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Abstract. We describe an algorithm to build a graphical model-—more
precisely: a join tree representation of a Markov network—for a steady
state analog electrical circuit. This model can be used to do probabilis-
tic diagnosis based on manufacturer supplied information about nominal
values of electrical components and their tolerances as well as measure-
ments made on the circuit. Faulty components can be identified by look-
ing for high probabilities for values of characteristic magnitudes that
deviate from the nominal values.

1 Introduction

In electrical engineering several approaches to the diagnosis of electrical circuits
have been developed [10, 11]. Examples are: the fault dictionary approach, which
collects a set of common or relevant faults and associates them with (sets of)
measurements by which they can be identified [2], the model-based diagnosis of
digital circuits based on constraint propagation and an assumption-based truth
maintenance system (ATMS) [8], and the simulation of a circuit for different
predefined faults to generate training data for a classifier, for example, an artifi-
cial neural network [1,13]. In particular the diagnosis of digital electrical circuits
is well-developed. However, this theory is difficult to transfer to analog circuits
due to problems like soft faults (i.e. significant deviations from nominal values)
and the non-directional behavior of analog circuits.

The existing methods for the diagnosis of analog circuits suffer from several
drawbacks, like difficulties to take tolerances of components and measurements
into account. In addition, there is often the need for a predefined set of faults,
which are common or relevant for the circuit. In this paper we develop a method
that is based on a probabilistic description of the state of the circuit with the
help of a graphical model, an approach that is able to handle these problems.

This paper is organized as follows: first we review very briefly in Section 2
the ideas underlying graphical models and in Section 3 the basics of iterative
proportional fitting, which we need for initialization purposes. Section 4 discusses
some core problems of modeling analog electrical networks in order to justify our
approach. In Section 5 we describe our algorithm, which is based on the direct
construction of a join tree, and illustrate it with a simple example in Section 6.
Finally, in Section 7, we draw conclusions and point out future work.



2 Graphical Models

In the last decade graphical models have become one of the most popular tools
to structure uncertain knowledge about complex domains [14,9,3] in order to
make reasoning in such domains feasible [12, 6]. Their most prominent represen-
tatives are Bayes networks, which are based on directed graphs and conditional
probability distributions, and Markov networks, which are based on undirected
graphs and marginal probability distributions or so-called factor potentials.

More formally: let V- = {A;,..., Ay} be a set of (discrete) random variables.
A Bayes network is a directed graph G = (V, E) of these random variables to-
gether with a set of conditional probability distributions, one for each variable
given its parents in the graph. A Markov network, on the other hand, is an undi-
rected graph G = (V, E) of the random variables together with a set of functions
on the spaces spanned by the variables underlying the maximal cliques' of the
graph. In both cases the structure of the graph encodes conditional independence
statements between (sets of) random variables that hold in the joint probability
distribution represented by the graphical model. This encoding is achieved by
node separation criteria, with Bayes networks relying on d-separation [12] and
Markov networks employing u-separation [4].

Conditional independence of X and Y given Z, written X 1l Y | Z, means

pxyiz(@,y | 2) =px1z(x | 2) -py|2z(Y | 2),

where x, y and z are value vectors from the spaces spanned by the random
variables in X, Y, and Z, respectively. For both Bayes networks and Markov
networks it can be shown [9] that if the graph encodes only correct conditional
independences by d- or u-separation, respectively, then the joint probability dis-
tribution py factorizes, namely according to

pV('U) = HpAilparentS(Ai)(U[{Ai}] | v[parentS(Ai)])'
i=1

for Bayes networks and according to

pv(©) = ] éc@[C)
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for Markov networks. Here v is a value vector over the variables in V' and v[X]
denotes the projection of v to the variables in the set X. The pa,|parents(a,)
are conditional probability distributions of the different variables A; given their
parents in the directed graph G. The set C is the set of all sets C' of variables
underlying the maximal cliques of the undirected graph G and the ¢¢ are func-
tions on the spaces spanned by the variables in the sets C' € C. They are called
factor potentials [6] and can be defined in different ways from the corresponding
marginal probability distributions.

L A clique is a complete (fully connected) subgraph and it is called maximal if it is
not contained in another complete subgraph.



For reasoning purposes a Bayes or Markov network is often preprocessed into
a singly connected structure to avoid update anomalies and incorrect results,
which we discuss in somewhat more detail below. The preprocessing consists in
forming the moral graph (for Bayes networks only) by “marrying” all parents of a
variable, triangulating the graph? and turning the resulting hypertree-structured
graph into a join tree [6]. In a join tree there is one node for each maximal clique
of the graph it is constructed from. In addition, if a variable (node) of the original
graph is contained in two nodes of the join tree, it is also contained in all nodes
on the path between these nodes in the join tree. A join tree is usually enhanced
by so-called node separators on each edge, which contain the intersection of the
variables assigned to the connected join tree nodes.

For join trees there exist efficient evidence propagation methods [6] that
are based on a message passing scheme, in which the node separators transmit
the information between the nodes. In the approach we present below we work
directly with join trees and neglect that our model is actually a Markov network.

3 Iterative Proportional Fitting

Iterative proportional fitting (IPF) is a well-known method for adapting the
marginal distributions of a given joint probability distribution to desired values
[14]. Tt consists in computing the following sequence of probability distributions:

P (v) = py(v)

, ! i P, (a)
Vi=1,2,...: pi})(v) Epg 1)(v)ﬁ
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where j is the ((i — 1) mod |J| + 1)-th element of J, the index set that indi-
cates the variables for which marginal distributions are given. P:Zj is the desired
marginal probability distribution on the domain of the variable A; and p%,_l) is
the corresponding distribution as it can be computed from pgjflg by surrfming
over the values of all variables in V' except A;.

In each step the probability distribution is modified in such a way that it
satisfies one given marginal distribution (namely the distribution pj,j). How-
ever, this will, in general, disturb the marginal for a variable Ay, which has
been processed in a preceding step. Therefore the adaptation has to be iterated,
traversing the set of variables several times.

It can be shown that if there is a solution, iterative proportional fitting con-
verges to a (uniquely determined) probability distribution that has the desired
marginals as well as some other convenient properties [5,7]. Convergence may
be checked in practice, for instance, by determining the maximal change of a
marginal probability: if this maximal change falls below a user-defined thresh-
old, the iteration is terminated.

2 An undirected graph is called triangulated or chordal if all cycles of length greater
than three have a chord, i.e., an edge between two nodes that are nonadjacent in
the cycle.
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Fig. 1. A simple resistive circuit and an intuitive graph structure for this circuit.

Iterative proportional fitting can easily be extended to probability distribu-
tions represented by Markov networks or the corresponding join trees [7]. The
idea of this extension is to assign each variable, the marginal distribution of
which is to be set, to a maximal clique of the Markov network (or to a node of
the join tree it has been turned into), to use steps of iterative proportional fitting
to adapt the marginal distributions on the maximal cliques, and to distribute
the information added by such an adaptation to the other maximal cliques by
join tree propagation.

4 Modeling Electrical Networks

In this section we discuss some problems of modeling analog electrical circuits
with probabilistic graphical models. Straightforward intuitive approaches fail
due to two reasons: (1) cycles in underlying graph structure and (2) difficulties
to specify the probability distributions in a plausible and consistent way.

We illustrate these problems with the very simple resistive direct current
circuit shown in Figure 1 (left). A very natural approach to construct a graphical
model for this circuit would be to set up a clique graph like the one shown in
Figure 1 (right), in which there is one node for each electrical law needed to
describe the circuit. The nodes at the four corners encode Kirchhoff’s junction
law for the four corners of the circuit and the diamond-shaped node in the
middle represents Kirchoff’s mesh law. The remaining three nodes describe the
three resistors with Ohm’s law. (The two nodes on the left may be removed,
since it is Iy = I = Iz = I5 and thus the two corner nodes on the right suffice.)

The obvious problem with this clique graph is that it is cyclic and thus
evidence propagation can lead to inconsistent results. The crucial point is that
all four currents must be equal and thus, depending on the resistors, only certain
combinations of values for the voltages Uy, Uy and Us are possible. However,
these relations are not enforced by the network, so that actually impossible
states of the circuit are not ruled out.

This problem is best understood if we consider a minimum example with
binary variables, as shown in Figure 2. It is dom(A) = ... = dom(F) = {0, 1}.
The marginal probability distributions for the four nodes, with papc = prpE
and ppp = pcE, are shown in Table 1. Suppose now that A = 1 is observed. Since
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this enforces B = C and thus D = E, we should get the result P(F = 0) = 0 and
P(F =1) = 1. However, the marginal distributions on the individual variables B
and C do not change due to this observation (it is still P(B=0) = P(B=1) =
P(C=0) = P(C=1) = 0.5). Thus no information is transmitted to the right
half of the network, leading to P(F'=0) = P(F =1) =0.5.

Basically the same problem we encounter for the electrical circuit in the graph
structure shown in Figure 1. For instance, if we set the variables for the three
resistors to the same value, all voltages Uy, Us and Us must be equal. However,
this information does not or not completely reach the center node. To cope
with this problem we would have to merge nodes in order to obtain an acyclic
structure, which, if done inappropriately, can lead to fairly large cliques (and
doing it optimally is a non-trivial issue—actually it is NP-hard, since finding an
optimal triangulation of an undirected graph is NP-hard [4])

The second problem we encounter when we try to construct a graphical
model results from the fact that the electrical laws and the prior information
about marginal probability distributions over, for example, the resistor values
do not allow for a direct initialization of the quantitative part of the network.
In a way, we have too little information. To see this, consider how one may try
to build a Bayes network for the circuit shown in Figure 1. We would like to
have parentless nodes only for those variables, for which we can specify marginal
distributions, that is, for the resistor values and maybe the supply voltage. Every
other variable should be the child of one or more variables, with the conditional
probability distribution encoding the electrical law that governs the dependence,
because we cannot easily specify a marginal distribution for it.

However, this is not possible as Figure 3 demonstrates (note that the current
Iy is left out, because it must be identical to all other currents anyway). The
Bayes network shown in this figure is constructed as follows: First we choose
one of the voltages Uy, Uy and Ujz as the child for Kirchhoff’s mesh law. For
reasons of symmetry we choose Us, which leads to the edges marked with an m,
but other choices lead to the same problem in the end. As U; and Us cannot be
left parentless, because we cannot easily specify marginal distributions for them,
we use Ohm’s law to make them dependent on the corresponding currents and
resistor values. This leads to the edges marked with an o in the top and bottom
row of the network. For the second resistor, however, we make I the child,



Fig. 3. Attempt at building a Bayes
network for the circuit shown in
Figure 1: Two cycles result.

because U; already has all the parents it needs and Rs should be parentless. This
leads to the remaining two edges marked with an o. Finally we make I; and I3
children of some other variable, because we cannot specify marginal distributions
for them easily. The only law left for this is Kirchhoff’s junction law, which leads
to the edges marked with a j. However, the final graph has two cycles and thus
cannot be used as a Bayes network.

5 Constructing the Graphical Model

In this section we do not use voltages over electrical components anymore, as in
Figure 1, but turn to node voltages (potentials). This has advantages not only
w.r.t. the measurement process (since node voltages against ground are simpler
to measure), but also has some advantages w.r.t. the construction of the graphical
model. Note, however, that the problems pointed out in the preceding section
are not solved by this transition. In the preceding section we used voltages over
components, because this made it easier to demonstrate the core problems.

In the following we describe an algorithm to construct a join tree represen-
tation of a Markov network for an analog electrical circuit. Let a time-invariant
n + 1 node, b branch steady state circuit with known topology be given, the
nodes of which are accessible terminals for measurements. One of them is taken
as a reference (ground) and the node voltages are used to study the circuit. We
assume that for each component the electrical law that governs its behavior (for
example, Ohm’s law for a resistor), its nominal value(s) and a tolerance provided
by the manufacturer are known. We use the following notation:

U;, 1 =0,...,n—1:node voltages,
I;, j=0,...,b —1:branch currents,
Ry, k=0,...,b — 1 : branch resistances.

(Note that all magnitudes may be complex numbers, making it possible to handle
steady state alternating current circuits. For reasons of simplicity, however, we
confine ourselves to direct current circuits here.)

To build a join tree of a Markov network for this circuit, we have to find
partitions of the set of variables V' = {Uy,...,Un—1,10,...,Ip—1,Ro, ..., Rp—1}
into three disjoint subsets X7, X5 and X3, such that the variables in X; and X
are conditionally independent given the variables in X3. That is, if the values of



the variables in X3 are fixed, a change of the value of a variable in X; has no
effect on the values of the variables in X5 and vice versa.

To find such partitions, we consider virtual cross-sections through the circuit
(only through wires, not through components). Each of these cross-sections de-
fines a set of variables, namely the voltages of the wires that are cut and the
currents flowing through them. Since this set of variables obviously has the prop-
erty of making the variables on one side of the cross-section independent of those
on the other side (and thus satisfies the conditional independence property), we
call it a separator set. We select a set of cross-sections so that each component
is enclosed by two or more cuts or is cut off from the rest of the circuit by a sin-
gle cut (terminal cross-section). Then the electrical law governing a component
describes how the variables of its enclosing cross-sections relate to each other.
Note that there are usually several ways of selecting the cross-sections and that
an appropriate selection is crucial to the complexity of the network. However,
selecting appropriate cross-sections is easier than finding good node mergers in
the approach discussed above.

Given a set of cross-sections we construct the join tree as follows: the separa-
tor sets form the node separators. For each circuit part (containing one compo-
nent) we create a node containing the union of the separator sets of the bound-
ing cross-sections. In addition, we create a node for each component, comprising
the variables needed to describe its behavior, and connect it to the node corre-
sponding to the circuit part the component is in. If the component node contains
currents not yet present in the circuit part node, we add these currents to it.
The connection is made through an appropriate node separator, containing the
intersection of the sets of variables assigned to the connected nodes.

Next this initial graphical model is simplified in two steps. In the first step, the
number of variables is reduced by exploiting trivial Kirchhoff junction equations
(like the identity of two currents). In the second step, we merge adjacent nodes
where the variables in one of them is a subset of the variables in the other. The
result is the qualitative part of the graphical model, i.e. the graph structure of
the join tree, enhanced with node separators.

To find the quantitative part (the probability distributions), we initialize all
node distributions to uniform. Next we enforce the component laws as well as
Kirchhoff’s laws (wherever applicable) by zeroing the entries of the probability
distributions that correspond to impossible value combinations. Finally we incor-
porate the manufacturer supplied information about nominal values and toler-
ances by iterative proportional fitting (see Section 3), thus setting the marginal
component distributions. The resulting graphical model can then be used to
diagnose the modeled circuit by propagating node voltage measurements.

From the theory of evidence propagation in graphical models and in particu-
lar in join trees it is well known that the computational complexity of operations
(iterative proportional fitting and evidence propagation) is governed by the size
of the node distributions, which depends on the number of variables in a join
tree node and the sizes of their domains. If the distributions can be kept small
by a proper selection of cross-sections, the computation is very efficient.
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6 A Simple Example

To illustrate our approach we consider the simple resistive circuit shown in Fig-
ure 4, where n = 5, b = 7. It is fed by a voltage supply Uy, whose inter-
nal resistance Ry we assume to be zero. The set of (real valued) variables is
V ={Uo,..., Uy, Iy,...,Is,Ro,...,Reg}. We select the set of six cross-sections
S1 to Sg that are shown in Figure 5. As an example of the conditional inde-
pendences consider the cross-section S3: once we know the voltage of the cut
wires (U; and Us) and the currents through them (I; and I3, I3 = I1), all the
magnitudes to the left of S3 become independent of those to the right of Ss.

The initial graphical model, as it is constructed from the separator sets, is
shown in Figure 6. The node separators (rectangles) are labeled by the cross-
sections S to Sg they correspond to. The nodes are drawn with rounded corners
and thicker lines. To simplify the network, we exploit Iy = [, = I3 and [, =
I5 = Is. Furthermore, we merge (1) the four leftmost nodes (two from the top
row and two from the bottom row), (2) the third and the fourth node on the
top row and (3) the two rightmost nodes (the last nodes from the top and the
bottom row). The result is shown in Figure 7.

For our experiments we implemented the described method for this example
and a discrete Markov network in C.> We discretized the continuous ranges of
values as follows*: resistors: 1 to 52 with 142 steps, voltages: 0 to 20V with 1V
steps, currents: 0 to 4A with 1A steps. For the six resistors we set an initial

3 We plan to make the C sources available at the URL http://fuzzy.cs.uni-
magdeburg.de/ borgelt /software.html

4 An alternative to handle metric attributes, which comes to mind immediately, is a
Gaussian network. Unfortunately, in its standard form (that is, with a covariance
matrix) a Gaussian network is restricted to linear dependences. Ohm’s law, however,
specifies a nonlinear dependences as it involves the product of two quantities.
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probability distribution that is roughly normal and centered at 342, that is, for
i=1,...,6:pg,(r)=1(0.1,0.2,04,0.2,0.1).

The initial probability distributions are determined as described in Section 5,
that is, by enforcing the electrical laws and incorporating the resistor maginals by
iterative proportional fitting. To mitigate the effects of the discretization of the
value ranges, we set a zero probability only if there is no combination of values
from the represented intervals that is valid, i.e., satisfies the electrical law. With
a threshold of 10~° the iterative proportional fitting procedure converges after
5 iterations. This yields the diagnostic network.

Next we set the voltage supply to 20V and propagate this information using
join tree propagation. This changes the marginals of the resistors only slightly as
can be seen on the left in Table 2. Suppose now that we measure the node voltage
U, and find it to be 5V. Propagating this evidence yields the resistor marginals
shown on the right in Table 2. It can be seen that due to the measurement the
distributions for Ry and R3 change considerably, indicating that at least resistor
Rj3 is highly likely to deviate from its nominal value.



Uo = 20 Up=20NUs =5

Ry|.11 .22 .39 .19 .09|.00 .04 .33 .32 .31 Table 2. Resistor marginals
R>[.09 .18 .41 .21 .11|.17 .23 .38 .16 .07 after propagating the supply
Rs|.12 .22 .40 .18 .08|.53 .29 .15 .03 .00 voltage Uy = 20 and the
Rs4(.11 21 .40 .19 .09].05 .15 .39 .27 .15 measurement Uy = 5.

Rs|.11 .21 40 .19 .09|.16 .25 .37 .16 .07
Re¢|.11 .21 .40 .19 .09|.16 .25 .37 .16 .07

7 Conclusions and Future Work

We presented a method for modeling and diagnosing analog electrical circuits
that exploits probabilistic information about production tolerances of electrical
components. It consists of: the construction of a join tree representation of a
Markov network from a set of cross-sections of an analog electrical circuit; the
iterative proportional fitting procedure for the initialization of the probability
distributions; and the join tree propagation algorithm for the incorporation of
measurements. For our experiments we used a simple example to keep things
comprehensible, but the approach is fully general and can be applied to any
steady state, alternating or direct current electrical circuit. Faults like shortcuts
or open connections can easily be included by adding them as possible states to
the variable(s) describing a circuit component.

In the future we plan to make our method more efficient by exploiting the
sparsity of the (discrete) probability distributions (the electrical laws rule out
a large number of value combinations) and by using parameterized continuous
distributions. Furthermore, we plan to develop a theory of how to select measure-
ments in a diagnosis process. The basic idea is to propagate possible outcomes of
measurements through the network, to compute (and to aggregate) the result-
ing reductions in entropy of the distributions on component values, and finally
to select the measurement that leads to the highest expected entropy reduction
(similar to the approach suggested in [8]).
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