A Decision Tree Plug-In for DataEngine™

Christian Borgelt

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg
Universitatsplatz 2, D-39106 Magdeburg, Germany

e-mail: borgelt@iws.cs.uni-magdeburg.de

Abstract: Inducing decision trees with a top-down
algorithm is a well-known and widely used method to
construct classifiers from a set of sample cases. In this
paper we review this technique in order to demonstrate
its relative simplicity and its power to produce com-
prehensible results. Since the task to induce a classi-
fier from data turns up frequently in applications (e.g.
credit assessment, disease detection etc.) no commer-
cial data analysis tool can do without offering a de-
cision tree induction module. Nevertheless, the well-
known data analysis program DataEngine™ has until
recently suffered from lacking such a module. This
drawback is now removed by a plug-in consisting of
a set of user-defined function blocks we implemented
and which we describe in this paper.

1 Introduction

Decision trees are a well-known type of classifiers.
Classifiers, in turn, are programs which automatically
classify a case or an object, i.e. assign it according to its
features to one of several given classes. For example,
if the cases are patients in a hospital, the attributes
are properties of the patients (e.g. sex, age etc.) and
their symptoms (e.g. fever, high blood pressure etc.),
the classes may be diseases or drugs to administer.

Decision trees are classifiers which — as the name
already indicates — have a tree-like structure. To each
leaf a class, to each inner node an attribute (or feature)
is assigned. There can be several leaves associated with
the same class and several inner nodes associated with
the same attribute. The descendants of the inner nodes
are reached via edges to each of which a value of the at-
tribute associated with the node is assigned. Each leaf
represents a decision “The case considered belongs to
class ¢.”, where c is the class associated with the leaf.
Each inner node corresponds to an instruction “Test
attribute A and follow the edge to which the value
observed is assigned!”, where A is the attribute asso-
ciated with the node. A case is classified by starting
at the root of the tree and executing the instructions
in the inner nodes until a leaf is reached, which then
states a class.

From the above description it is obvious that deci-
sion trees are very simple to use. Unfortunately, it is
not quite as simple to construct them manually. Es-
pecially if the number of possible test attributes is
large and the available knowledge about the under-
lying relations between the classes and the test at-
tributes is vague, manual construction can be tedious
and time consuming. However, if a database of sample
cases is available, one can try an automatic induction
[5, 18, 19]. The usual approach is a top-down pro-
cess (TDIDT — top-down induction of decision trees),
which uses a “divide and conquer” principle together
with a greedy selection of test attributes according to
the value ascribed to them by an evaluation measure.
In section 2 we illustrate this approach using a simple
(artificial) medical example.

Since the success of the induction algorithm depends
considerably on the attribute selection measure used,
in section 3 we list a large variety of such measures.
However, limits of space prevent us from discussing
in detail the ideas underlying them. Which of these
measures yields the best results cannot be stated in
general, but depends on the application. Therefore all
of these measures can be selected for the decision tree
induction function block of the DataEngine™ plug-in
we describe in section 4. In addition to the induction
function block this plug-in consists of functions blocks
for pruning a decision tree, for executing a decision
tree to classify a set of cases and for computing a con-
fusion matrix (which is useful to assess the quality of
a learned classifier).

2 Induction of Decision Trees

As already remarked above the induction of decision
trees from data rests on a “divide and conquer” princi-
ple together with a greedy selection of the attributes to
test: From a given set of classified case descriptions the
conditional frequency distributions of the classes given
the attributes used in the case descriptions are com-
puted. These distributions are evaluated using some
measure and the attribute yielding the best value is
selected as the next test attribute. This is the greedy

’ No H Sex ‘ Age ‘ Blood Pressure H Drug ‘
1 || male 20 normal A
2 || female | 73 normal B
3 || female | 37 high A
4 || male 33 low B
5 || female | 48 high A
6 || male 29 normal A
7 || female | 52 normal B
8 || male 42 low B
9 || male 61 normal B

10 || female | 30 normal A
11 || female | 26 low B
12 || male 54 high A

Table 1: This table contains patient data together with
an effective drug (effective w.r.t. some unspecified dis-
ease). To find a decision tree for the effective drug,
the conditional distributions of the drugs given the pa-
tients’ features are examined (see table 2).

part of the algorithm. Then the case descriptions are
divided according to the values of the chosen test at-
tribute and the procedure is applied recursively to the
resulting subsets. This is the “divide and conquer”
part of the algorithm. The recursions stops, if either
all cases of a subset belong to the same class, or no
attribute yields an improvement of the classification,
or there are no attributes left for a test. We illustrate
this procedure with a simple example and state the
induction algorithm in pseudo code.

2.1 A Simple Example

Table 1 shows the features of twelve patients — sex,
age, and a qualitative statement of the blood pressure
— together with a drug, which for the patient has been
effective in the treatment of some unspecified disease.
Neglecting the features of the patients the effective
drug can be predicted only with a rate of success of
50%, since drug A as well as drug B were effective
in six cases. Because such a situation is unfavourable
for future treatments, we try to learn a decision tree,
which will (hopefully) allow us to derive the effective
drug from the features of a patient.

To this end we consider all conditional distributions
of the effective drugs given the available features (see
table 2). It is obvious that the patient’s sex is with-
out any influence, since for male as well as for female
patients both drugs were effective in half of the cases
(thus being politically correct, i.e. here: non-sexist).
The patients age yields a better result: below forty
years of age drug A has been effective in four out of
six cases. Over forty years of age the same holds for
drug B. Hence, the success rate is 67%. However, test-
ing the blood pressure yields an even better result: If it

’ Blood Pressure ‘

low
normal

Age ‘] Drug B ‘

> 40

Figure 1: The learned decision tree. First the blood
pressure of the patient is determined. If it is low or
high, the effective drug can be stated directly. If it is
normal, we inquire for the age of the patient and thus
can derive the effective drug in this case, too.

is high, drug A, if it is low, drug B is the correct drug.
Only if the blood pressure is normal, the prediction is
not improved. The overall success rate is 75%.

Since the blood pressure allows us to determine the
effective drug with the highest rate of success, it is
chosen as the first test attribute and placed at the root
of the decision tree. The case descriptions of the table
are divided according to the values they contain for
this attribute. Since the effective drug is definite for
patients with low or high blood pressure, these cases
need not be considered further. For the patients with
normal blood pressure we test again the conditional
distribution of the effective drug given the patient’s
age. Dividing the patients in those younger than forty
and those older, separates the cases in which drug A
was effective from those in which drug B was effective.
Thus a reliable method to determine the effective drug
is found. The corresponding decision tree, which can
be read directly from table 2 (far right), is shown in
figure 1.

2.2 The Induction Algorithm

The general algorithm to induce a decision tree from
data is shown in figure 2 in a pseudo code similar to
Pascal. In the first part of the algorithm for each at-
tribute the frequency distribution of its values and the
classes is determined. From this distribution the value
of an evaluation measure is computed. The attribute
with the highest value is stored in the variable best_A.
This is a crucial step in the algorithm, since a wrong
assessment of the attributes and thus a bad choice for
the test attribute can severely diminish the classifier’s
performance. (More about evaluation measures can be
found in section 3.) In the second part of the algorithm
either a leaf or a test node is created — depending on
the outcome of the first part. If a test node is cre-

’ No H Sex H Drug ‘ ’ No H Age H Drug ‘ ’ No H Blood Pr. H Drug ‘ ’ No H Blood Pr. ‘ Age H Drug ‘
1| male A 11 20 A 3| high A 3| high 37 A
6 || male A 111 26 B 51 high A 51 high 48 A

12| male A 61 29 A 12| high A 12 || high 54 A
4 || male B 10| 30 A 1| normal A 1| normal 20 A
8 || male B 41 33 B 6 || normal A 6 || normal 29 A
9| male B 3| 37 A 10 || normal A 10 || normal 30 A
3| female || A 81| 42 B 2 || normal B 71l normal 59 B
5| female || A 51 48 A 7 || normal B 9| normal 61 B

10| female || A 71 52 B 9 || normal B 21| normal 73 B
2|| female || B 12| 54 A 4| low B 11| low 26 B
7| female | B 91 61 B 81 low B 41 low 33 B

11| female || B 2 73 B 11 || low B 81| 1ow 49 B

Table 2: The conditional distributions of the effective drug given the sex (far left), the age (left, divided into
“less than 40” and “over 40”) and the blood pressure (right) of the patients. Obviously the blood pressure
yields the best result. If a test of the age is added in those cases in which the blood pressure is normal (far
right), the prediction of the effective drug becomes perfect. The corresponding decision tree, which can be read

directly from the table, is shown in figure 1.

function grow_tree (5 : set of cases) :
begin
best_v := WORTHLESS;
for all untested attributes A do
compute frequencies Nj;j, N; , N ;
forl1 <i<necand1<j<ng;
compute value v of a selection measure
using N;;, Ni, N j;

node;

if v > best_v
then best_v := v;

best_A := A,
end;

end
if best_v = WORTHLESS
then create leaf node n;
assign majority class of S to n;
else create test node n;
assign test on attribute best_A to n;
for all a € dom(best_A) do
n.child[a] := grow_tree(S|pest_A—a);
end;
end;
return n;
(* grow_tree() *)

3

end;

Figure 2: The TDIDT (top-down induction of decision
trees) algorithm.

ated, the case descriptions are divided according to
their value for the chosen test attribute and for each
resulting subset the function grow_tree is called recur-
sively.

To simplify the algorithm we assumed in this de-
scription that all attributes have a finite number of
symbolic values. Integer or real-valued attributes can

be processed by sorting the occurring values and choos-
ing a cut value for each pair of consecutive values (e.g.
the arithmetic mean of the two values). Using this
cut value an (artificial) symbolic attribute with values
“greater than cut value” and “less than cut value” is
created. The best cut value, i.e. the one whose corre-
sponding symbolic attribute is rated best by the cho-
sen evaluation measure, is selected to represent the
numeric attribute.

During the recursive descent already tested symbolic
attributes are marked, since another test of these at-
tributes is obviously pointless: Dividing the cases leads
to all cases having the same value for a tested at-
tribute in the deeper levels of the recursion. Integer
and real-valued attributes, however, are not marked,
since deeper down in the recursion a different cut value
may be chosen and thus the range of values may be
subdivided further.

3 Attribute Selection Measures

As already indicated in the introduction and substan-
tiated by the description of the general induction al-
gorithm in the preceding section, the success of the
induction of a decision tree from data depends to a
high degree on the attribute selection measure used.
Several years of research not only in decision tree in-
duction but also in the closely related area of inducing
Bayesian networks from data has lead to a large variety
of evaluation measures, which draw from a substantial
set of ideas to assess the quality of an attribute. Unfor-
tunately, limits of space prevent us from discussing in
detail these measures and the ideas underlying them.
Hence we only give a list:

e information gain Igain [16, 7, 18]
(mutual information/cross entropy)

e information gain ratio Iy, [18, 19]
e symmetric information gain ratio Isg, [17]
e Gini index [5, 21]

e symmetric Gini index [22]

e modified Gini index [13]

e relief measure [12, 13]

e x? measure

o weight of evidence [14]

e relevance [1]

e K2 metric [8, 11]

e BDeu metric [6, 11]

e minimum description length with coding based on
relative frequencies I, [14]

e minimum description length with coding based on
absolute frequencies l,ps [14]
(closely related to the K2 metric)

e stochastic complexity [15, 20]
e specificity gain Sgain [10, 3]

e (symmetric) specificity gain ratio Sy, [3]

It may be worth noting that the K2 metric and the
BDeu metric were originally developed for learning
Bayesian networks and that the specificity measures
are based not on probability or information theory but
on possibility theory — an alternative theory for rea-
soning with imperfect knowledge that is closely con-
nected to fuzzy set theory. A reader who is interested
in more detailed information about the measures listed
above may consult [3] or [4] (the latter is available in
German only).

Unfortunately, no general rule can be given which
measure should be chosen. Although some measures
(e.g. the information gain ratio and the minimum de-
scription length measures) perform slightly better on
average, all have their strengths and weaknesses. For
each measure there are specific situations in which it
performs best and hence it can pay to try several mea-
sures.

4 The DataEngine™ Plug-In

We implemented a powerful decision tree induction al-
gorithm as a plug-in for the well-known data analysis
program DataEngine™ in order to improve this es-
teemed tool even further. This plug-in consists of four

user-defined function blocks:

grow — Grow a decision tree.

This function block receives as input a table of clas-
sified sample cases and grows a decision tree. The
data types of the table columns (either symbolic or

numeric) can be stated in the unit fields of the table
columns, which can also be used to instruct the al-
gorithm to ignore certain columns. Although tables
passed to user-defined functions blocks may not con-
tain unknown values, this function block provides a
facility to specify which table fields should to consid-
ered as unknown: In the configuration dialog you may
enter a value for the lowest known value. All values
below this value are considered to be unknown. In ad-
dition the configuration dialog lets you choose the at-
tribute selection measure (see the preceding section for
a list), whether the measure should be weighted with
the fraction of known values (to take into account the
lesser utility of rarely known attributes), whether the
algorithm should try to form subsets on symbolic at-
tributes, a maximal height for the decision tree to be
learned, and the name of a file into which the learned
decision tree should be saved.

prune — Prune a learned decision tree.

This function block receives as input a learned decision
tree stored in a file and a table of classified sample
cases, which may or may not be the table the decision
tree was learned from. It prunes the decision tree using
the table applying one of two pruning methods (either
pessimistic pruning or confidence level pruning), which
are governed by a parameter that can be entered in
the configuration dialog. In addition, the configuration
dialog lets you enter a maximal height for the pruned
tree and (to be able to deal with unknown values, see
above), a lowest known value. The pruned decision
tree is written to another file, whose name can also be
specified in the configuration dialog.

exec — Execute a learned decision tree.

This function block receives as input a learned (and
maybe pruned) decision tree stored in a file and a ta-
ble of cases. It executes the decision tree for each case
in the table and adds to it a new column containing the
class predicted by the decision tree. The configuration
dialog lets you enter the name of the classification col-
umn and (just as described for the two blocks above)
a lowest known value.

xmat — Compute a confusion matrix.

This function blocks receives as input a table. Its
configuration dialog lets you enter the names of two
columns for which a confusion matrix shall be deter-
mined. It generates a table containing the confusion
matrix (either with absolute or relative numbers) and
the sums over lines and columns (excluding the diago-
nal elements).

All function blocks that deal directly with decision
trees, i.e. the blocks grow, prune, and exec also com-
prise a decision tree viewer which lets you navigate
through a learned decision tree using the well-known
MS Windows tree view control (used, for example, in
the MS Windows explorer to visualize the hierarchic

file system). Hence you need not accept the learned
classifier as a black box (as is usually the case for e.g.
neural networks), but you can inspect how an induced
decision tree arrives at its results.

5 Summary

In this paper we reviewed the well-known TDIDT al-
gorithm for inducing a decision tree from a set of sam-
ple cases in order to demonstrate its relative simplicity
and its power to produce comprehensible results, which
makes it a useful tool for a lot of data analysis task.
We presented an implementation of a decision tree in-
duction algorithm as a plug-in for the well-known data-
analysis tool DataEngine™. This implementation can
make use of a large variety of evaluation measures and,
in a separate function block, provides a flexible prun-
ing facility. Two more function blocks allow you to
execute a learned decision tree to classify a set of cases
and to compute a confusion matrix to assess the qual-
ity of the learned classifier.

References

[1] P.W. Baim. A Method for Attribute Selection in
Inductive Learning Systems. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, PAMI-
10:888-896, 1988

[2] C. Borgelt, J. Gebhardt and R. Kruse. Concepts
for Probabilistic and Possibilistic Induction of De-
cision Trees on Real World Data. Proc. of the EU-
FIT’96, Vol. 3:1556-1560, 1996

[3] C. Borgelt and R. Kruse. Evaluation Measures for
Learning Probabilistic and Possibilistic Networks.
Proc. of the FUZZ-IEEE’97, Vol. 2:pp.669-676,
Barcelona, Spain, 1997

[4] C. Borgelt and R. Kruse. Attributauswahlmafle
fiir die Induktion von Entscheidungsbaumen:
Ein ”Uberblick. (written in German) In:
G. Nakhaeizadeh, ed. Data Mining: Theoretische
Aspekte und Anwendungen. pp. 77-98 Physica-
Verlag, Heidelberg, Germany 1998

[5] L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. Classification and Regression Trees,
Wadsworth International, Belmont, CA, 1984

[6] W. Buntine. Theory Refinement on Bayesian Net-
works. Proc. 7th Conf. on Uncertainty in Arti-
ficial Intelligence, pp. 52-60, Morgan Kaufman,
Los Angeles, CA, 1991

[7] C.K.Chow and C.N. Liu. Approximating Discrete
Probability Distributions with Dependence Trees.
IEEE Trans. on Information Theory 14(3):462—
467, IEEE 1968

[8] G.F. Cooper and E. Herskovits. A Bayesian
Method for the Induction of Probabilistic Net-
works from Data. Machine Learning 9:309-347,
Kluwer 1992

[9] J. Gebhardt and R. Kruse. Learning Possibilistic
Networks from Data. Proc. 5th Int. Workshop on
Al and Statistics, 233-244, Fort Lauderdale, 1995

J. Gebhardt and R. Kruse. Tightest Hyper-
tree Decompositions of Multivariate Possibility
Distributions. Proc. Int. Conf. on Information
Processing and Management of Uncertainty in
Knowledge-based Systems, 1996

D. Heckerman, D. Geiger, and D.M. Chicker-
ing. Learning Bayesian Networks: The Combina-
tion of Knowledge and Statistical Data. Machine
Learning 20:197-243, Kluwer 1995

K. Kira and L. Rendell. A Practical Approach to
Feature Selection. Proc. 9th Int. Conf. on Ma-
chine Learning (ICML’92), pp. 250-256, Morgan
Kaufman, San Franscisco, CA, 1992

I. Kononenko. Estimating Attributes: Analy-
sis and Extensions of RELIEF. Proc. 7th Eu-
rop. Conf. on Machine Learning (ECML’94),
Springer, New York, NY, 1994

I. Kononenko. On Biases in Estimating Multi-
Valued Attributes. Proc. 1st Int. Conf. on Knowl-
edge Discovery and Data Mining, 1034-1040,
Montreal, 1995

R.E. Krichevsky and V.K. Trofimov. The Perfor-
mance of Universal Coding. IEEE Trans. on In-
formation Theory, 27(2):199-207, 1983

S. Kullback and R.A. Leibler. On Information and
Sufficiency. Ann. Math. Statistics 22:79-86, 1951
R. Lopez de Mantaras. A Distance-based At-
tribute Selection Measure for Decision Tree In-
duction. Machine Learning 6:81-92, Kluwer 1991

J.R. Quinlan. Induction of Decision Trees. Ma-
chine Learning 1:81-106, 1986

J.R. Quinlan. C4.5: Programs for Machine Learn-
ing, Morgan Kaufman, 1993

[15]

[16]

[17]

[18]
[19]
[20] J. Rissanen. Stochastic Complexity. Journal of

the Royal Statistical Society (Series B), 49:223-
239, 1987

L. Wehenkel. On Uncertainty Measures Used for
Decision Tree Induction. Proc. IPMU, 1996

X. Zhou and T.S. Dillon. A statistical-heuristic
Feature Selection Criterion for Decision Tree In-

duction. IEEE Trans. on Pattern Analysis and
Machine Intelligence, PAMI-13:834-841, 1991

[21]

[22]

