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Abstract

The induction of decision trees from data is a well-known method for learning classifiers. The
success of this method depends to a high degree on the measure used to select the next attribute,
which, if tested, will improve the accuracy of the classification. This paper examines some
possibility-based selection measures and compares them to probability- and information-based
measures on real world datasets. The results show that possibility-based measures do not much
worse with regard to classification accuracy, in certain cases they seem to do even slightly better.

1 Introduction

An often used method to induce decision trees from data is a greedy algorithm, which inspects the
conditional distribution of the considered classes within the given dataset for each attribute. These
conditional distributions are valuated with some selection measure and the attribute yielding the
highest (or lowest, depending on the measure) value is chosen to partition the set of cases. Then
this procedure is applied recursively on the formed subsets until all cases left in a subset are of the
same class or no partition on some attribute’s values leads to an improvement of the classification
accuracy [12, 1]. It is obvious, that the quality of the selection measure to a high degree determines
the success of this procedure.

In this paper we examine possibilistic selection measures that are based on the U -uncertainty
measure of nonspecificity [6, 7]. The experimental results we obtained on real world datasets show
that possibility based measures do not much worse compared to classical selection measures like
information gain, information gain ratio [11] and gini index [1] as well as the g-function of Cooper
and Herskovits [2], which has been used for learning Bayesian networks. In certain cases their
performance is even slightly better.

2 Basic Notation

Given a set of N cases, we assume that each case is described by an instantiation of a set of attributes
{C,A(1), . . . , A(m)}, where the instance of C states a class and the instances of A(1), . . . , A(m) some
other properties. As we will need herinafter only the class attribute C and one other attribute A,
we drop the attribute index. Let the domains of C and A be defined as dom(C) = {c1, . . . , cnC

} (a
set of nC classes) and dom(A) = {a1, . . . , anA

} (a set of nA attribute values).
To state the absolute frequency of a class or an attribute value within the given set of N cases,

we use the symbols Ni. for class ci and N.j for attribute value aj . The number of cases belonging
to class ci and having attribute value aj is denoted Nij (i.e. we always use the index i to refer to
a class and the index j to refer to an attribute value). The corresponding relative frequencies are
written pi. = Ni.

N , p.j = N.j

N and pij = Nij

N . To state the conditional relative frequency of class ci in
the subset of cases having the attribute value aj we write pi|j = Nij

N.j
= pij

p.j
.
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3 Selection Measures

3.1 Information-based Measures

One of the oldest selection measures, which was used already in ID3, is the information gain criterion
Igain [12]. It is based on Shannon entropy H [13] and defined as

Igain(A) = HC − HC|A = HC + HA − HCA

= −
nC∑
i=1

pi. log2 pi. −
nA∑
j=1

p.j log2 p.j +
nC∑
i=1

nA∑
j=1

pij log2 pij

Here HC denotes the entropy of the class distribution, HA the entropy of the attribute value dis-
tribution, and HCA the entropy of the joint distribution. The idea underlying this measure can be
easily understood writing HC|A = HCA − HA as

HC|A = −
nA∑
j=1

p.j

nC∑
i=1

pij

p.j
log2

pij

p.j
= −

nA∑
j=1

p.j

nC∑
i=1

pi|j log2 pi|j .

This reveals that HC|A is the expected entropy of the class distribution with regard to attribute A,
which, if compared to the entropy HC of the unconditioned class distribution, gives the reduction of
entropy (the gain of information) to be expected when the value of attribute A gets known. Hence
that attribute is selected for a test which yields the highest value of Igain.

It should be noted, that it would be possible to use expected entropy directly, were it impossible
that values are missing from the case descriptions, because then the summand HC would be the same
for all attributes and could be discarded. But as real world datasets usually have a not neglegible
number of missing values and the entropies should be calculated only on those cases, where the
class as well as the attribute value is known, this summand can have different values for different
attributes A, and thus it is needed to estimate the information gain correctly.

As information gain shows a strong bias in favour of multi-valued attributes [12, 8], Quinlan
introduced the information gain ratio Igainratio, which is defined as

Igainratio(A) =
Igain(A)

HA
=

HC + HA − HCA

HA
.

By dividing by the entropy of the attribute value distribution the bias is strongly reduced [12, 8].

3.2 Gini Index

Another well-known selection measure for inducing decision trees is the so called gini index [1], which
is defined as

Gini(A) =
nA∑
j=1

p.j

nC∑
i=1

p2
i|j −

nC∑
i=1

p2
i. =

nA∑
j=1

1
p.j

nC∑
i=1

p2
ij −

nC∑
i=1

p2
i..

Just as for information gain the attribute yielding the highest value is selected for a test.

3.3 g-function of Cooper and Herskovits

Learning decision trees has a strong resemblance to the K2 algorithm used for the induction of
Bayesian networks [2], because selecting the parent nodes for some attribute in this algorithm can
be seen as learning a decision tree with the special restrictions that all leaves have to lie on the same
level and that all decisions on the same level of the tree have to be made on the same attribute in
the same way. Hence it seems to be worth while to try the g-function defined in [2] for evaluating
parent candidates as a selection measure for decision tree learning. Adapted to our notation this
function reads

g(C,A) = c ·
nA∏
j=1

(nC − 1)!
(N.j + nC − 1)!

nC∏
i=1

Nij !
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The constant c can be set to 1, as only the relation between the value of g for different attributes
A(1) and A(2) matters. In order to ease the calculation of this selection measure and to make it
independent of the number of cases considered, we did not use g directly, but

log2(g(C,A))
N

=
1
N

log2 c +
nA∑
j=1

(
log2

(nC − 1)!
(N.j + nC − 1)!

+
nC∑
i=1

log2 Nij !

) .

As the g-function (for a certain value of c) estimates the probability of finding the joint distribution of
C and A that is present in the dataset (assuming that the class is dependent on the value of attribute
A and that all possible conditional probability distributions are equally likely), the attribute for which
g (or log2(g)/N , respectively) yields the highest value is selected for a test.

3.4 Possibility-based Measures

Taking the frequency distributions as possibility distributions (an interpretation which is based on
the context model of possibility theory assuming that all cases have equal weight [3, 9]), we can
define possibilistic selection measures. We do so using the U -uncertainty measure of nonspecificity
of a possibility distribution [6], which is defined as

Nonspec(π) =
∫ sup(π)

0

log2 |[π]α|dα

and can be justified as a proper generalization of Hartley information [5] to the possibilistic setting [7].
Nonspec(π) reflects the expected amount of information that has to be added in order to identify the
actual value within the set [π]α of alternatives, assuming a uniform distribution on the set [0, sup(π)]
of possibilistic confidence levels α [4].

As the role nonspecificity plays in possibility theory is similar to that of Shannon entropy in
probability theory, the idea suggests itself to construct a selection measure from it in the same way
as information gain and information gain ratio are constructed from Shannon entropy.

We calculate a specificity gain based on the nonspecificities of the possibility distributions πA on
the set of values of attribute A, πC on the set of classes and πCA on the cartesian product of the
set of values of A and the set of classes. But we have to take care how to construct these possibility
distributions in order to satisfy the concepts underlying possibility theory. Just as for information
gain we start from the joint distribution πCA as it is induced by the given set of cases, but we
calculate from it the marginal possibility distributions πA and πC not by summing values but by
taking their maximum, i.e.

∀a ∈ A : πA(a) = max
c∈C

(πCA(c, a)) and

∀c ∈ C : πC(c) = max
a∈A

(πCA(c, a)) .

In analogy to Igain we then define the specificity gain Sgain as

Sgain(A) = Nonspec(πC) + Nonspec(πA) − Nonspec(πCA)

and the specificity gain ratio Sgainratio as

Sgainratio(A) =
Sgain

Nonspec(πA)
=

Nonspec(πC) + Nonspec(πA) − Nonspec(πCA)
Nonspec(πA)

The attribute which yields the highest specificity gain or specificity gain ratio is selected for a test.
Another nonspecificity measure, which we will call nonspecificity∗ here, we derived (with a slight

modification concerning normalization) from the function m defined in [3], which was used there in
an algorithm for inducing possibilistic inference networks from data. With this measure one can
easily form specificity∗ gain and specificity∗ gain ratio measures in a similar way as in the preceding
paragraph. A detailed definition and explanation of these measures we are forced to omit here for
reasons of space.
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4 Experimental Results

For our experiments on real world datasets we modified the program C4.5, release 7, by J.R. Quinlan
[12], one of the most renowned decision tree learners, which is based on information gain and infor-
mation gain ratio, to incorporate the selection measures presented in the preceding section. However,
as C4.5 does not use information gain ratio as defined above, but includes cases with missing values
in the calculation of the entropy HA in the denominator, although they are excluded from the cal-
culation of HA in the numerator — a decision we do not hold to be a wise one, because it is only
reasonable, if the number of missing values is small compared to the total number of cases — we
reimplemented information gain ratio and did separate experiments with the original C4.5.

The experiments were conducted on some publicly accessible real world datasets from the UCI
machine learning repository [10]. We present here the results on two of these: the soybean diseases
dataset (table 1) and the credit card application approval dataset (table 2). The tables show for
each selection measure the size of the decision tree (number of nodes including leaves), the number
of errors and the error rate on training and test data before and after pruning the decision tree.

It can be seen from these results, which are quite typical, that the performance of the possibility-
based measures is comparable to that of the other measures. On the test data of the soybean diseases
dataset the performance of specificity gain ratio and the two specificity∗ measures appears to be even
slightly better than that of the information-based measures. In addition, the two possibility-based
measures specificity and specificity∗ seem to behave quite differently as on the soybean dataset
specificity∗ yields better results, whereas on the credit card application approval the specificity
measure appears to be superior. This may be due to the fact that the soybean dataset contains only
nominal attributes, whereas the credit card application approval dataset also contains continuous
attributes. But this may also be accidental and needs to be examined further.

Another interesting thing to observe (for which both tables are good examples) is, that deci-
sion trees grown with a possibility-based selection measure seem to suffer more from pruning. But
suprisingly enough, this usually affects only the classification accuracy on the training data.

Summarizing the results, one may say that possibility-based selection measures are an interesting
alternative to classical measures.
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soybean before pruning after pruning
(455/228) size train test size train test
default 385(84.6) 193(84.6) 385(84.6) 193(84.6)
C4.5 [release 7] 170 14( 3.1) 23(10.1) 81 28( 6.2) 21( 9.2)
information gain 234 15( 3.3) 33(14.5) 96 22( 4.8) 26(11.4)
information gain ratio 164 11( 2.4) 27(11.8) 85 18( 4.0) 22( 9.6)
gini index 278 21( 4.6) 38(16.7) 113 38( 8.4) 33(14.5)
log2(g)/N 326 27( 5.9) 25(11.0) 94 53(11.6) 31(13.6)
specificity gain 208 11( 2.4) 29(12.7) 84 37( 8.1) 34(14.9)
specificity gain ratio 193 17( 3.7) 22( 9.6) 76 28( 6.2) 20( 8.8)
specificity∗ gain 218 6( 1.3) 15( 6.6) 81 20( 4.4) 17( 7.5)
specificity∗ gain ratio 151 11( 2.4) 18( 7.9) 97 22( 4.8) 19( 8.3)

Table 1: Results on the soybean diseases dataset
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credit before pruning after pruning
(460/230) size train test size train test
default 204(44.3) 103(44.8) 204(44.3) 103(44.8)
C4.5 [release 7] 89 19( 4.1) 42(18.3) 49 28( 6.1) 36(15.7)
information gain 106 19( 4.1) 40(17.4) 57 28( 6.1) 39(17.0)
information gain ratio 120 17( 3.7) 39(17.0) 53 24( 5.2) 35(15.2)
gini index 99 20( 4.3) 39(17.0) 53 31( 6.7) 38(16.5)
log2(g)/N 78 21( 4.6) 43(18.7) 44 27( 5.9) 38(16.5)
specificity gain 192 19( 4.1) 43(18.7) 29 37( 8.0) 35(15.2)
specificity gain ratio 149 23( 5.0) 41(17.8) 31 37( 8.0) 37(16.1)
specificity∗ gain 195 30( 6.5) 47(20.4) 3 69(15.0) 31(13.5)
specificity∗ gain ratio 254 20( 4.3) 38(16.5) 14 57(12.4) 31(13.5)

Table 2: Results on the credit card application approval dataset
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