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Abstract: Naive Bayes classifiers can be seen as spe-
cial probabilistic networks with a star-like structure.
They can easily be induced from a dataset of sam-
ple cases. However, as most probabilistic approaches,
they run into problems, if imprecise (i.e, set-valued)
information in the data to learn from has to be taken
into account. An approach to handle uncertain as
well imprecise information, which recently gained some
attention, are possibilistic networks. Because of the
close structural resemblance of possibilistic networks
to probabilistic ones, the idea suggests itself to con-
struct a possibilistic classifier as a special possibilistic
network in much the same way in which a naive Bayes
classifier is a special probabilistic network. Thus we
obtain a classifier that can easily handle imprecise in-
formation in the data to learn from.

1 Introduction

Naive Bayes classifiers [8, 5, 13] are an old and well-
known type of classifiers. They use a probabilistic ap-
proach to assign a class to a case or an object and
can be seen as a special type of probabilistic networks.
Probabilistic networks, which have been studied ex-
tensively in the field of graphical modeling [11] and
of which Bayesian networks [19] and Markov networks
[15] are the most popular, are based on the idea to ex-
ploit independence relations between attributes used
to describe a domain in order to decompose a mul-
tivariate probability distribution into a set of (con-
ditional or marginal) distributions on lower dimen-
sional subspaces. Early efficient implementations in-
clude HUGIN [1] and PATHFINDER [9]. Naive Bayes
classifiers are a special case of probabilistic networks,
since they make strong assumptions about the depen-
dence and independence relations between the class
attribute and the other attributes and thus represent
a specific decomposition of a given multivariate prob-
ability distribution. Naive Bayes classifiers as well as
the more general probabilistic networks can easily be
induced from a dataset of sample cases [14, 4, 10].

A drawback of all probabilistic approaches is that

they provide a framework to handle uncertain, but
precise information. However, the explicit treatment
of imprecise (i.e., set-valued) information is more and
more claimed to be necessary for industrial practice.
Therefore it is reasonable to investigate graphical mod-
els based on other uncertainty calculi, the more so, as
extending purely probabilistic approaches to the treat-
ment of imprecise information usually renders the cor-
responding inference mechanisms computationally in-
tractable. A noteworthy attempt in this direction are
the so-called valuation-based networks [21, 22] which
have been implemented in PULCINELLA [20]. An-
other are possibilistic networks, which due to their
connection to fuzzy systems and their ability to deal
not only with uncertainty but also with imprecision,
recently gained some attention. They have been im-
plemented in POSSINFER [7, 12].

In this paper, we focus on the latter approach, that
is, on possibilistic networks. We suggest a classifier
that is a special case of a possibilistic network in much
the same way in which a naive Bayes classifier is a
special case of a probabilistic network. In section 2 we
review the ideas underlying naive Bayes classifiers and
relate them to Bayesian networks in section 3. In sec-
tion 4 we review possibilistic networks and in section 5
we introduce our naive Bayes style possibilistic classi-
fier. In section 6 we briefly discuss how naive Bayes
as well as possibilistic classifiers can be simplified to
improve their performance. In section 7 we report ex-
perimental results and in section 8 we draw conclusions
and indicate future work.

2 Naive Bayes Classifiers

Classifiers are programs that assign a class from a pre-
defined set to an object or case under consideration
based on the values of attributes used to describe this
object or case. To do so, naive Bayes classifiers use a
probabilistic approach, i.e., they try to compute con-
ditional class probabilities and then predict the most
probable class. To be more precise, let C' denote a
class attribute with a finite domain of m classes, i.e.,



dom(C) ={e1,...,¢cm}, and let Ay,..., A, be a set of
other attributes used to describe a case or an object
of the universe of discourse. These other attrlbutes
may be symbohc ie., dom(4;) = {a1 L amj} or
numeric, , dom(Aj) = IR. In this paper, how-
ever, we conﬁne ourselves to symbolic attributes. With
this restriction, a case or an object can be described
by an instantiation w = (a Ei),...,aE:)) of the at-
tributes Aq,..., A, and thus the universe of discourse
is Q =dom(A;) x ... x dom(A4,,).

For a given instantiation w, a naive Bayes classifier
tries to compute the conditional probability
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for all ¢; and then predicts the class for which this
probability is highest. Of course, it is usually impos-
sible to store all conditional probabilities explicitly, so
that a simple lookup would be all that is needed to find
the most probable class: We would have to store a class
(or a class probability distribution) for each point of
the universe of discourse, whose size grows exponen-
tially with the number of attributes. To circumvent
this problem, naive Bayes classifiers exploit—as their
name already indicates—Bayes rule and a set of con-
ditional independence assumptions. With Bayes rule
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where X and Y are events, the conditional probabili-
ties are inverted, i.e., naive Bayes classifiers consider’
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Of course, for this to be possible, the probability
P(A;, = a§11)7 LA, = al(:)) must be strictly positive.
Note that we can neglect the denominator of the
fraction on the right, since for a given case or object
to be classified, it is fixed and therefore does not have
any influence on the class ranking (which is all we are
interested in). In addition, it can always be restored
by a normalization, i.e., we can exploit
(n))
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It follows that we only need to consider
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INote that we can always use a probability P, since we con-
fined ourselves to symbolic attributes.
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where S is a normalization constant.

Furthermore, note that just inverting the probabil-
ities does not buy us anything, since the probability
space is just as large as it was before the inversion.
However, here the second ingredient of naive Bayes
classifiers—which is responsible for the “naive” in their
name—comes in, namely the conditional independence
assumptions. To exploit them, we first apply the chain
rule of probability:
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Then we assume that given the value of the class at-
tribute, any attribute A; is independent of any other.
That is, we assume that knowing the class is enough to
determine the probability of a value ag ), i.e., that we
need not know the values of any other attributes. This
assumption considerably simplifies the formula stated
above, since with it we can cancel all attributes A;

appearing in the conditions:

P(C’:ci|A1—a(), ,An—al(:))
= %-P(Alzagl)w‘:c)
P(A; = ag) | C =¢)
P(A, = al(-n) | C=¢)
P(C=c¢)

This is the fundamental formula underlying naive
Bayes classifiers. For a symbolic attribute A; the con-
ditional probabilities P(A; = a | C = ¢;) are stored
as a simple conditional probablhty table. This is fea-
sible now, since there is only one condition and hence
only m - m; probabilities have to be stored.?

Naive Bayes classifiers can easily be induced from a
dataset of preclassified sample cases. All we have to
do is to estimate the conditional probabilities P(A; =

(J ) | C = ¢;). We may use, for instance, maximum
hkehhood estimation, which yields

_ )~
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I
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2 Actually only m - (m; — 1) probabilities are really necessary.
Since the probabilities have to add up to one, one value can be

discarded from each conditional distribution. However, in im-
plementations it is usually much easier to store all probabilities.

PAj=a) | C=c)=




where #(C = ¢;) is the number of sample cases that
belong to the class ¢; and #(4; = agj),C = ¢) is
the number of sample cases belonging to class ¢; and
having the value a,t(-j ) for the attribute A;. To ensure
that the probability is strictly positive, it is assumed
that there is at least one example for each class in the
dataset. Otherwise the class is simply removed from
the domain of the class attribute. If an attribute value
does not occur given some class, its probability is either
set to ﬁ, where N is the number of sample cases, or a
uniform prior of % is added to the estimated distribu-
tion, which is then renormalized (Laplace correction).

3 Probabilistic Networks

As already mentioned in the introduction, naive Bayes
classifiers are a special case of probabilistic networks
or, to be more specific, of Bayesian networks. A
Bayesian network is a directed acyclic graph in which
each node represents an attribute (interpreted as a ran-
dom variable), that is used to describe some domain of
interest, and each edge represents a direct dependence
between two attributes. In addition, the graph repre-
sents a particular joint probability distribution, which
is specified by assigning to each node in the network a
(conditional) probability distribution for the values of
the corresponding attribute given the parent attributes
in the network (if any).

Formally, a Bayesian network describes a factoriza-
tion of a multivariate probability distribution. This
factorization results from applying first the chain rule
of probability to the joint distribution. Then the fac-
tors are simplified by exploiting conditional indepen-
dence statements of the form Vw € Q :

P(WXUy ‘ wz) = P(WX | wz) . P(WY ‘ wz)

whenever P(wz) > 0, where X, Y, and Z are three
disjoint sets of attributes and wy = projy(w) is the
projection of an instantiation w to the attributes in X.
As one can easily verify, these statements are equiva-
lent to statements of the form Vw € Q) :

P(wX | wyUz) = P(wX ‘ wz).

To be more precise, consider a probability distribu-
tion P on the joint domain of a set of attributes
A1,... A, (again we assume that all attributes are
symbolic). We first apply the chain rule of probability
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Figure 1: A naive Bayes classifier is a Bayesian network
with a star-like structure.

Then we exploit conditional independence statements
to simplify the conditions by removing those attributes
of which the conditioned attribute is independent given
the values of the remaining attributes. Thus the joint
probability distribution can be computed as

n

JAR) = H P(A; | parents(4,)),

j=1

P(A, ...

where parents(A;) is the set of attributes that is suffi-
cient to determine the probability (density) of the val-
ues of attribute A;. The name “parents(A;)” stems
from the fact that in the Bayesian network the condi-
tioning attributes are connected by directed edges to
the conditioned attributes and hence are the parents of
this attribute in the graph. This makes it very simple
to read the factorization formula from a Bayesian net-
work: For each attribute (node) there is exactly one
factor in which it is the conditioned attribute, and the
conditions of this factor are the attributes correspond-
ing to the attribute’s parent nodes in the graph.

It is easy to see that Bayesian networks are directly
related to naive Bayes classifiers. In fact, a naive Bayes
classifier is a Bayesian network with a star-like struc-
ture as shown in figure 1. That is, there is a distin-
guished attribute, namely the class attribute. It is
the only unconditioned attribute (the only one with-
out parents). All other attributes are conditioned on
the class attribute and on the class attribute only. Rea-
soning consists in propagating the evidence about the
values of the attributes Ay, ..., A, along the edges to
obtain information about the class. This information
is then accumulated.

4 Possibilistic Networks

As already indicated in the introduction, the devel-
opment of possibilistic networks was triggered by the
fact that probabilistic networks are well suited to rep-
resent and process uncertain information, but cannot
easily be extended to handle imprecise information.
Maybe the best way to explain the difference between
uncertain and imprecise information is to consider the
notion of a degree of possibility. The interpretation we
prefer is based on the context model [6, 12]. In this



model possibility distributions are seen as information-
compressed representations of (not necessarily nested)
random sets and a degree of possibility as the one-point
coverage of a random set [18].

To be more precise: Let wg be the actual, but un-
known state of a domain of interest, which is con-
tained in a set Q of possible states. Let (T,27T,P),
T = {t1,t2,...,t-}, be a finite probability space and
v : T — 29 a set-valued mapping. T is seen as a set of
contexts that have to be distinguished for a set-valued
specification of wy. The contexts are supposed to de-
scribe different physical and observation-related frame
conditions. P({t}) is the (subjective) probability of
the (occurrence or selection of the) context t.

A set y(t) is assumed to be the most specific correct
set-valued specification of wg, which is implied by the
frame conditions that characterize the context t. By
‘most specific set-valued specification’ we mean that
wo € (t) is guaranteed to be true for y(¢), but is not
guaranteed for any proper subset of y(¢). The resulting
random set I' = (v, P) is an imperfect (i.e. imprecise
and uncertain) specification of wy. Let 7 denote the
one-point coverage of T (the possibility distribution in-
duced by T'), which is defined as

mr:Q—[0,1], mr(w)=P{teT|wext)}).

In a complete modeling the contexts in T must be
specified in detail, so that the relationships between
all contexts ¢; and their corresponding specifications
v(t;) are made explicit. But if the contexts are un-
known or ignored, then 7r(w) is the total mass of all
contexts ¢ that provide a specification y(¢) in which wq
is contained, and this quantifies the possibility of truth
of the statement “w = wy” [6].

It is easy to see that a possibility distribution in-
duced by a random set I degenerates to a probability
distribution (namely the one on the set of contexts), if
in each context ¢ there is only one possible value, i.e.,
if vt € T : |v(t)] = 1. This is what we meant by say-
ing that probabilistic approaches can handle uncertain,
but precise information.

As a concept of independence, which is fundamental
to the technique of graphical modeling, we use possi-
bilistic non-interactivity [2]. Let X, Y, and Z be three
disjoint subsets of attributes. Then X is called condi-
tionally independent of Y given Z w.r.t. m, if Vw € Q) :

m(wxuy |wz) = min{r(wx |wz), 7(wy | wz)}

whenever m(wz) > 0, where wyx = projy (w) is the pro-
jection of a tuple w to the attributes in X and 7 (- | -) is
a non-normalized conditional possibility distribution

m(wx |wz) = max{r(w) | w € Q Aproj x (w) = wx
Aproj z(w) = wz}.
A possibilistic network represents a decomposition of
a multi-variate possibility distribution according to

m(Ar, ..., Ap) = min_ 7(A; | parents(4;)),

where parents(A;) is the set of parents of attribute A;,
which is made as small as possible by exploiting condi-
tional independences of the type indicated above. Just
as a Bayesian network, a possibilistic network is usu-
ally represented as a directed graph in which there is
an edge from each of the conditioning attributes to the
conditioned attribute.

5 A Possibilistic Classifier

Due to the structural equivalence of probabilistic and
possibilistic networks, a naive Bayes style possibilistic
classifier can be constructed in strict analogy to the
probabilistic case: Let m be a possibility distribution
on the attributes A;,..., A, and C. Because of the
symmetry in the definition of conditional possibility
distributions, we have

A, = a(n))

= w(4; = agll),...,An = al(-:) | C =¢).

’/T(C = C; | A1 = a(l)

TERERE

This equation takes the place of Bayes rule. It has
the advantage of being much simpler than Bayes rule,
and thus we need not take account of a normalization
constant or of prior class probabilities.

The next step is that, in analogy to the probabilis-
tic conditional independence assumptions, we assume
that given the value of the class attribute all other
attributes do not interact possibilistically. With this
assumption we arrive at

m(C=c¢|A = agll),...,An :az(:))

= min{m(4; = %(11) | C =c¢),
w(As = ag) | C = ¢),

(A, = az(:) |C =c)}.

This is the fundamental equation underlying our
possibilistic classifier. Given an instantiation w =
(al(-ll), . .,al(-:)) we predict the class ¢; for which this
equation yields the highest (conditional) degree of pos-
sibility. It is obvious that, just as a naive Bayes clas-
sifier is a special Bayesian network, our possibilistic
classifier is a special possibilistic network and, just as
a naive Bayes classifier, it has a star-like structure.
To induce our possibilistic classifier from data, we
must estimate the conditional possibility distributions.
This is not as simple as it may appear at first sight, but
poses some problems of efficiency. In contrast to con-
ditional probabilities, which can easily be computed
from case counters (see above), maximum projections
are much harder to obtain. However, in [3] we sug-
gested a solution to this problem. This solution has
proven to be efficient for many applications (although
pathological cases can be constructed). It is based on



dataset num. of | possibilistic classifier naive Bayes classifier decision tree
tuples add. att. rem. att. add. att. rem. att. unpruned  pruned
audio train 113 | 7( 6.2%)  2( 1.8%) | 12(10.6%) 16(14.2%) | 13(11.5%) 16(14.2%)
test 113 | 33(29.2%) 36(31.9%) | 35(31.0%) 31(27.4%) | 25(22.1%) 25(22.1%)
69 atts. | selected 15 21 9 42 14 12
bridges | train 54 | 8(14.8%)  8(14.8%) | 10(18.5%)  7(13.0%) | 9(16.7%)  9(16.7%)
test 54 | 23(42.6%) 23(42.6%) | 24(44.4%) 19(35.2%) | 24(44.4%) 24(44.4%)
10 atts. | selected 6 6 5 8 8 6
soybean | train 342 | 18( 5.3%) 20( 5.9%) | 17( 5.0%) 14( 4.1%) | 16( 4.7%) 22( 6.4%)
test 341 | 59(17.3%) 57(16.7%) | 48(14.1%) 45(13.2%) | 47(13.8%) 39(11.4%)
36 atts. | selected 15 17 14 14 19 16
vote train 300 | 9( 3.0%) 8( 2.7%) | 9( 3.0%) 8( 2.7%) | 6( 2.0%) 7( 2.3%)
test 135 | 11( 8.2%) 10( 7.4%) | 11( 8.2%)  8( 5.9%) | 11( 8.2%)  8&( 5.9%)
16 atts. | selected 2 3 2 4 6 4

Table 1: Experimental results on four datasets from the UCI machine learning repository.

the observation that the problems encountered when
one tries to compute maximum projections are mainly
due to the fact two imprecise tuples over the attributes
used to describe the domain of interest can intersect
and that this intersection may differ from both original
tuples. If such intersections exist, simple methods to
compute maximum projections fail. But if the closure
under tuple intersection is computed for the dataset to
learn from (that is, if all tuples that can be constructed
by intersecting a subset of tuples from the dataset are
added to the dataset) and if the tuples in this closure
are properly weighted, then maximum projections can
be computed by simply determining maxima [3].

6 Classifier Simplification

Both naive Bayes classifiers and naive Bayes style pos-
sibilistic classifiers make strong independence assump-
tions (see above). It is not surprising that these as-
sumptions are likely to fail. If they fail, the classifier
may be worse than necessary. To cope with this prob-
lem, we tried to simplify the classifiers, naive Bayes
as well as possibilistic, using simple greedy attribute
selection. With this procedure we hoped to find a
(sub)set of attributes for which the strong assumptions
hold at least approximately. The experimental results
we report in the next section prove that this approach
seems to be successful.

The attribute selection methods we used are the
following: In the first method we start with a clas-
sifier that simply predicts the majority class. That
is, we start with a classifier that does not use any at-
tribute information. Then we add attributes one by
one. In each step we select that attribute which, if
added, leads to the smallest number of misclassifica-
tions on the training data. We stop adding attributes
when adding any of the remaining attributes does not

reduce the number of errors.

The second method is a reversal of the first. We start
with a classifier that takes into account all available
attributes and then removes attributes step by step. In
each step we select that attribute which, if removed,
leads to the smallest number of misclassifications on
the training data. We stop removing attributes when
removing any of the remaining attributes leads to a
larger number of errors.

7 Experimental Results

We implemented the suggested possibilistic classifier
along with a normal naive Bayes classifier and tested
both on four datasets from the UC Irvine machine
learning repository [16]. In both cases we used the
simplification procedures described in the preceding
section. The results are shown in table 1, together
with the results obtained with a decision tree classifier.
The columns “add att.” contain the results obtained
by stepwise adding, the columns “rem. att.” the re-
sults obtained by removing attributes. The decision
tree program used is a C4.5 clone written by the first
author. The attribute selection measure was informa-
tion gain ratio and the pruning method was confidence
level pruning with a confidence level of 50%.

It can be seen that the possibilistic classifier per-
forms equally well as (audio, bridges, vote) or only
slightly worse (soybean) than the naive Bayes classi-
fier. This is encouraging, since none of the datasets is
especially suited to demonstrate the strengths of a pos-
sibilistic classifier. Although all of the datasets contain
missing values (which can be modeled as imprecise in-
formation), the relative frequency of these missing val-
ues is rather low. None of the datasets contains true
set valued information, which to treat possibility the-
ory is so well designed.



8 Conclusions and Future Work

In this paper we suggested a possibilistic classifier that
is a special case of a possibilistic network in much
the same way in which a naive Bayes classifier is a
special case of a probabilistic network. Our experi-
mental results show that it can hold its own against
a naive Bayes classifier, even though the datasets we
used to induce the classifiers do not possess the proper-
ties (set valued information) which could demonstrate
the strengths of a possibilistic approach. Therefore we
are confident that it will prove successful when applied
to true imprecise data.

In the future we plan to extend our possibilistic clas-
sifier to handle numeric attributes. The main problem
with such an extension is that it is not entirely clear
how to estimate a possibility distribution on a contin-
uous domain from a dataset of sample cases, if some
cases possess precise values for the attribute under con-
sideration (strange enough, for possibilistic approaches
precision poses a problem). A simple idea would be to
fix the size of a small interval to be used in such cases.

In another line of research we plan to explore the
connections of our possibilistic classifier to fuzzy clas-
sifiers like those generated by neuro-fuzzy systems like
NEFCLASS [17]. The connection to such classifiers is
that our possibilistic classifier can be seen as fuzzy clas-
sifier with min-max-inference and one rule per class.
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