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Abstract. The K2 metric is a well-known evaluation measure (or scor-
ing function) for learning Bayesian networks from data [7]. It is derived
by assuming uniform prior distributions on the values of an attribute for
each possible instantiation of its parent attributes. This assumption in-
troduces a tendency to select simpler network structures. In this paper we
modify the K2 metric in three different ways, introducing a parameter
by which the strength of this tendency can be controlled. Our experi-
ments with the ALARM network [2] and the BOBLO network [17] sug-
gest that—somewhat contrary to our expectations—a slightly stronger
tendency towards simpler structures may lead to even better results.

1 Introduction

Probabilistic inference networks—especially Bayesian networks [15] and Markov
networks [14]—are well-known tools for reasoning under uncertainty in mul-
tidimensional domains. The idea underlying them is to exploit independence
relations between the attributes used to describe a domain—an approach which
has been studied extensively in the field of graphical modeling, see e.g. [12]—in
order to decompose a multivariate probability distribution into a set of (condi-
tional or marginal) distributions on lower-dimensional subspaces. Early efficient
implementations include HUGIN [1] and PATHFINDER [9].

In this paper we focus on Bayesian networks. Formally, a Bayesian network
represents a factorization of a multivariate probability distribution that results
from an application of the product theorem of probability theory and a simplifi-
cation of the factors achieved by exploiting conditional independence statements
of the form P (A | B,X) = P (A | X), where A and B are attributes and X is a
set of attributes. Hence the represented joint distribution can be computed as

P (A1, . . . , An) =
n∏

i=1

P (Ai | par(Ai)),

where par(Ai) is the set of parents of attribute Ai in a directed acyclic graph
that is used to represents the factorization.

Bayesian networks provide excellent means to structure complex domains
and to draw inferences. However, constructing a Bayesian network manually can



be tedious and time-consuming. Considerable expert knowledge—domain knowl-
edge as well as mathematical knowledge—is necessary to get it right. Therefore
an important line of research is the automatic construction of Bayesian networks
from a database of sample cases. Most algorithms for this task consist of two
ingredients: a search method to traverse the possible network structures and an
evaluation measure or scoring function to assess the quality of a given network.

In this paper we consider only the latter component, i.e., the scoring func-
tion. A desirable property of a scoring function is decomposability, i.e., that it
can be computed by aggregating local assessments of subnetworks or even sin-
gle edges. Intuitively, a decomposable scoring function assesses the significance
of dependences between attributes in the database, in order to decide which
edges between attributes are needed in the Bayesian network. An example for
a decomposable scoring functions is mutual information [13, 6]. Decomposable
scoring functions are often used to select parents for each attribute, for example,
in a greedy manner as in the K2 algorithm [7].

Due to the analogy of selecting parents for an attribute to the induction of
a decision tree, there is a large variety of scoring functions [11, 19, 3]. Each of
them exhibits a different sensitivity w.r.t. dependences in the data: Some scoring
functions tend to select more edges/parents than others. Since in a cooperation
with DaimlerChrysler, in which we work on fault diagnosis, it turned out that it
is of practical importance to be able to control this sensitivity, we searched for
parameterized families of scoring functions, where the parameter controls the
sensitivity. In this paper we report the results of this research, which led us to
certain variants of the K2 metric.

2 The K2 Metric

The K2 metric was derived first in [7], where it was used in the K2 algorithm,
and later generalized in [10] to the Bayesian Dirichlet metric. It is the result of
a Bayesian approach to learning Bayesian networks from data. The idea is as
follows [7]: We are given a database D of sample cases over a set of attributes,
each having a finite domain. It is assumed (1) that the process that generated
the database can be accurately modeled as a Bayesian network, (2) that given
a Bayesian network model cases occur independently, and (3) that cases are
complete. Given these assumption we can compute from a given network struc-
ture BS and a set of conditional probabilities BP associated with it the probabil-
ity of the database, i.e., we can compute P (D|BS , BP ). Adding an assumption
about the prior probabilities of the network structures and the probability pa-
rameters and integrating over all possible sets of conditional probabilities BP

for the given structure BS yields P (BS , D):

P (BS , D) =
∫

BP

P (D|BS , BP )f(BP |BS)P (BS)dBP ,

where f is the density function on the space of possible conditional probabilities
and P (BS) is the prior probability of the structure BS . P (BS , D) can be used



to rank possible network structures, since obviously

P (BSi
|D)

P (BSj |D)
=

P (BSi
, D)

P (BSj , D)
.

With the additional assumption that the density functions f are marginally
independent for all pairs of attributes and for all pairs of instantiations of the
parents of an attribute, we arrive at (see [7] for details):

P (BS , D) = P (BS)
n∏

k=1

qk∏
j=1

∫
. . .

θijk

∫ ( rk∏
i=1

θ
Nijk

ijk

)
f(θ1jk, . . . , θrkjk)dθ1jk . . .dθrkjk.

Here n is the number of attributes of the network, qk is the number of distinct
instantiations of the parents attribute k has in the structure BS , and rk is the
number of values of attribute k. θijk is the probability that attribute k assumes
the i-th value of its domain, given that its parents are instantiated with the j-th
combination of values, and Nijk is the number of cases in the database, in which
the attribute k is instantiated with its i-th value and its parents are instantiated
with the j-th value combination.

In the following we confine ourselves to single factors of the outermost prod-
uct and thus drop the index k. That is, we consider only single attribute scores.
This is justified because of the factorization property of Bayesian networks. Using
a uniform prior density on the parameters θij , namely f(θ1j , . . . , θrj) = (r− 1)!,
and assuming that the possible networks structures are equally likely yields as
a scoring function [7]:

K2(A|par(A)) =
q∏

j=1

(r − 1)!
(N.j + r − 1)!

r∏
i=1

Nij !,

where A is a child attribute and par(A) is the set of its parents. r is the number
of values of the attribute A and q is the numbers of distinct instantiations of
its parent attributes. Nij is the number of cases in which attribute A is instan-
tiated with its i-th value and its parents are instantiated with their j-th value
combination; N.j =

∑r
i=1 Nij . Note that in the derivation of the above function

the solution of Dirichlet’s integral [8]∫
. . .

θij

∫ r∏
i=1

θ
Nij

ij dθ1j . . .dθrj =
∏r

i=1 Nij !
(N.j + r − 1)!

was used, which we need again below.
The higher the value of the above scoring function K2 (i.e., its product over

all attributes), the better the corresponding network structure. To simplify the
computation of this measure often the logarithm of the above function is used:

log2(K2(A|par(A))) =
q∑

j=1

log2

(r − 1)!
(N.j + r − 1)!

+
q∑

j=1

r∑
i=1

log2 Nij !.



As already said above, the K2 metric was generalized to the Bayesian Dirichlet
metric in [10]. This more general scoring function is defined as

BD(A|par(A)) =
q∏

j=1

Γ (N ′
.j)

Γ (N.j + N ′
.j)

r∏
i=1

Γ (Nij + N ′
ij)

Γ (N ′
ij)

,

where Γ is the well-known generalized factorial,

Γ (x) =
∫ ∞

0

e−ttx−1dt, ∀n ∈ IN : Γ (n + 1) = n!.

It is used to take care of the fact that N ′
ij and N ′

.j =
∑r

i=1 N ′
ij , which represent

a prior distribution (see [10] for details), may not be integer numbers. Obviously,
the K2 metric results for the simple choice ∀i, j : N ′

ij = 1, which very clearly
signifies the assumption of a uniform prior distribution.

This representation also makes it plausible why the K2 metric has a tendency
to select simpler network structures, i.e., why algorithms using it are somewhat
reluctant to add parent attributes. By the prior N ′

ij = 1 the frequency distribu-
tions are somewhat “leveled out” and the more so, the more parent attributes
there are. The reason is that the number of cases in the database for a given
instantiation of the parent attributes is the smaller, the more parents there are,
simply because each parent introduces an additional constraint. Hence the in-
fluence of the data frequencies Nij is smaller for a larger number of parents and
consequently an attribute seems to be less strongly dependent on its parents.
The result is an inclination to reject a(nother) parent.

Analogously, we can see why the Bayesian Dirichlet likelihood equivalent
uniform (BDeu) metric [5, 10], which has ∀i, j : N ′

ij = s
r·q , where s is a parameter

called the equivalent sample size, has a tendency to select more complex network
structures and tends to connect attributes with many possible values. Due to
the product r · q in the denominator the influence of the prior is reduced by
an additional parent and by parents with many possible values. The result is
an increased influence of the data frequencies Nij for more parents and thus a
tendency to add a(nother) parent attribute.

3 Modifications of the K2 Metric

In this section we introduce three modifications of the K2 metric, all of which
contain a parameter through which the strength of the tendency of the K2 metric
towards simpler network structures can be controlled.

3.1 Weighted Data

The argument given above to explain the tendency of the K2 metric directly
suggests an idea to control this tendency. Since the tendency depends on the
relation of the data frequencies Nij and the prior N ′

ij = 1 one may consider



weighting either of them. Due to the numerical properties of the Γ -function,
especially its behavior for arguments less than 1, weighting the data frequencies
seems to be preferable. That is, we simply multiply the data frequencies with a
factor β, which we write as β = (α1 + 1)2, since this form is advantageous for
the presentation of our experimental results (see below).

This factor can also be made plausible as follows: Formally the factor β is
equivalent to the assumption that we observed the data β times and thus we
artificially increase or reduce the statistical basis of the network induction. Of
course, a larger statistical basis allows us to justify a more complex structure,
whereas a smaller basis allows us only to justify a simpler one. It should be
noted, though, that we introduce this factor here only to study the properties
of the K2 metric, not as a statistically justifiable correction factor.

With such a factor we get the following family of scoring functions:

K2(1)
α1

(A|par(A)) =
q∏

j=1

Γ (r)
Γ ((α1 + 1)2N.j + r)

r∏
i=1

Γ ((α1 + 1)2Nij + 1),

Obviously, for α1 = 0 we have the standard K2 metric as it was described above.
For α1 < 0 we get a stronger, for α1 > 0 we get a weaker tendency to select
simpler network structures.

3.2 Modified Prior

In the derivation of the K2 metric it is assumed that the density functions on
the spaces of conditional probabilities are uniform. However, after we found the
best network structure w.r.t. the K2 metric, we no longer integrate over all con-
ditional probabilities (e.g. when we propagate evidence in the induced network).
Although, of course, it is possible in principle to average over several network
structures, a single network is often preferred. Hence we fix the structure and
compute estimates of the probabilities using, for example, Bayesian or maximum
likelihood estimation. Therefore the idea suggests itself to reverse these steps.
That is, we could estimate first for each structure the best conditional proba-
bility assignments and then select the best structure based on these, then fixed,
assignments. Formally, this can be done by choosing the density functions in
such a way that the estimated probabilities have probability 1. Using maximum
likelihood estimation of a multinomial distribution we thus get

f(θ1j , . . . , θrj) =
r∏

i=1

δ

(
θij −

Nij

N.j

)
where δ is Dirac’s δ-function (or, more precisely, δ-distribution, since it is not a
classical function), which is defined to have the following properties:

δ(t) =
{

+∞ for t = 0,
0 for t 6= 0,

∫ +∞

−∞
δ(t)dt = 1,

∫ +∞

−∞
δ(t)ϕ(t)dt = ϕ(0).



Inserting this density function into the formula for P (BS , D) derived above, we
get as a scoring function:

K2(2)
∞ (A|par(A)) =

q∏
j=1

∫
. . .

θij

∫ ( r∏
i=1

θ
Nij

ij

)(
r∏

i=1

δ

(
θij −

Nij

N.j

))
dθ1j . . .dθrkj

=
q∏

j=1

(
r∏

i=1

(
Nij

N.j

)Nij
)

An interesting thing to note about this function is that obviously

N.. ·H(A|par(A)) = − log2 K2(2)
∞ (A|par(A)),

where N.. =
∑q

j=1 N.j and H(A|par(A)) is the expected entropy of the proba-
bility distribution on the values of attribute A given its parents. Note that we
get the well-known mutual information (also called cross entropy or information
gain) [13, 6, 16] if we relate the value of this measure to its value for a structure
in which attribute A has no parents, i.e.,

N.. · Igain(A,par(A)) = log2

K2(2)
∞ (A|par(A))

K2(2)
∞ (A|∅)

.

In other words, mutual information turns out to be equivalent to a so-called
Bayes factor of this metric.

This Bayesian justification of mutual information as a scoring function may
be doubted, since in it the database is—in a way—used twice to assess the quality
of a network structure, namely once directly and once indirectly through the
estimation of the parameters of the conditional probability distribution. Formally
this approach is not strictly correct, since the density function on the parameter
space should be a prior distribution whereas the estimate we used clearly is a
posterior distribution (since it is computed from the database). However, the
fact that mutual information results—a well-known and well-founded scoring
function—is very suggestive evidence that this approach is worth to be examined.

The above derivation of mutual information as a scoring function assumes
Dirac pulses at the maximum likelihood estimates for the conditional probabili-
ties. However, we may also consider the likelihood function directly, i.e.,

f(θ1j , . . . , θrj) = c1

r∏
i=1

θ
Nij

ij , c1 =
(N.j + r − 1)!∏r

i=1 Nij !
.

where the value of the normalization constant c1 results from the solution of
Dirichlet’s integral (see above) and the fact that the integral over θ1j , . . . , θrj

must be 1 (since f is a probability density function).
With this consideration a family of scoring functions suggests itself, which

can be derived as follows: First we normalize the likelihood function, so that the
maximum value of this function becomes 1. This is easily achieved by dividing the



likelihood function by the maximum likelihood estimate raised to the power Nij .
Then we introduce an exponent α2, through which we can control the “width”
of the function around the maximum likelihood estimate. Thus, if the exponent
is zero, we get a constant function, if it is one, we get a function proportional to
the likelihood function, and if it approaches infinity, it approaches Dirac pulses
at the maximum likelihood estimate. That is, we get the family:

fα2(θ1j , . . . , θrj) = c2 ·

((
r∏

i=1

(
Nij

N.j

)−Nij
)(

r∏
i=1

θ
Nij

ij

))α2

= c3 ·
r∏

i=1

θ
α2Nij

ij .

c2 and c3 are normalization factors to be chosen in such a way that the integral
over θ1j , . . . , θrj is 1. Thus we find, using again the solution of Dirichlet’s integral,

c3 =
Γ (α2N.j + r)∏r

i=1 Γ (α2Nij + 1)
.

Inserting the derived parameterized density into the function for the probability
P (BS , D) and evaluating the formula using Dirichlet’s integral yields the family
of scoring functions

K2(2)
α2

(A|par(A)) =
q∏

j=1

Γ (α2N.j + r)
Γ ((α2 + 1)N.j + r)

r∏
i=1

Γ ((α2 + 1)Nij + 1)
Γ (α2Nij + 1)

.

From the derivation above it is clear that we get the K2 metric for α2 = 0.
Since α2 is, like α1, a kind of data weighting factor, we have a measure with a
stronger tendency towards simpler network structures for α2 < 0 and a measure
with a weaker tendency for α2 > 0. However, in order to keep the argument of
the Γ -function positive, negative values of α2 cannot be made arbitrarily large.
Actually, due to the behavior of the Γ -function for arguments less than 1, only
positive values seem to be useful.

3.3 Weighted Coding Penalty

It is well-known that Bayesian estimation is closely related to the minimum de-
scription length (MDL) principle [18]. Thus it is not surprising that the K2 metric
can also be justified by means of this principle. The idea is as follows (see e.g.
[11], where it is described w.r.t. decision tree induction): Suppose the database
of sample cases is to be transmitted from a sender to a receiver. Both know the
number of attributes, their domains, and the number of cases in the database1,
but at the beginning only the sender knows the values the attributes are instan-
tiated with in the sample cases. Since transmission is costly, it is tried to code
the values using a minimal number of bits. This can be achieved by exploiting

1 A strict application of the MDL principle would assume that these numbers are
unknown to the receiver. However, since they have to be transmitted in any case,
they do not change the ranking and thus are neglected or assumed to be known.



properties of the value distributions to construct a good coding scheme. How-
ever, the receiver cannot know this coding scheme without being told and thus
the coding scheme has to be transmitted, too. Therefore the total length of the
description of the coding scheme and the description of the values based on the
chosen coding scheme has to be minimized.

The transmission is carried out as follows: The values of the sample cases
are transmitted attribute by attribute. That is, at first the values of the first
attribute are transmitted for all sample cases, then the values of the second at-
tribute are transmitted, and so on. Thus the transmission of the values of an
attribute may exploit dependences between this attribute and already trans-
mitted attributes to code the values more efficiently. Using a coding based on
absolute value frequencies (for coding based on relative frequencies, see [11, 3])
and exploiting that the values of a set par(A) of already transmitted attributes
are known, the following formula can be derived for the length of a description
of the values of attribute A:

L(A|par(A)) = log2 S +
q∑

j=1

log2

(N.j + r − 1)!
N.j ! (r − 1)!

+
q∑

j=1

log2

N.j !∏r
i=1 Nij !

.

Here S is the number of possible selections of a set par(A) from the set of already
transmitted attributes. The lower the value of the above function (that is, its
sum over all attributes), the better the corresponding network structure.

The above formula can be interpreted as follows: First we transmit which
subset par(A) of the already transmitted attributes we use for the coding. We
do so by referring to a code book, in which all possible selections are printed,
one per page. This book has S pages and thus transmitting the page number
takes log2 S bits. (This term is usually neglected, since it is the same for all
selections of attributes.) Then we do a separate coding for each instantiation
of the attributes in par(A). We transmit first the frequency distribution of the
values of the attribute A given the j-th instantiation of the attributes in par(A).
Since there are N.j cases in which the attributes in par(A) are instantiated with
the j-th value combination and since there are r values for the attribute A, there
are (N.j+r−1)!

N.j ! (r−1)! possible frequency distributions. We assume again that all of these
are printed in a code book, one per page, and transmit the page number. Finally
we transmit the exact assignment of the values of the attribute A to the cases.
Since we already know the frequency of the different values, there are N.j !∏r

i=1
Nij !

possible assignments. Once again we assume these to be printed in a code book,
one per page, and transmit the page number.

It is easy to verify that it is

L(A|par(A)) = − log2 K2(A|par(A))

if we neglect the term log2 S (see above). Hence minimizing the network score
w.r.t. L(A|par(A)) is equivalent to maximising it w.r.t. K2(A|par(A)).

The above considerations suggests a third way to introduce a parameter for
controlling the tendency towards simpler network structures. In the MDL view



the tendency results from the need to transmit the coding scheme, the costs of
which can be seen as a penalty for making the network structure more complex:
If the dependences of the attributes do not compensate the costs for transmitting
a more complex coding scheme, fewer parent attributes are selected. Hence the
tendency is mainly due to the term describing the costs for transmitting the
coding scheme and we may control the tendency by weighting this term. In order
to achieve matching ranges of values for the parameters and thus to simplify the
presentation of the experimental results (see below), we write the weighting
factor as 1

α3+1 . Thus we get the following family of scoring functions:

Lα3(A|par(A)) =
1

α3 + 1

q∑
j=1

log2

(N.j + r − 1)!
N.j ! (r − 1)!

+
q∑

j=1

log2

N.j !∏r
i=1 Nij !

.

Obviously, for α3 = 0 we have a measure that is equivalent to the K2 metric.
For α3 < 0 we get a measure with a stronger tendency to select simpler network
structures, for α3 > 0 we get a measure with a weaker tendency.

4 Experimental Results

We implemented all of the abovementioned families of scoring functions as part
of INES (Induction of NEtwork Structures), a prototype program for learning
probabilistic networks from a database of sample, which was written by the first
author. With this program we conducted several experiments based on the well-
known ALARM network [2] and the BOBLO network [17]. For all experiments
we used greedy parent selection w.r.t. a topological order (the search method of
the K2 algorithm). Of course, other search methods may also be used, but we
do not expect the results to differ significantly.

The experiments were carried out as follows: For each network we chose three
database sizes, namely 1000, 2000, and 5000 tuples for the ALARM network and
500, 1000, and 2000 tuples for the BOBLO network. For each of these sizes we
randomly generated ten pairs of databases from the networks. The first database
of each pair was used to induce a network, the second to test it (see below). For
each database size we varied the parameters introduced in the preceding section
from −0.95 to 1 (for α1 and α3) and from 0 to 1 (for α2) in steps of 0.05.

The induced networks were evaluated in two different ways: In the first place
they were compared to the original networks by counting the number of missing
edges and the number of additional edges. Furthermore they were tested against
the second database of each pair (see above) by computing the log-likelihood
(natural logarithm) of this database given the induced networks. For this the
conditional probabilities of the induced networks were estimated from the first
database of each pair (i.e., the one the network structure was induced from) with
Laplace corrected maximum likelihood estimation, i.e., using

∀i, j : p̂i|j =
Nij + 1
N.j + r

,

in order to avoid problems with impossible tuples.
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Fig. 1. Results for the ALARM network.

The results w.r.t. the parameters α1 and α3 are shown in figures 1 and 2. The
results for α2, which are less instructive, since this parameter should be positive,
are very similar to the right halves of the diagrams for α1 and α3. Each diagram
contains three curves, which represent averages over the ten pairs of databases:

a: the average number of missing edges,
b: the average number of additional edges,
c: the average log-likelihood of the test databases.

The scale for the number of missing/additional tuples is on the left, the scale for
the log-likelihood of the test databases on the right of the diagrams.

All diagrams demonstrate that the tendency of the K2 metric (which corre-
sponds to αk = 0, k = 1, 2, 3) is very close to optimal. However, the diagrams
also indicate that a slightly stronger tendency towards simpler network struc-
tures (αk < 0) may lead to even better results. With a slightly stronger tendency
some of the few unnecessary additional edges selected with the K2 metric can be
suppressed without significantly affecting the log-likelihood of test data (actually
the log-likelihood value is usually also slightly better with a stronger tendency,
although this is far from being statistically significant).
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Fig. 2. Results for the BOBLO network.

It should be noted, though, that in some applications a weaker tendency to-
wards simpler network structures is preferable. For example, in a cooperation
with DaimlerChrysler, in which we work on fault diagnosis, we faced the problem
that in tests against expert knowledge sometimes dependences of faults on the
vehicle equipment, which were known to the domain experts, could not be found
with the K2 metric. Usually this was the case if the dependence was restricted
to one instantiation of the parent attributes. By adapting the parameters in-
troduced above, however, these dependences were easily found. We regret that
details of these results are confidential, so that we cannot present them here.

5 Conclusions

In this paper we introduced three modifications of the K2 metric, each of which
adds a parameter to control the tendency towards simpler network structures.
The resulting families of scoring functions provided us with means to explore
empirically the properties of the K2 metric. Our experimental results indicate
that the tendency strength of the K2 metric is a very good choice, but that a
slightly stronger tendency towards simpler network structures may lead to even
better results, although the improvement is only marginal.
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