) if x ≥ 0

(11)

Logistic
x 7→ 1

1 + exp(−x)
(12)

Hyperbolic secant / Gudermannian

x 7→ 2

π
arctan

(
exp

(π
2
x
))

(13)

Cauchy
x 7→ 1

π
arctan (x) +

1

2
(14)

Reciprocal
x 7→ x/(2 + 2|x|) + 1/2 (15)

Gumbel-Max
x 7→ e−e−x

(16)

Gumbel-Min
x 7→ e−ex (17)

Exponential
x 7→ 1− e−x (18)

Levy

x 7→ 2− 2Φ

(√
1

x

)
(19)

where Φ is the CDF of the standard normal distribution.

Gamma
x 7→ 1

Γ(p)
γ(p, x) (20)

where γ(p, x) is the lower incomplete gamma function and
p > 0 is the shape parameter.



Heaviside Uniform Cubic Hermite Wigner Semicircle Gaussian Gaussian (sq.)

Laplace Laplace (sq.) Logistic Logistic (sq.) Hyperbolic secant Hyperbolic secant (sq.)

Cauchy Cauchy (sq.) Reciprocal Reciprocal (sq.) Gumbel-Max Gumbel-Min

Exponential Exponential (sq.) Exponential (Rev.) Levy Levy (sq.) Levy (Rev.)

Gamma (p=0.5) Gamma (p=1) Gamma (p=2) Gamma (p=.5, R.) Gamma (p=1, R.) Gamma (p=2, R.)

Gamma (p=0.5, sq.) Gamma (p=1, sq.) Gamma (p=2, sq.) Gamma (p=.5, R., sq.) Gamma (p=1, R., sq.) Gamma (p=2, R., sq.)

Table 5. Visualization of CDFs (top) and PDFs (bottom) for different distributions.



C. T-Norms and T-Conorms
The axiomatic approach to multi-valued logics (which

we need to combine the occlusions by different faces in a
“soft” manner) is based on defining reasonable properties
for truth functions. We stated the axioms for multi-valued
generalizations of the disjunction (logical “or”), called T-
conorms, in Definition 2. Here we complement this with the
axioms for multi-valued generalizations of the conjunction
(logical “and”), which are called T-norms.

Definition 6 (T-norm). A T-norm (triangular norm) is a bi-
nary operation ⊤ : [0, 1]× [0, 1] → [0, 1], which satisfies

• associativity: ⊤(a,⊤(b, c)) = ⊤(⊤(a, b), c),

• commutativity: ⊤(a, b) = ⊤(b, a),

• monotonicity: (a ≤ c)∧(b ≤ d) ⇒ ⊤(a, b) ≤ ⊤(c, d),

• 1 is a neutral element: ⊤(a, 1) = a.

Clearly these axioms ensure that the corners of the unit
square, that is, the value pairs considered in classical logic,
are processed as with a standard conjunction: neutral ele-
ment and commutativity imply that (1, 1) 7→ 1, (0, 1) 7→ 0,
(1, 0) 7→ 0. From one of the latter two and monotonicity it
follows (0, 0) 7→ 0. Analogously, the axioms of T-conorms
ensure that the corners of the unit square are processed as
with a standard disjunction. Actually, the axioms already
fix the values not only at the corners, but on the boundaries
of the unit square. Only inside the unit square (that is, for
(0, 1)2) T-norms (as well as T-conorms) can differ.

Minimum ⊤M (a, b) = min(a, b)

Probabilistic ⊤P (a, b) = ab

Einstein ⊤E(a, b) = ab
2−a−b+ab

Hamacher ⊤H
p (a, b) = ab

p+(1−p)(a+b−ab)

Frank ⊤F
p (a, b) = logp

(
1 + (pa−1)(pb−1)

p−1

)
Yager ⊤Y

p (a, b) = max
(
0, 1− ((1− a)

p
+ (1− b)

p
)

1
p

)
Aczél-Alsina ⊤A

p (a, b) = exp
(
− (| log(a)|p + | log(b)|p)

1
p
)

Dombi ⊤D
p (a, b) =

(
1 +

((
1−a
a

)p
+
(
1−b
b

)p) 1
p
)−1

Schweizer-Sklar ⊤S
p (a, b) = (ap + bp − 1)

1
p

Table 6. (Families of) T-norms.

In the theory of multi-valued logics, and especially in
fuzzy logic [3], it was established that the largest possible T-
norm is the minimum and the smallest possible T-conorm is
the maximum: for any T-norm ⊤ it is ⊤(a, b) ≤ min(a, b)
and for any T-conorm ⊥ it is ⊥(a, b) ≥ max(a, b). The
other extremes, that is, the smallest possible T-norm and
the largest possible T-conorm are the so-called drastic T-
norm, defined as ⊤◦(a, b) = 0 for (a, b) ∈ (0, 1)2, and
the drastic T-conorm, defined as ⊥◦(a, b) = 1 for (a, b) ∈
(0, 1)2. Hence it is ⊤(a, b) ≥ ⊤◦(a, b) for any T-norm ⊤
and ⊥(a, b) ≤ ⊥◦(a, b) for any T-conorm ⊥. We do not
consider the drastic T-conorm for an occlusion test, because
it clearly does not yield useful gradients.

As already mentioned in the paper, it is common to com-
bine a T-norm ⊤, a T-conorm ⊥ and a negation N (or com-
plement, most commonly N(a) = 1 − a) so that DeMor-
gan’s laws hold. Such a triplet is often called a dual triplet.
In Tables 6 and 7 we show the formulas for the families of
T-norms and T-conorms, respectively, where matching lines
together with the standard negation N(a) = 1 − a form
dual triplets. Note that, for some families, we limited the
range of values for the parameter p (see Table 2) compared
to more general definitions [3].

C.1. T-conorm Plots

Figures 7 and 8 display the considered set of T-conorms.



Maximum ⊥M (a, b) = max(a, b)

Probabilistic ⊥P (a, b) = a+ b− ab

Einstein ⊥E(a, b) = ⊥H
2 (a, b) = a+b

1+ab

Hamacher ⊥H
p (a, b) = a+b+(p−2)ab

1+(p−1)ab

Frank ⊥F
p (a, b) = 1− logp

(
1 + (p1−a−1)(p1−b−1)

p−1

)
Yager ⊥Y

p (a, b) = min
(
1, (ap + bp)

1
p

)
Aczél-Alsina ⊥A

p (a, b) = 1− exp
(
− (| log(1− a)|p + | log(1− b)|p)

1
p
)

Dombi ⊥D
p (a, b) =

(
1 +

((
1−a
a

)p
+
(
1−b
b

)p)− 1
p
)−1

Schweizer-Sklar ⊥S
p (a, b) = 1− ((1− a)p + (1− b)p − 1)

1
p

Table 7. (Families of) T-conorms.

Figure 7. T-conorm plots (1/2). Note that ‘Average’ is not a T-cornom and just included for reference. Also, Note how ‘Probabilistic’ is
equal to ‘Hamacher p = 1’ and ‘Einstein’ is equal to ‘Hamacher p = 2’.



Figure 8. T-conorm plots (2/2).



D. Additional Plots
See Figures 9 and 10.

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Camera Pose Optimization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9. Results for the tea pot camera pose optimization task for
the respective square-root distribution Fsq.

References
[1] S. Liu, T. Li, W. Chen, and H. Li, “Soft Rasterizer: A

Differentiable Renderer for Image-based 3D Reasoning,”
in Proc. International Conference on Computer Vision
(ICCV), 2019.

[2] D. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in International Conference on Learning Rep-
resentations (ICLR), 2015.

[3] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic —
Theory and Applications. Upper Saddle River, New Jersey:
Prentice Hall, 1995.



Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Shape Optimization

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Camera Pose Optimization

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Shape Optimization

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Un
ifo

rm
Cu

bi
c 

He
rm

ite
W

ig
ne

r S
em

ici
rc

le
Ga

us
sia

n
La

pl
ac

e
Lo

gi
st

ic
Gu

de
rm

an
ni

an
Ca

uc
hy

Re
cip

ro
ca

l S
ig

m
oi

d
Gu

m
be

l-M
ax

Gu
m

be
l-M

in
Ex

po
ne

nt
ia

l
Ex

po
ne

nt
ia

l (
sh

ift
)

Ex
po

ne
nt

ia
l (

R)
Ex

po
ne

nt
ia

l (
R,

 sh
ift

)
Ga

m
m

a 
(p

=.
5)

Ga
m

m
a 

(p
=1

)
Ga

m
m

a 
(p

=2
)

Ga
m

m
a 

(p
=2

, s
hi

ft)
Ga

m
m

a 
(p

=.
5,

 R
)

Ga
m

m
a 

(p
=1

, R
)

Ga
m

m
a 

(p
=2

, R
)

Ga
m

m
a 

(p
=2

, R
, s

hi
ft)

Le
vy

Le
vy

 (s
hi

ft)
Le

vy
 (R

)
Le

vy
 (R

, s
hi

ft)

Sigmoid Fn

Maximum
(Average)

Probabilistic
Einstein

Hamacher (p=0)
Hamacher (p=.5)
Hamacher (p=4)

Frank (p=.5)
Frank (p=2)
Frank (p=e)

Yager (p=.5)
Yager (p=1)
Yager (p=2)
Yager (p=4)

Aczel-Alsina (p=.5)
Aczel-Alsina (p=2)
Aczel-Alsina (p=4)

Dombi (p=.5)
Dombi (p=2)
Dombi (p=4)

Schweizer-Sklar (p=-.5)
Schweizer-Sklar (p=-2)
Schweizer-Sklar (p=-4)

T-
co

no
rm

Camera Pose Optimization

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Figure 10. Shape optimization (left) and camera pose optimization (right) applied to a model of a chair. Top: set of original distributions
F . Bottom: set of the respective square-root distributions Fsq


	. Introduction
	. Related Work
	. Generalized Differentiable Renderer
	. Differentiable Occlusion Test
	. Aggregation
	. Shading

	. Instantiations of the GenDR
	. ExperimentsThe source code will be available at github.com/Felix-Petersen/gendr.
	. Shape Optimization
	. Camera Pose Optimization
	. Single-View 3D Reconstruction

	. Discussion and Conclusion
	. Implementation Details
	. Distributions
	. T-Norms and T-Conorms
	. T-conorm Plots

	. Additional Plots

