
Prototype Construction for Clustering of
Point Processes based on Imprecise Synchrony

Christian Braune1 Christian Borgelt2

1Otto von Guericke University (Magdeburg)
Universitätsplatz 2, 39106 Magdeburg, Germany

cbraune@ovgu.de
2European Centre for Soft Computing

c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
christian@borgelt.net

Abstract

We consider the task to cluster realizations of point
processes, that is, lists of points in time. Our guid-
ing principle is that two such lists are the more sim-
ilar, the more (approximately) synchronous points
they contain. This task occurs in the analysis of
parallel spike trains in neurobiology, where it arises
from the desire to detect assemblies of neurons,
which are characterized by the synchronous spik-
ing activity they exhibit. While earlier approaches
along similar lines employed mainly hierarchical ag-
glomerative clustering, based on distance measures
for spike trains, we try to make prototype-based
clustering approaches (like (fuzzy-)c-means cluster-
ing) applicable by proposing a method to construct
cluster prototypes. For this we draw on an idea that
is inspired by mountain clustering. In addition, we
adapt a method that was originally developed for
outlier detection in order to actually single out rele-
vant groups of related realizations of point processes
in front of a background of noise, and thus to iden-
tify neuron assemblies in parallel spike train data.

Keywords: clustering, prototype, distance, point
process, spike train analysis, temporal imprecision

1. Introduction

Point processes are (random) processes that pro-
duce isolated points, most commonly in time, but
sometimes also in (geographical) space [11]. They
are often used to describe event sequences or event
locations, like incoming phone calls, the arrival of
customers, or the places of lightning strokes. The
application domain that motivated our investiga-
tion is the analysis of (parallel) spike trains in neu-
robiology [19]. In this domain the spikes (impulses,
action potentials) emitted by a neuron are modeled
as a point process (in time).
While it is fairly well understood how individual

neurons work and are triggered to emit impulses,
comparatively little is known about how networks of
neurons process information. Among several com-
peting theories, cell assemblies have been suggested

as the building blocks of higher-level neural pro-
cessing [22]. Such assemblies are expected to ex-
hibit synchronous spiking activity, that is, now and
then they emit spikes jointly. Since it is possible
nowadays, due to recent technological advances, to
record the impulses of hundred(s) of neurons in par-
allel [9], the desire arises to test the fairly popular
cell assembly hypothesis by analyzing recorded par-
allel spike trains with the objective of detecting the
predicted synchronous spiking activity.

The core challenges of this detection task are tem-
poral imprecision and selective participation. The
former means that the joint spiking cannot be ex-
pected to be perfectly synchronous, which is par-
tially due to limitations of the recording equipment
and the necessary preprocessing steps, but likely
also caused by imprecisions in the underlying neu-
ral process. The latter is due to similar reasons and
requires us not to expect to see a spike from every
neuron in an assembly in every joint spiking event.
Rather a varying subset of the neurons comprising
the assembly may participate.

Furthermore, detecting synchronous spiking ac-
tivity can be addressed (at least) on the following
different levels: (a) test whether it is present, pos-
sibly with a lower bound on the number of involved
neurons, but without identifying the participating
neurons (e.g. [34, 35, 28]); (b) test for individual
neurons whether they participate in synchronous
spiking activity, but without identifying the groups
of correlated neurons [3]; (c) actually identify the
members of cell assemblies that exhibit synchronous
spiking activity (e.g. [18, 17]).

Our approach falls into the third category and
is related to the clustering approach of [17], which
can be seen as a restricted version of the older,
enumeration-based Accretion algorithm [18]. The
core idea of both is to measure the distance be-
tween two neurons (or sets of neurons) by the p-
value of an independence test (e.g., Pearson’s χ2).
The test statistic is computed from the counters of
a 2 × 2 contingency table, which is derived from
time-binned data, where using time bins of a certain
length is meant to cope with the temporal impreci-
sion problem. In [17] the p-values are then used as

the distances in a hierarchical agglomerative clus-
tering algorithm [33, 25] in which cluster merging
is terminated as soon as the (remaining) p-values
exceed a user-specified significance level. Unfortu-
nately, this renders the detection performance very
sensitive to accidental characteristics of the data,
which may let it choose bad initial (pair) mergers.
The enumeration approach of [18], which is related
to frequent item set mining [2], suffers less from this
problem (although it is not free of it either), but is
computationally much more expensive.
Some of the drawbacks of the mentioned meth-

ods can be overcome by a prototype-based cluster-
ing algorithm [1, 21, 6, 26, 7, 8, 23], which does
not choose early and irrevocably that two neurons
(or their spike trains) have to be in the same clus-
ter. However, to apply such an algorithm it is not
enough to have a measure for the distance of two
spike trains; we also need a way of constructing a
prototype. This is the first contribution of this pa-
per: we propose a way of constructing a prototype
for clustering the realizations of point processes,
which takes temporal imprecision into account.

An obvious alternative would be a medoid-based
approach: choose the most central spike train of
each cluster as its prototype. However, this taints
prototypes with the accidental, non-synchronous
spikes of the chosen spike trains. Therefore we re-
frain from such an approach and opt for an actual
construction procedure that generates a spike train
like object that need not occur in the data itself.

The idea underlying our prototype construction
approach is inspired by mountain clustering [37]
and motivated by the fact that (approximately) syn-
chronous spikes signify the similarity of spike trains.
That is, we obtain a prototype—as a list of (time)
intervals—by finding the (highest) mountains in a
step function resulting from summing, over all neu-
rons, the influence functions induced by their spikes
and cutting these mountains at an appropriate level.

The second contribution of this paper concerns
the fact that it is likely that most of the recorded
neurons are merely background noise, while only
few recorded neurons may form one or more cell
assemblies. Therefore we need a method that sin-
gles out groups of relevant clusters (i.e. sets of spike
trains, not single spikes) while ignoring unrelated
background noise. For this we adapt a procedure
that was suggested originally as an outlier detec-
tion method [31]. This method is inspired by noise
clustering [12, 13] and iteratively adapts the noise
cluster distance to contract the actual clusters to
the relevant group or groups. In our approach, how-
ever, we dispense with a noise cluster and merely re-
move in each step the data point farthest from the
cluster center(s). Although similar in spirit, this
method leads to a more robust behavior than using
an actual noise cluster (as we found in experiments).

The remainder of this paper is structured as fol-
lows: in Section 2 we review the time-binning ap-

proach, reveal its several drawbacks and explain
the influence region approach [29, 5], which we em-
ploy as an alternative. In Section 3 we briefly re-
view common distance measures for sets and binary
vectors [10] and how they can be generalized to a
continuous domain [5]. In Section 4 we introduce
our prototype construction method by deriving it
from mountain clustering [37]. Section 5 is devoted
to the actual assembly detection algorithm, which
combines our cluster prototype construction with a
stepwise removal of the farthest data points. The
actual assemblies are finally found by analyzing the
resulting sequence of farthest distances from the
prototype. In Section 6 we report about experi-
ments on artificially generated data to demonstrate
the performance of our method. Finally, in Sec-
tion 7 we draw conclusions from our discussion.

2. Temporal imprecision

In the most common approach to handle the tem-
poral imprecision of synchronous spiking, the spike
trains are discretized with a user-specified time bin
length, thus turning them into binary vectors, one
for each recorded neuron: either a time bin contains
a spike of a neuron or it does not.

Unfortunately, such time binning, especially the
exact placement of the boundaries of the time bins,
has unintuitive effects: two spikes that are almost
as far apart as the time bin length are seen as syn-
chronous if they fall into the same time bin, while
two spikes that are close(r) together, but on differ-
ent sides of a time bin boundary, are regarded as
not synchronous (boundary problem). As a conse-
quence, shifting the start time of the first bin may
change which spikes are seen as synchronous and
thus may lead to considerably different results. Fur-
thermore, the notion of synchrony underlying this
approach is bivalent: two spikes are either seen as
synchronous or not (bivalence problem). There is no
concept of a “degree of synchrony” that could reflect
how precise the spike synchrony is, even though it is
not implausible to assume that spikes that are close
together in time create a higher net input for down-
stream neurons than spikes that are farther apart
and thus may be more effective in generating output
spikes in downstream neurons. Finally, two spikes
may fall into the same bin. Since it is only consid-
ered whether a neuron produces a spike in a time
bin and thus multiple spikes (of the same neuron) in
the same bin are reduced to one (so-called clipping),
the binning procedure reduces the total number of
spikes. Although the impact of this is usually not
very severe (at least if sufficiently short time bins
are used), it may still lose relevant information.

As an alternative to time binning we introduced
so-called influence maps [5, 29]: for each spike s
of a spike train S an interval [s − 1

2 ∆t, s + 1
2 ∆t]

is created, which describes the region in which the
spike may be seen as synchronous to spikes of other

trains (i.e., other neurons). Formally, the function

fS(t) = 1, if ∃s ∈ S : t ∈ [s− 1
2 ∆t, s+ 1

2 ∆t] (1)

describes the influence function of a spike train S =
{s1, . . . , snS

}, which is 1 for every time t that can
be covered by an influence map of S. Alternatively,
one may simply collect all intervals that are gener-
ated by the spikes as an interval list and then merge
overlapping intervals into one larger interval.
Note that influence maps essentially allow us to

place time bins dynamically, centered around each
spike instead of having fixed bin boundaries. In
such a way the degree of synchrony between two
spikes can be measured by calculating the overlap
between their influence maps. The following section
describes how we can exploit this to calculate the
distance or similarity of two spike trains.

3. Distance measures

If the spike trains are discretized using conven-
tional binning, the result can be interpreted as a
high-dimensional binary vector. Each component
of such a vector corresponds to a bin and its entry
to whether the bin contains a spike or not. There
is an abundance of different distance or similarity
measures that can be used to compare such collec-
tions of dichotomous variables, like, for example,
the Jaccard Index [24], the Hamming distance [20]
or Dice’s measure of association [14] (cf. Table 1).
These measures can easily be generalized to the con-
tinuous domain of spike trains (or rather the inter-
val lists representing them based on influence maps
around spikes) by replacing the dichotomous vari-
ables with a continuous domain. For instance, the
Hamming distance is the number of disagreements
between two binary vectors, that is, the number
of components in which either the first vector is 0
and the second is 1 or vice versa. These cases can
be denoted as n01 and n10, respectively, were each
of these quantities contains the number of compo-
nents of two vectors ~a and ~b that fulfill the above
conditions. The quantities n00 and n11 can be de-
fined analogously as the number of components in
which both vectors are zero or both are one, respec-
tively. All four quantities represent the entries in a
contingency table derived from the binary vectors,
in which n11 alone represents the “degree of syn-
chrony” mentioned in Section 2.
With these four quantities the (normalized) Ham-

ming distance of two binary vectors is defined as

dHamming(~a,~b) = n01 + n10

n00 + n01 + n10 + n11
. (2)

To generalize these measures to the continuous do-
main we simply replace the quantities n00, n01, n10
and n11 by the amount of overlap between the cor-
responding interval lists of two spike trains. As n11
usually describes the number of components that
are 1 in both vectors, it now describes the total

length of all intersections of all pairs of intervals
drawn from either interval list. Technically, we have

n11 = 1
∆t

∫ T

0
f

(11)
S1S2

(t)dt,

where T is the considered duration of time and

f
(11)

S1S2
(t) = 1, if ∃s ∈ S1 : t ∈ [s− 1

2 ∆t, s+ 1
2 ∆t]

∧ ∃s ∈ S2 : t ∈ [s− 1
2 ∆t, s+ 1

2 ∆t].

The other three quantities are defined in an analo-
gous fashion using functions f (00)

S1S2
, f (01)

S1S2
and f (10)

S1S2
.

4. Prototype construction

Generating a prototypical point for a set of points
in a metric space does not pose much of a problem
as one can always use the (weighted) mean of the
points. However, for spike trains—or the interval
lists representing them—such a construction is not
possible without further effort. We already inves-
tigated generating a metric representation of spike
trains in [5], but this is a costly procedure. In ad-
dition, although it yields a suitable representation,
the results yields no intuitive representation of a
spike train and the mapping onto a metric space
is not reversible. Therefore we use here a different
approach that can cope with temporal imprecision
and yields a representation of the prototype within
the context of spike trains as well.

To construct the prototype we use the function
from Equation 1 for every spike train considered for
the prototype and sum them up into a step func-
tion. To allow for fuzzy clustering to be performed
with these prototypes we incorporate weights into
the function such that spike trains can contribute
differently to the joint influence function:

fS(t) =
∑

Si∈S
wifSi

(t), (3)

where S is the set of spike trains considered and
wi are the weights with which they enter the pro-
totype construction. Since the sum of these spike
trains can easily cover the whole time frame [0, T],
we need some way to choose a proper set of inter-
vals that represents the prototype appropriately and
can still be interpreted as a spike train. For this
several different possibilities exist, such as choosing
only those intervals in which the step function is
maximal. However, this has the obvious disadvan-
tage that there may exist intervals in which more
than only the assembly neurons are active and thus
we may introduce several false positive classifica-
tions into our algorithm. The resulting interval list
may also contain considerably fewer intervals as the
spike trains that contribute to the prototype (pos-
sibly even just one), and therefore one could argue
that it is not a “typical” spike train itself. Choosing
an (arbitrary) threshold lower than the maximum
results in a broader coverage of the recorded period

Jaccard [24] dJaccard = n10+n01
n11+n10+n01

Tanimoto [32] dTanimoto = 2(n10+n01)
n11+n00+2(n10+n01)

Dice [14] dDice = n10+n01
2n11+n10+n01

Correlation [16] dCorrelation = 1
2 −

n11n00−n01n10

2
√

(n10+n11)(n01+n00)(n11+n01)(n00+n10)

Yule [38] dYule = n01n10
n11n00−n01n10

Hamming [20] dHamming = n01+n10
n∗∗

Table 1: Different distance measures used for binary vector comparison.

and may lead to a better representation of the con-
tained spike trains. One possibility is to preserve
all the intervals in which more than the average
number of spike trains (plus a user-specified factor
times the standard deviation) are active. These in-
tervals would be the “mountain tops” we are trying
to single out and which the mountain clustering al-
gorithm [37] inspired us to look for. Mountain clus-
tering looks for local maxima and associates them
with cluster centers. We draw from this insight that
we can try to associate coincident spikes from the
step function with local maxima.
Another alternative, which we choose for our pur-

poses here, is to select the threshold in such a
way that the number of resulting intervals roughly
matches the average number of intervals present in
the original spike trains. To find such a threshold,
we search from the top for the lowest cut level that
leads to a prototype containing no more intervals
than the average number of intervals in the partic-
ipating interval lists. This renders the prototype a
representative of a fairly “typical” spike train, not
only in terms of the number of intervals, but also
in the locations of these intervals. In order to en-
sure even better correspondence to a “normal” spike
train, we expand the intervals of the prototype that
are shorter than ∆t to a width of at least ∆t each,
because this is the minimum width of an interval in
an influence map representation of a spike train.

5. Assembly detection

With the ability to construct a prototype from a
set of spike trains that again is an interval list (like
the spike trains itself after placing influence regions
around spikes), and a way to calculate distances be-
tween interval lists, we can begin to detect neural
assemblies in spike train data. For this we propose
the following algorithm: first we generate a pro-
totype from all spike trains available and calculate
the distance from each spike train to this prototype.
The spike train that is farthest from the prototype is
then removed from the spike train set. Its distance
is stored and we repeat the process of computing
a new prototype and removing the spike train far-
thest from it for the remaining spike trains until no
spike train is left or the remaining number of spike
trains is smaller than a user-specified threshold (for

example, the minimum size of a group of neurons
we are willing to accept as an assembly).

Note that this procedure is similar to the outlier
detection method proposed in [31], only that we al-
ways remove the one farthest spike train, while in
[31] the distance to a noise cluster is slowly reduced.
The difference consists mainly in the fact that in our
setting reducing a distance to a noise cluster tends
to remove multiple spike trains in one step (also
due to the changes of the prototype brought about
by removing a spike train), but we need a higher
resolution (smaller step width) to properly identify
assemblies. Thus we cannot and need not construct
a real noise cluster and do not need to calculate
weights or degrees of membership and can consider
all weights as 1.0 for future calculations. However,
it is clearly possible to extend our method so that
it uses a noise cluster or multiple clusters for ac-
tual assemblies. We leave the investigation of this
obvious possibility for future work, though.

Note also that with this procedure the neurons
that hardly contribute to the highest peaks in the
step function (cf. Equation 3) are removed first
and only those neurons remain that share a lot
of intervals with each other, that is, which have a
lot of (approximately) synchronous spikes. At the
point when only neurons belonging to an assembly
are present, they all become fairly similar to the
prototype. Therefore the stored farthest distance
(recorded when the spike train farthest from the
prototype is removed) is usually smaller than the
distances of spike trains removed earlier.

Unfortunately just looking for the largest drop in
the stored distances does not lead to satisfactory
results as this drop usually occurs after several as-
sembly neurons have already been removed. This
happens because the assembly neurons do not only
share their coincident spikes from joint activity but
some of them may also show similar behavior within
their background firing. These spike trains appear
even more similar to each other than those within
the assembly already do. Just looking at the largest
difference between the distances at which two con-
secutive spike trains are removed thus favors smaller
assemblies and leads to many false negative results.

Should the probability with which the assem-
bly neurons participate in a particular synchronous

0 20 40 60 80 100
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

delta*sqrt(n)
delta
assembly
kink

Figure 1: Differences of distances of removed spike
trains to their prototypes weighted (blue) and un-
weighted (green). Copy probability is 1.0.

0 20 40 60 80 100
0.1

0.0

0.1

0.2

0.3

0.4

delta*sqrt(n)
delta
assembly
kink

Figure 2: Differences of distances of removed spike
trains to their prototypes weighted (blue) and un-
weighted (green). The highest peak in the green
line obviously does not refer to the assembly. Copy
probability is 0.6.

spiking event be less than 1.0, we also face the prob-
lem that subsets of the real assembly may show
such behavior even at those places where there is
actual synchronous activity. Reducing the set of
spike trains to such a subset also leads to a signif-
icant drop in the observed distances, which might
be mistaken for an assembly indicator.
Weighting the difference by the number of neu-

rons participating in the prototype (or the square
root of this) improves the results drastically and
leads to a method favoring larger assemblies. How-
ever, the drop in distances from the maximum dis-
tance to the first removed spike train may be so
large that weighting it even with only the square
root of the total number of spike trains may still be
larger than the drop we are actually looking for.

However, when looking at plots of the distance
curves (see next section), it becomes obvious that
there is a kink present, which indicates where the

0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

Figure 3: Weighted distances of removed spike
trains together with the identification of the kink
point. Copy probability is 1.0.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

20

40

60

80

100

Figure 4: Weighted distances of removed spike
trains together with the identification of the kink
point. Copy probability is 0.6.

differences between subsequent distances become
larger on average. This kink can be detected by
a simple algorithm: first we find the point in the
data that is farthest from an imaginary line drawn
from the first to the last point. This point is used
as a seed point. For a certain number of split points
on both sides of the seed point a linear regression is
performed (including the split point in both point
sets) and the angle between the regression lines is
calculated. The split point that yields the largest
angle between the two regression lines is selected as
the best split point. The intersection between the
regression lines resulting from this best split point
is the kink point, which we use as the starting point
for our assembly detection: only drops below the
number of neurons indicated by the kink point are
taken into account and the largest drop is used to
identify the cluster.

6. Experiments

Acquiring spike trains from living specimen poses
two major problems. First, beside ethical reasons,
collecting parallel spike trains is a costly procedure
that makes it nearly impossible to gather enough
data to get reliable results. Second, we do not
know which parameters truly occur in such data
and therefore cannot validate the results we might
see. Due to this we use artificially generated data
sets to test and validate our algorithm. For this
each spike train is modeled as a stationary Poisson
process.1 Spike trains that belong to neurons that
form an assembly have their background firing rates
reduced such that the overall firing rate matches
the background firing rate of non-assembly neurons.
Coincident spikes are generated by a mother process
with either a fixed firing rate or a fixed number of
spikes generated. The spikes of this process are then
copied into the spike trains that form an assembly.
As both processes are Poisson processes the result-
ing process is still a Poisson process. Spike times
are sampled by retrieving the inter-spike intervals,
i.e. the time between two consequent spikes, from an
exponential distribution until the first spike would
have to be placed outside the required length of the
spike train. To model the temporal imprecision (jit-
ter) of the spike times all spikes are moved by up to
± 3ms independent of each other.

For our experiments every trial contained 100
parallel spike trains with an assembly of 20 neu-
rons injected into background firing with a rate of
20Hz. The number of coincidences within the as-
sembly was fixed at 50 which corresponds with a
coincidence rate of 5Hz. Throughout the different
experiments we varied the copy probability from 1.0
(like the so-called single interaction process (SIP),
see [27]) down to 0.6 (any copy probability less than
one is usually referred to as a multiple interaction
process (MIP), see [27]), that is, 40% of all syn-
chronous spiking information is lost.
As we know from the generating procedure which

neurons belong to an assembly we can use external
cluster evaluation measures such as the Rand In-
dex [30] to assess the quality of our method. The
results are shown in Figure 5.

As we can see, we get nearly perfect classifica-
tion results for copy probabilities of 1.0 and 0.8 and
even if 40% of the coincidence information is lost,
the majority of results is still favorable. The classi-
fication we use here uses the labels assigned to each
single neuron. Commonly used are also measures
that consider it a (true) positive result if either all
assembly neurons have been found or no additional
neuron has been found. Using any of these measures
would even increase the quality of our method, espe-
cially in the first two cases, where mostly either one

1While Poisson processes are not too far from reality, the
stationarity of such spike trains may be debatable, but should
be acceptable as a setting for a fundamental evaluation.

1.0 0.8 0.6

Copy Probability

1.0

0.5

0.0

0.5

1.0
Adjusted Rand Index

Figure 5: Adjusted Rand Index for each 1000 ex-
periments with varying copy probabilities.

1.0 0.8 0.6

Copy Probability

1.0

0.5

0.0

0.5

1.0
Adjusted Rand Index

Figure 6: Adjusted Rand Index for each 1000 ex-
periments with varying copy probabilities at only
6s length.

or two additional neurons were present or missing.
Each of the alternative measures here would rank
these results higher than the Rand Index does.

On the other hand we can see in Figure 6 how the
length of the recorded process influences the results.
In these examples only 6 seconds of spike train data
were generated and though the results are still very
good they are significantly worse than in the pre-
vious case. This is due to the reduced number of
coincidences that we are able to observe.

7. Conclusion

In this paper we proposed a method to construct
cluster prototypes from a set of realizations of point
processes. The core idea underlying our approach
is to handle temporal imprecision by influence re-
gions around each point, so that each realization is
described by a list of intervals or, in a more general
setting, by fuzzy sets. Summing the representing
interval functions over the realizations that are as-
signed to a cluster prototype yields a step function.

By choosing an appropriate cut, which singles out
the “mountain tops” (and thus areas of many ap-
proximately synchronous points), we then construct
a prototype that is also a list of intervals. As a
consequence, it can be compared directly to the in-
terval lists representing the original data, using dis-
tance measures that are natural continuous gener-
alizations of well-known binary distance measures.
With these ingredients we can execute prototype-
based clustering algorithms like (fuzzy-)c-means.
Inspired by the idea of a noise cluster to capture

noise and outliers, so that they do not affect the
actual grouping, and the idea of adapting the noise
cluster distance to contract the actual clusters to
the relevant groups, we finally derived a method for
detecting neuron assemblies in parallel spike train
data: in a similar spirit we iteratively remove the
farthest spike train and recompute the cluster pro-
totype. The actual assemblies are then found by an-
alyzing the resulting sequence of largest distances.
Our experiments show that this method is able

to handle both core problems, namely temporal im-
precision and selective participation, very well and
is able to detect neural assemblies even under fairly
unfavorable conditions.

Acknowledgment

This work was partially supported by the Span-
ish Ministry for Economy and Competitiveness
(MINECO Grant TIN2012-31372).

References

[1] G.H. Ball and D.J. Hall. A Clustering Tech-
nique for Summarizing Multivariate Data. Be-
havioral Science 12(2):153–155. J. Wiley &
Sons, Chichester, United Kingdom 1967

[2] D. Berger, C. Borgelt, M. Diesmann, G. Ger-
stein, and S. Grün. An Accretion Based Data
Mining Algorithm for Identification of Sets
of Correlated Neurons. 18th Annual Com-
putational Neuroscience Meeting: CNS*2009
10(Suppl 1), 18–23. 2009

[3] D. Berger, C. Borgelt, S. Louis, A. Morri-
son, and S. Grün. Efficient Identification
of Assembly Neurons within Massively Paral-
lel Spike Trains. Computational Intelligence
and Neuroscience 2010, Article ID 439648
(doi:10.1155/2010/439648). Hindawi Publish-
ing Corp., New York, NY, USA 2010

[4] C. Braune, C. Borgelt, and S. Grün. Find-
ing Ensembles of Neurons in Spike Trains
by Non-linear Mapping and Statistical Test-
ing. Advances in Intelligent Data Analysis X
LNCS 7014:55–66. Springer, Berlin / Heidel-
berg, Germany 2011

[5] C. Braune, C. Borgelt, and S. Grün. As-
sembly Detection in Continuous Neural Spike
Train Data. Advances in Intelligent Data Anal-

ysis XI LNCS 7619:78–89. Springer-Verlag,
Berlin/Heidelberg, Germany 2012

[6] J.C. Bezdek. Pattern Recognition with Fuzzy
Objective Function Algorithms. Plenum Press,
New York, NY, USA 1981

[7] J.C. Bezdek and N. Pal. Fuzzy Models for Pat-
tern Recognition. IEEE Press, New York, NY,
USA 1992

[8] J.C. Bezdek, J. Keller, R. Krishnapuram,
and N. Pal. Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing.
Kluwer, Dordrecht, Netherlands 1999

[9] G. Buzśaki. Large-Scale Recording of Neuronal
Ensembles. Nature Neuroscience 7(5):446–451.
Nature Publishing, New York, NY, USA 2004

[10] S.-S. Choi, S.-H. Cha, and C.C. Tappert. A
Survey of Binary Similarity and Distance Mea-
sures. Journal of Systemics, Cybernetics and
Informatics 8(1):43–48. Int. Inst. of Informat-
ics and Systemics, Caracas, Venezuela 2010

[11] D.J. Daley and D. Vere-Jones. An Introduc-
tion to the Theory of Point Processes. Springer,
New York, USA 1988

[12] R.N. Davé. Characterization and Detection of
Noise in Clustering. Pattern Recognition Let-
ters 12:657–664. Elsevier Science, Amsterdam,
Netherlands 1991

[13] R.N. Davé and R. Krishnapuram. Robust Clus-
tering Methods: A Unified View. IEEE Trans.
on Fuzzy Systems 5:270–293. IEEE Press, Pis-
cataway, NJ, USA 1997

[14] L.R. Dice. Measures of the Amount of Ecologic
Association between Species. Ecology 26:297–
302. Ecological Society of America, Ithaca, NY,
USA 1945

[15] J.C. Dunn. A Fuzzy Relative of the ISODATA
Process and Its Use in Detecting Compact
Well-Separated Clusters. Journal of Cybernet-
ics 3(3):32–57. American Society for Cybernet-
ics, Washington, DC, USA 1973 Reprinted in
[7], 82–101

[16] Edwards, A.: An introduction to linear regres-
sion and correlation. WH Freeman, New York,
NY, USA (1984)

[17] S. Feldt, J. Waddell, V.L. Hetrick, J.D. Berke,
and M. Ochowski. Functional Clustering Al-
gorithm for the Analysis of Dynamic Network
Data. Physical Review E 79:056104. American
Physical Society, College Park, MD, USA 2009

[18] G.L. Gerstein, D.H. Perkel and K.N. Subra-
manian. Identification of Functionally Related
Neural Assemblies. Brain Research 140(1):43–
62. Elsevier, Amsterdam, Netherlands 1978

[19] S. Grün and S. Rotter (eds.) Analysis of Paral-
lel Spike Trains. Springer-Verlag, Berlin, Ger-
many 2010

[20] R.V. Hamming. Error Detecting and Error
Correcting Codes. Bell Systems Tech. Jour-
nal 29:147–160. Bell Laboratories, Murray Hill,
NJ, USA 1950

[21] J.A. Hartigan and M.A. Wong. A k-
Means Clustering Algorithm. Applied Statistics
28:100–108. Blackwell, Oxford, United King-
dom 1979

[22] D.O. Hebb. The Organization of Behavior.
J. Wiley & Sons, New York, NY, USA 1949

[23] F. Höppner, F. Klawonn, R. Kruse, and
T. Runkler. Fuzzy Cluster Analysis. J. Wiley
& Sons, Chichester, United Kingdom 1999

[24] P. Jaccard. Étude comparative de la distribu-
tion florale dans une portion des Alpes et des
Jura. Bulletin de la Société Vaudoise des Sci-
ences Naturelles 37, 547–579. France 1901

[25] S.C. Johnson. Hierarchical Clustering Schemes.
Psychometrika 32:241–254. Psychometric Soci-
ety, USA 1967

[26] L. Kaufman and P. Rousseeuw. Finding
Groups in Data: An Introduction to Cluster
Analysis. J. Wiley & Sons, New York, NY,
USA 1990

[27] A. Kuhn, A. Aertsen, and S. Rotter. Higher-
order Statistics of Input Ensembles and the Re-
sponse of Simple Model Neurons. Neural Com-
putation 15:67–101. MIT Press, Cambridge,
MA, USA 2003

[28] S. Louis, C. Borgelt, and S. Grün. Complex-
ity Distribution as a Measure for Assembly
Size and Temporal Precision. Neural Networks
23(6):705–712. Elsevier, Amsterdam, Nether-
lands 2010

[29] D. Picado-Muiño, I. Castro-León, and
C. Borgelt. Fuzzy Frequent Pattern Mining
to Identify Frequent Neuronal Patterns in
Parallel Spike Trains. Advances in Intelli-
gent Data Analysis XI LNCS 7619:289–300.
Springer-Verlag, Berlin/Heidelberg, Germany
2012

[30] W. Rand. Objective criteria for the evaluation
of clustering methodsJournal of the American
Statistical association 336(66):846–850 Taylor
& Francis, 1971

[31] F. Rehm, F. Klawonn, and R. Kruse. A
Novel Approach to Noise Clustering for Out-
lier Detection. Soft Computing 11(5):489–494.
Springer-Verlag, Heidelberg, Germany 2007

[32] D.J. Rogers and T.T. Tanimoto. A Com-
puter Program for Classifying Plants. Sci-
ence 132:1115–1118. American Association for
the Advancement of Science, Washington, DC,
USA 1960

[33] R.R. Sokal and P.H.A. Sneath. Principles of
Numerical Taxonomy. Freeman Books, San
Francisco, CA, USA 1963

[34] B. Staude, S. Grün, and S. Rotter. Higher-
order Correlations in Non-stationary Parallel
Spike Trains: Statistical Modeling and Infer-
ence. Frontiers in Computational Neuroscience
4:16 (doi:10.3389/fncom.2010.00016). Fron-
tiers Media, Lausanne, Switzerland 2010

[35] B. Staude, S. Rotter, and S. Grün. Cu-

BIC: Cumulant Based Inference of Higher-
order Correlations in Massively Parallel Spike
Trains. Journal of Computational Neuro-
science 29(1–2):327–350 (doi:10.1007/s10827-
009-0195-x). Springer-Verlag, New York, NY,
USA 2010

[36] T. Tanimoto. IBM Internal Report (November
17, 1957)

[37] R.R. Yager and D.P. Filev. Generation of
Fuzzy Rules by Mountain Clustering. Journal
of Intelligent & Fuzzy Systems 2(3):209–219.
IEEE Press, Piscataway, NJ, USA 1994

[38] G. Yule. On the association of attributes in
statistics. Philosophical Transactions of the
Royal Society of London, Series A, 194:257–
319. Blackwell, Oxford, United Kingdom 1900

