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Abstract

We explore an approach to possibilistic fuzzy c-means clustering that avoids a severe drawback of the
conventional approach, namely that the objective function is truly minimized only if all cluster centers are
identical. Our approach is based on the idea that this undesired property can be avoided if we introduce a
mutual repulsion of the clusters, so that they are forced away from each other. In our experiments we found
that in this way we can combine the partitioning property of the probabilistic fuzzy c-means algorithm with
the advantages of a possibilistic approach w.r.t. the interpretation of the membership degrees.

1 Introduction

Cluster analysis is a technique for classifying data, i.e., to divide a given dataset into a set of classes or clusters.
The goal is to divide the dataset in such a way that two cases from the same cluster are as similar as possible and
two cases from different clusters are as dissimilar as possible. Thus one tries to model the human ability to group
similar objects or cases into classes and categories. In classical cluster analysis each datum must be assigned
to exactly one cluster. Fuzzy cluster analysis relaxes this requirement by allowing gradual memberships, thus
offering the opportunity to deal with data that belong to more than one cluster at the same time.

Most fuzzy clustering algorithms are objective function based: They determine an optimal classification by
minimizing an objective function. In objective function based clustering usually each cluster is represented by
a cluster prototype. This prototype consists of a cluster center (whose name already indicates its meaning)
and maybe some additional information about the size and the shape of the cluster. The cluster center is an
instantiation of the attributes used to describe the domain, just as the data points in the dataset to divide.
However, the cluster center is computed by the clustering algorithm and may or may not appear in the dataset.
The size and shape parameters determine the extension of the cluster in different directions of the underlying
domain.

The degrees of membership to which a given data point belongs to the different clusters are computed from
the distances of the data point to the cluster centers w.r.t. the size and the shape of the cluster as stated
by the additional prototype information. The closer a data point lies to the center of a cluster (w.r.t. size
and shape), the higher is its degree of membership to this cluster. Hence the problem to divide a dataset
X = {~x1, . . . , ~xn} ⊆ IRp into c clusters can be stated as the task to minimize the distances of the data points
to the cluster centers, since, of course, we want to maximize the degrees of membership.

Several fuzzy clustering algorithms can be distinguished depending on the additional size and shape infor-
mation contained in the cluster prototypes, the way in which the distances are determined, and the restrictions
that are placed on the membership degrees. Here we focus on the fuzzy c-means algorithm [1], which uses
only cluster centers and a Euclidean distance function. We distinguish, however, between probabilistic and
possibilistic clustering, which use different sets of constraints for the membership degrees.

Probabilistic Fuzzy Clustering

In probabilistic fuzzy clustering the task is to minimize the objective function

J(X,U,B) =
c∑

i=1

n∑
j=1

um
ij d2(~βi, ~xj) (1)
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Figure 1: A situation in which the prob-
abilistic assignment of membership de-
grees is counterintuitive for datum x2.

subject to

n∑
j=1

uij > 0, for all i ∈ {1, . . . , c}, and (2)

c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}, (3)

where uij ∈ [0, 1] is the membership degree of datum ~xj to cluster ci, ~βi is the prototype of cluster ci, and
d(~βi, ~xj) is the distance between datum ~xj and prototype ~βi. B is the set of all c cluster prototypes ~β1, . . . , ~βc.
The c×n matrix U = [uij ] is called the fuzzy partition matrix and the parameter m is called the fuzzifier. This
parameter determines the “fuzziness” of the classification. With higher values for m the boundaries between
the clusters become softer, with lower values they get harder. Usually m = 2 is chosen.

Constraint (2) guarantees that no cluster is empty and constraint (3) ensures that the sum of the membership
degrees for each datum equals 1. Because of the second constraint, this approach is called probabilistic clustering,
since with it the membership degrees for a given datum formally resemble the probabilities of its being a member
of the corresponding cluster.

Unfortunately, the objective function J cannot be minimized directly. Therefore an iterative algorithm is
used, which alternately optimizes the cluster prototypes and the membership degrees. That is, first the cluster
prototypes are optimized for fixed membership degrees, then the membership degrees are optimized for fixed
prototypes. The main advantage of this scheme is that in each of the two steps the optimum can be computed
directly. By iterating the two steps the joint optimum is approached. The update formulae are derived by
simply setting the derivative of the objective function (extended by Lagrange multipliers to incorporate the
constraints) w.r.t. the parameter to optimize equal to zero. For the membership degrees we thus obtain the
following formula

uij =



1
c∑

k=1

(
d2(xj , βi)
d2(xj , βk)

) 1
m−1

, if Ij = ∅,

0, if Ij 6= ∅ and i /∈ Ij ,
x, x ∈ [0, 1] such that

∑
i∈Ij

uij = 1, if Ij 6= ∅ and i ∈ Ij .

(4)

Equation (4) shows that the membership degree of a datum to a cluster depends not only on the distance
between the datum and that cluster, but also on the distances between the datum and other clusters. The
partitioning property of a probabilistic clustering algorithm, which “distributes” the weight of a datum on the
different clusters, is due to this equation.

Although often desirable, the “relative” character of the membership degrees in a probabilistic clustering
approach can lead to counterintuitive results. Consider, for example, the simple case of two clusters shown in
figure 1. Datum ~x1 has the same distance to both clusters and thus it is assigned a degree of membership of
about 0.5. This is plausible. However, the same degrees of membership are assigned to datum ~x2. Since this
datum is far away from both clusters, it would be more intuitive if it had a low degree of membership to both
of them.

Possibilistic Fuzzy Clustering

In possibilistic fuzzy clustering one tries to achieve a more intuitive assignment of degrees of membership by
dropping constraint (3), which is responsible for the undesirable effect discussed above. However, this leads to the
mathematical problem that the objective function is now minimized by assigning uij = 0 for all i ∈ {1, . . . , c}
and j ∈ {1, . . . , n}. In order to avoid this trivial solution, a penalty term is introduced, which forces the



membership degrees away from zero. That is, the objective function J is modified to

J(X,U,B) =
c∑

i=1

n∑
j=1

um
ij d2(~βi, ~xj) +

c∑
i=1

ηi

n∑
j=1

(1− uij)m, (5)

where ηi > 0. The first term leads to a minimization of the weighted distances while the second term suppresses
the trivial solution. This approach is called possibilistic clustering, because the membership degrees for one
datum resemble the possibility (in the sense of possibility theory [6]) of its being a member of the corresponding
cluster [10, 5]. The formula for updating the membership degrees that is derived from this objective function is
[10]

uij =
1

1 +

(
d2(~xj , ~βi)

ηi

) 1
m−1

. (6)

From this equation it becomes obvious that ηi is a parameter that determines the distance at which the mem-
bership degree equals 0.5. ηi is chosen for each cluster separately and can be determined, for example, by
computing the fuzzy intra cluster distance [10]

ηi =
K

Ni

n∑
j=1

um
ij d2(~xj , ~βi), (7)

where Ni =
∑n

j=1 um
ij . Usually K = 1 is chosen.

At first sight this approach looks very promising. However, if we take a closer look, we discover that the
objective function J defined above is, in general, truly minimized only if all cluster centers are identical. The
reason is that the formula (6) for the membership degree of a datum to a cluster depends only on the distance
of the datum to that cluster, but not on its distance to other clusters. Hence, if there is a single optimal point
for a cluster center (as it will usually be the case, since multiple optimal points would require a high symmetry
in the data), all cluster centers will be moved there. More formally, consider two cluster centers ~β1 and ~β2,
which are not identical, and let

zi =
n∑

j=1

um
ij d2(~βi, ~xj) + ηi

n∑
j=1

(1− uij)m, i = 1, 2,

i.e., let zi be the amount that cluster βi contributes to the value of the objective function. Except in very rare
cases of high data symmetry, it will then either be z1 > z2 or z2 > z1. That is, we can improve the value of the
objective function by setting both cluster centers to the same value, namely the one which yields the smaller
z-value, because the two z-values do not interact.

Note that this behavior is specific to the possibilistic approach. In the probabilistic approach the cluster
centers are driven apart, because a cluster, in a way, “seizes” part of the weight of a datum and thus leaves
less that may attract other cluster centers. Hence sharing a datum between clusters is disadvantageous. In the
possibilistic approach there is nothing to complement this effect.

Nevertheless, possibilistic fuzzy clustering usually leads to acceptable results, although it suffers from stabil-
ity problems if it is not initialized with the corresponding probabilistic algorithm. We assume that other results
than all cluster centers being identical are achieved only, because the algorithm gets stuck in a local minimum
of the objective function. This, of course, is not a desirable situation. Hence we tried to improve the algorithm
by modifying the objective function in such a way that the problematic property examined above is removed.

2 A New Approach Based on Cluster Repulsion

The idea of our approach is to combine an attraction of data to clusters with a repulsion between different
clusters. In contrast to a probabilistic clustering algorithm this is not done implicitly using restriction (3), but
explicitly by adding a cluster repulsion term to the objective function.

To arrive at a suitable objective function, we started from the following set of requirements:

• The distance between clusters and the data points assigned to them should be minimized.

• The distance between clusters should to be maximized.



• There should be no empty clusters, i.e., for each cluster there must be datum with non-vanishing mem-
bership degree.

• Membership degrees should be close to one and, of course, the trivial solution of all membership degrees
being zero should be suppressed.

These requirements are very close to standard possibilistic cluster analysis. The attraction between data and
clusters is modeled (as described above) by a term

∑c
i=1

∑n
j=1 um

ij d2(~βi, ~xj). A term
∑c

i=1 ηi

∑n
j=1(1 − uij)m

is used to avoid the trivial solution. The objective that to each cluster data have to be assigned is leads to
the constraint (2). The repulsion between clusters can be described in analogy to the attraction between data
and clusters. That is, we are using a term that is minimized if the sum of the distances between clusters are
maximized.

This could be achieved by simply subtracting the sum of squared distances between clusters from the
objective function. However, this straightforward approach does not work. The problem is that the repulsion
then increases with the distance of the clusters and thus driving them ever farer apart improves the value of
the objective function. In the end, all data points would be assigned to one cluster and all other clusters would
have been moved to infinity.

To avoid this undesired “explosion” of the cluster set, a repulsion term must be used that gets smaller the
farer the clusters are apart. Then the attraction of the data points can compensate the repulsion if only the
clusters are sufficiently spread out. This consideration lead us to the term γ

∑c
i=1

∑c
k=1,k 6=i

1

d2(~βi,~βk)
where γ

is a weighting factor. This term is only relevant if the clusters are close together. With growing distance it
becomes smaller, i.e., the repulsion is gradually decreased until it is compensated by the attraction of the data.

The classification problem is then described as the task to minimize

J(X,U,B) =
c∑

i=1

n∑
j=1

um
ij d2(~βi, ~xj) +

c∑
i=1

ηi

n∑
j=1

(1− uij)m + γ
c∑

i=1

c∑
k=1,k 6=i

1

d2(~βi, ~βk)
(8)

w.r.t. the constraint
∑n

j=1 uij > 0 for all i ∈ {1, . . . , c}. γ is used to weight the objective that the distance to
the clusters should be minimized against the objective that the distance between clusters should be maximized.
Using 1

d2(~βi,~βk)
means that only clusters with a small distance are relevant for minimizing the objective function,

while clusters with a large distance are only slightly repelling each other.
Minimization of (8) w.r.t. the membership degrees leads to (6). That is, the membership degrees have the

same meaning as in possibilistic cluster analysis. For the variant of the fuzzy c-means algorithm (only cluster
centers ~ci, Euclidean distance, and therefore spherical clusters) a minimization of (8) with respect to the cluster
prototypes leads to

n∑
j=1

uij(~xj − ~ci)−
c∑

k=1,k 6=i

(~ck − ~ci)
1

||~ck − ~ci||2
= 0. (9)

For reasons of simplicity, we solved (9) by iteratively computing

~ci =

∑n
j=1 uij~xj − γ

∑c
k=1,k 6=i ~ck

1
||~ck−~ci||2∑n

j=1 uij − γ
∑c

k=1,k 6=i
1

||~ck−~ci||2
(10)

For ~ci on the right hand side we used old values of the previous iteration. The computation was iterated until
|~c(new)

i − ~c
(old)
i | < ~ε.

(10) shows the effect of the repulsion between clusters. A cluster is attracted by the data assigned to it and
repelled by the other clusters.

An alternative approach to model the repulsion between clusters is to use the term γ
∑c

i=1

∑c
k=1,k 6=i e−d2(~βi,~βk)

instead of the fraction used above. The difference between both terms is how the repulsion between clusters
decreases with a growing distance.

The classification problem is then described as the task to minimize

J(X,U,B) =
c∑

i=1

n∑
j=1

um
ij d2(~βi, ~xj) +

c∑
i=1

ηi

n∑
j=1

(1− uij)m + γ
c∑

i=1

c∑
k=1,k 6=i

e−d2(~βi,~βk) (11)

w.r.t. the constraint
∑n

j=1 uij > 0 for all i ∈ {1, . . . , c}.



Figure 2: Iris dataset classified with probabilistic
fuzzy c-means algorithm. Attributes petal length and
petal width.

Figure 3: Iris dataset classified with possibilistic fuzzy
c-means algorithm. Attributes petal length and petal
width.

Minimizing (11) w.r.t. ~βi leads for the fuzzy c-means algorithm, that is, if the clusters are described by their
centers ~ci only, to

n∑
j=1

uij(~xj − ~ci)−
c∑

k=1,k 6=i

(~ck − ~ci)e−||~ck−~ci|| = 0. (12)

As (9) we solved (12) by an iterative approach.
In the approaches presented in this section the attraction between clusters and data assigned to them and

the repulsion between clusters is modeled separately. In contrast to a probabilistic clustering algorithm the
membership degree can be interpreted as a measure of similarity to a cluster. The repulsion between clusters
avoids the problems of possibilistic cluster analysis as described above. γ is used to weight the two opposite
objectives, i.e., that the distance between clusters and data assigned to them should be minimized and that the
distance between clusters should be maximized.

3 Test Examples

We used the well-known iris data set [7] for testing our algorithm. We used only the attributes petal length
and petal width, since these carry the most information about the distribution of the iris flowers. Fig. 2 shows
the classification obtained with the probabilistic fuzzy c-means algorithm. This result clearly demonstrates the
partitioning property of the probabilistic algorithm. The data set is divided into three clusters. Fig. 3 shows the
classification obtained with the possibilistic fuzzy c-means algorithm. Only two clusters are detected because
the possibilistic algorithm is not forced to partition the data. As shown in section 1 the two clusters on the
right are almost identical. The cluster on the left is detected, because it is well separated and thus forms a local
minimum of the objective function.

Fig. 4, 5, 6, and 7 show the results of minimizing the objective function 8 and fig. 8, 9, 10, and 11 the
results of minimizing the objective function 11 for different values of γ. The classification is computed using
possibilistic membership degrees as described in section 2. However, in contrast to standard possibilistic cluster
analysis, three clusters are detected. Using cluster repulsion leads to a classification similar to the result of
probabilistic clustering. We computed the classification with several values for γ. The method seems to be very
robust with respect to the choice of the weighting factor γ.

4 Conclusion and Future Work

In this paper we presented an approach for possibilistic fuzzy cluster analysis that is based on data attracting
cluster centers as well as cluster centers repelling each other. This approach combines the more intuitive
membership degrees of possibilistic fuzzy cluster analysis (since they can be interpreted as similarities) with the
partitioning property of probabilistic cluster analysis. By this we combine the advantages of both approaches.



Figure 4: Iris dataset classified with approach based
on objective function (8). γ = 0.1. Attributes petal
length and petal width.

Figure 5: Iris dataset classified with approach based
on objective function (8). γ = 0.5. Attributes petal
length and petal width.

Figure 6: Iris dataset classified with approach based
on objective function (8). γ = 1. Attributes petal
length and petal width.

Figure 7: Iris dataset classified with approach based
on objective function (8). γ = 10. Attributes petal
length and petal width.

In the future we plan to extend the approach presented in this paper to other fuzzy clustering algorithms
as, for instance, the Gustafson-Kessel algorithm. Furthermore we plan to study how to extend it to deal with
classified data. In [11] this was done using a repulsion between data and clusters belonging to different classes.
However, this can also be done by a possibilistic clustering algorithm as described in this paper with weights
γequal class and γdifferent classes. Another idea would be to use a probabilistic fuzzy clustering algorithm with a
repulsion between clusters belonging to different classes as described in this paper.
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Figure 8: Iris dataset classified with approach based
on objective function (11). γ = 3. Attributes petal
length and petal width.

Figure 9: Iris dataset classified with approach based
on objective function (11). γ = 5. Attributes petal
length and petal width.

Figure 10: Iris dataset classified with approach based
on objective function (11). γ = 10. Attributes petal
length and petal width.

Figure 11: Iris dataset classified with approach based
on objective function (11). γ = 20. Attributes petal
length and petal width.
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