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Abstract

This section investigates graphical modeling as a powerful framework for drawing
inferences under imprecision and uncertainty. We survey the semantical background
and relevant properties of relational, probabilistic, and possibilistic networks and
consider evidence propagation in such networks as well as methods for learning them
from data. Whereas the probabilistic Bayesian networks and Markov networks
are well-known for a couple of years, we focus on possibilistic networks as a
promising approach to the efficient treatment of information-compressed uncertain
and imprecise knowledge.
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F1.2.1 Introduction

The essential feature of inference is that a certain type of knowledge — knowledge about truth,
probability, (degree of) possibility etc. — is transferred from given propositions, events, states
etc. to other propositions, events, states etc. For example, in a (deductive) logical argument the
knowledge about the truth of the premises is transferred to the conclusion; in probabilistic inference
the knowledge about the probability of an event enters the calculation of the probability of other,
connected events and is thus transferred to these.

For the transfer carried out in an inference three things are necessary: knowledge to start from
(e.g. the knowledge that a given proposition is true), knowledge that provides a path for the transfer
(e.g. an implication, of which the given proposition is the antecedent), and a mechanism to follow
the path (e.g. the rule of modus ponens to establish the truth of the consequent of the implication).
Only if all three are given and fit together, the inference can be carried out. Of course, the transfer
need not always be direct. In logic, for example, arguments can be chained by using the conclusion
of one as the premise for another, and several such steps may be necessary to arrive at the desired
conclusion.

From this description we can understand what the main problems of modeling inference are.
They consist in finding the paths along which knowledge can be transferred and providing the proper
mechanisms for following them. (In contrast to this, the knowledge to start from is usually available
right away, e.g. from observations.) Indeed, it is well-known from applications of classical logic, that
automatic theorem provers spend most of their time searching for a path from the given facts to
the desired conclusion.

But we do not discuss (fuzzy) logical inference in this section — this is the topic of chapter ??
—, but deal with a framework for knowledge representation and inference under uncertainty that
is known as graphical modeling (Whittaker 1990). It owes its name to the fact that in it the paths
along which knowledge can be transferred are represented by a (hyper)graph. We study the basic
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ideas of this framework in section F1.2.3. Since it significantly simplifies multivariate data analysis,
applications of graphical modeling can be found in all areas in which dependent observations have
to be analyzed, for example, in regression analysis, spatial analysis, and expert systems.

As a consequence of its origin in multivariate statistics, the most advanced numerical approaches
to such a structured handling of uncertain information have been developed in the field of
probabilistic graphical models (Cheeseman and Oldford 1994). For example, Bayesian networks
(Pearl 1988) are established as a powerful tool for reasoning in knowledge based systems. They
provide a well-founded framework in the presence of uncertain, but precise data. Probabilistic
graphical models are discussed in section F1.2.5.

But graphical modeling is not restricted to probability theory, but can be used with other ways
of representing uncertain or imprecise information as well. In section F1.2.4 we inspect relational
graphical models (Kruse and Schwecke 1990, Dechter and Pearl 1992, Kruse et al 1994), which are
much simpler than probabilistic graphical models and closely related to the theory of relational
databases (Maier 1983, Ullman 1988). In contrast to probabilistic graphical models they can deal
with imprecise, i.e. multi-valued, but certain information.

Such models are important, since the explicit treatment of imprecise information is more and
more claimed to be necessary for industrial practice. But, on the other hand, the treatment of
uncertainty cannot be dispensed with completely. Therefore it is reasonable to investigate graphical
models related to alternative uncertainty calculi, the more so, as extending purely probabilistic
approaches to the treatment of imprecise information usually renders the corresponding inference
mechanisms computationally intractable. Under the aspect of efficiency, such uncertainty calculi
should provide a justifiable form of information compression and simplification in order to support
reasoning under uncertainty and imprecision without essentially affecting the expressive power and
the correctness of decision making procedures.

Possibility theory (Dubois and Prade 1988) is a good choice for systems that have to carry
out approximate instead of exact reasoning and that are characterized by a low sensitivity w.r.t.
slight changes of information. From this we may conjecture that possibility theory will grow up
to play the same role in the field of uncertain reasoning in knowledge-based systems as nowadays
fuzzy control plays as a tool for (information-compressed) interpolation between points in vague
environments in the field of control engineering (Kruse et al 1994). After a brief discussion of the
underlying interpretation of possibility distributions, which also clarifies our understanding of the
terms imprecision and uncertainty, we study possibilistic graphical models in section F1.2.6.

Graphical models of whatever kind are powerful tools for reasoning and easy to handle —
if they are available. But, unfortunately, constructing them by hand can be tedious and time-
consuming. To increase the usefulness of the graphical model approach, it is therefore desirable to
look for automatic induction methods for such models. Since there are promising results for all of
the discussed graphical model types, we mention some of them in the corresponding sections.

F1.2.2 Notation and presuppositions

Notation. Let V = {A(1), . . . , A(m)} be a finite set of attributes (or variables) A(k), which
are used to describe the section of the world under consideration. We assume the domains
dom(A(k)) = {a(k)

1 , . . . , a
(k)
nk } of these attributes to be finite sets of categorical values. (I.e. in our

discussion we confine to the important case of discrete graphical models.) With these presuppositions
the space in which all inferences take place is the joint domain Ω = dom(A(1))× · · · × dom(A(m)),
which is sometimes called the universe of discourse. Each possible state of the world is described
by a tuple (or vector) ω = (a(1)

i1
, . . . , a

(m)
im

), that contains the values which the attributes in V
assume for this state. For simplicity (and because we cannot distinguish between states for which
the describing tuples are identical) we identify each ω ∈ Ω with a possible state of the world.

Several times we need to refer to subspaces of Ω and projections of tuples ω to these subspaces.
A subspace ΩW ⊆ Ω is the joint domain of a subset W ⊆ V of attributes, i.e. ΩW =×A∈W dom(A).
A projection of a tuple ω ∈ Ω to this subspace is a tuple projVW (ω) = ωW ∈ ΩW , which contains
only the values of the attributes contained in W .

Presuppositions. For a situation in which we are about to draw inferences, we assume that the
considered section of the world is in a specific state, whose description ω0 ∈ Ω we do not know or do
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not know completely. The inferences to be drawn aim at identifying this state, i.e. at determining
the values in ω0.

To be able to carry out such inferences, we assume generic knowledge about dependencies
between the values of different attributes to be available, i.e. knowledge that provides paths for
the inferences. This knowledge may have been obtained from experts, textbooks, databases etc.
and is represented as a distribution D on Ω. This distribution assigns to each tuple ω ∈ Ω a
value dω, which expresses the probability or (degree of) possibility of the combination of values
present in ω. Depending on the values dω can have and the interpretation of these values we
distinguish between relations, probability distributions and possibility distributions. Details are
given in the corresponding sections below.

In addition to generic knowledge we need knowledge to start the inferences from — also called
evidential knowledge —, which consists in restrictions on the possible values of some of the attributes.
This knowledge could be obtained e.g. from observations made about the current state ω0. From
the evidential knowledge about the values of some attributes we infer, using the generic knowledge,
restrictions about the values of other attributes, thus narrowing the set of states that have to be
considered possible or likely for ω0.

It is obvious that storing the generic knowledge directly, i.e. the distribution D, would make
reasoning very simple, since then we only have to select all ω ∈ Ω compatible with the given
evidential knowledge and to combine the corresponding values dω appropriately. But, unfortunately,
if there are more than only very few attributes, the number of values dω to be stored in this case
would exceed any reasonable limit. Hence other ways of representing the generic knowledge have to
be found. One of them is graphical modeling, which we discuss in the next section.

F1.2.3 Graphical modeling

As already indicated in the introduction, in graphical modeling a directed or undirected
(hyper)graph is used to represent the generic knowledge about the domain in which the inferences
take place. Each vertex corresponds to an attribute, each edge to a dependence between attributes.
The edges are also the paths along which knowledge about the values of one attribute can be
transferred to other attributes. This is understandable, since no information can be transferred
from an attribute to another, which is independent of the first.

But even if attributes are dependent, they are sometimes unconnected in a graphical model.
The idea underlying this is that an inference, as already mentioned above, need not be direct. If
the dependence between two attributes is captured completely by the consecutive dependences on
a path connecting the two attributes via other attributes, a direct connection is not necessary. All
inferences from one of the attributes to the other can then be carried out along this path.

Conditional independence. Such situations can be characterized by the notion of conditional
independence (Dawid 1979, Pearl 1988). If two attributes get independent, if certain other attributes
are fixed, their dependence is not genuine, but only mediated through other attributes. Therefore
they need not be connected directly in the graph. Thus the topology of the graph is used to
represent an independence model, i.e. a set of conditional independence statements, of the domain
under consideration (Pearl 1988, Spirtes et al 1993).

Of course, not just any notion of conditional independence will do, since, as stated above, the
aim is to replace an inference along a direct connection between attributes by an indirect inference.
In order to allow such a replacement, the used notion of conditional independence has to satisfy
certain axioms, which are known as the semi-graphoid axioms (Dawid 1979, Spohn 1980, Pearl
and Paz 1987, Smith 1989). If we denote the independence of a set of attributes X from a set of
attributes Y given a set of attributes Z as X ⊥⊥ Y | Z, they can be written as
symmetry: (X ⊥⊥ Y | Z) =⇒ (Y ⊥⊥ X | Z)
decomposition: (W ∪X ⊥⊥ Y | Z) =⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)
weak union: (W ∪X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y | Z ∪W )
contraction: (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z ∪W ) =⇒ (W ∪X ⊥⊥ Y | Z)
The symmetry axiom states that in any state of knowledge Z, if Y tells us nothing new about X,
then X tells us nothing new about Y . The decomposition axiom asserts that if two combined items
of information are judged irrelevant to X, then each separate item is irrelevant as well. The weak
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union axiom states that learning irrelevant information W cannot help the irrelevant information
Y become relevant to X. The contraction axiom states that if we judge X irrelevant to Y after
learning some irrelevant information W , then X must have been irrelevant before we learned W .
Together the weak union and contraction properties mean that irrelevant information should not
alter the relevance of other propositions in the system; what was relevant remains relevant, and
what was irrelevant remains irrelevant (Pearl 1988). It is plausible that any reasonable notion of
conditional independence should satisfy these axioms.

Independence graphs. Given an appropriate notion of conditional independence, which must
be chosen specifically for the uncertainty calculus under consideration, an independence graph
can be defined. In such a graph the conditional independence of two sets of attributes given a
third is expressed by separation of the corresponding node sets by the nodes corresponding to the
conditioning attributes.

What is to be understood by ‘separation’ depends on whether the graph is directed or
undirected. If it is undirected, separation is defined as follows: If X, Y , and Z are three disjoint
subsets of nodes in an undirected graph (UG), then Z separates X from Y , iff after removing the
nodes in Z and their associated edges from the graph there is no path, i.e. no sequence of consecutive
edges, from a node in X to a node in Y . Or, in other words, Z separates X from Y , iff all paths
from a node in X to a node in Y contain a node in Z.

For directed graphs, which have to be acyclic, the so-called d-separation criterion is used
(Pearl 1988, Verma and Pearl 1990): If X, Y , and Z are three disjoint subsets of nodes in a directed
acyclic graph (DAG), then Z is said to d-separate X from Y , iff there is no path, i.e. no sequence of
consecutive edges (of any directionality), from a node in X to a node in Y along which the following
two conditions hold:
1. every node with converging edges either is in Z or has a descendant in Z,
2. every other node is not in Z.

With the described notions of separation, we can define the so-called Markov properties of
graphs (Whittaker 1990):
pairwise: Attributes, whose nodes are non-adjacent in the graph, are independent conditional on

all remaining attributes.
local: Conditional only on the attributes corresponding to the adjacent nodes, an attribute is

independent of all remaining attributes (see also Frydenberg 1990).
global: Any two subsets of attributes, whose corresponding node sets are separated by a third

node set, are independent conditionally only on the attributes corresponding to the nodes
in the third set (see also Lauritzen et al 1990).

Note that the local Markov property is contained in the global, and the pairwise Markov property
in the local.

Since the pairwise Markov property refers to the independence of only two attributes, it would
be most natural (at least for undirected graphs) to use it to define an independence graph: If two
attributes are dependent given all other attributes, there is an edge between their corresponding
nodes, otherwise there is no edge (Whittaker 1990). But, unfortunately, the three types of Markov
properties are not equivalent in general, and it is obvious that we need the global Markov property for
inferences from multiple observations. However, the above definition can be used, if — in addition
to the semi-graphoid axioms — the following axiom holds:
intersection: (W ⊥⊥ Y | Z ∪X) ∧ (X ⊥⊥ Y | Z ∪W ) =⇒ (W ∪X ⊥⊥ Y | Z)
The semi-graphoid axioms together with this one are called the graphoid axioms. If they hold for
a given notion of conditional independence, an independence graph can be defined via the pairwise
Markov condition, since the intersection axiom allows us to infer the global Markov property from
the pairwise. If the intersection axiom does not hold, the global Markov property has to be used to
define an independence graph.

It is obvious that an independence graph for a given domain is easy to find. For example, the
complete undirected graph, i.e. the graph in which every node is connected directly to every other,
always is an independence graph. But using a complete graph would not reduce the amount of data
to be stored (see below). Therefore, in graphical modeling, we have to add the condition that the
independence graph has to be sparse or even minimal, i.e. should contain as few edges as possible.
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It should be noted that directed acyclic graphs and undirected graphs represent conditional
independence relations in fundamentally different ways. In particular, there are undirected graphs
that represent a conditional independence that cannot be represented by a single directed acyclic
graph, and vice versa.

The quantitative part of a graphical model. The independence graph is also called the
qualitative part of a graphical model, since it specifies which attributes are dependent and which
are independent, but not the details of the dependences. How the latter information, which is called
the quantitative part of a graphical model, is described, depends again on the type of the graph.
In a directed acyclic graph, it is represented as a set of conditional distributions: one for each
attribute conditional on all of its parents in the graph. If an attribute does not have any parents,
its associated distribution simplifies to an unconditional distribution.

For an undirected graph, the quantitative part is represented as a set of marginal distributions:
one for each maximal clique of the independence graph, where a maximal clique is a fully connected
subgraph that is not contained in another fully connected subgraph. Because of this representation
an undirected hypergraph is often used instead of a normal undirected graph. The nodes of each
maximal clique of the normal graph are then connected by one hyperedge in the hypergraph.
Unfortunately, this approach suffers from the fact that the resulting hypergraph can have cycles.
This causes problems, because during an inference process the same information can travel along
more than one path and thus may be used several times to update the knowledge about an attribute.
If the inference mechanism is not idempotent, i.e. if a second incorporation of already included
information changes the result, this can invalidate the conclusions drawn.

In order to avoid these problems, the discussion is usually restricted to triangulated undirected
graphs, i.e. to graphs in which each cycle of length four or larger contains a chord, where a chord is
an edge between two non-consecutive nodes in the cycle. It can be shown that the maximal clique
hypergraph of a triangulated undirected graph is always a hypertree, i.e. does not contain any cycles.
In addition, this type of graphs is important, because it can be shown that a triangulated undirected
graph is isomorphic to a directed acyclic graph. Thus, with the restriction to triangulated graphs,
the difference between directed and undirected graphs in their capability to represent conditional
independences is removed.

It is worth noting that especially the representation using undirected graphs suggests to view
graphical modeling as a decomposition method: The (global) distribution D is decomposed into a set
of (local) distributions {DX1 , . . . ,DXn} on subspaces, which are the cross-products of the domains
of the attributes in a maximal clique. Because of this decomposition, global reasoning, i.e. drawing
inferences using D, can be replaced by local reasoning, which involves only the distributions DXk

.

Reasoning in graphical models. The reasoning process, which we describe here exemplary for
an undirected graph, basically is this: Information obtained e.g. by observations about the values
of an attribute is extended to the distributions on all hyperedges containing the attribute and then
projected to the intersections of these hyperedges with other hyperedges. From there it is extended
and projected again etc. until the information is distributed to all attributes.

A general local propagation algorithm for hypertrees has been developed for so-called valuation-
based systems (VBS) (Shafer and Shenoy 1988, Shenoy and Shafer 1990). The axiomatic framework
of a VBS (Shenoy 1989, Shenoy 1992a) can represent various uncertainty calculi such as probability
theory, Dempster-Shafer theory, and possibility theory. Conditional independence in VBSs has been
defined in (Shenoy 1991) and shown to satisfy the graphoid axioms in (Shenoy 1992b). The general
algorithm, which we cannot describe in detail here, has been implemented in the PULCINELLA
system (Saffiotti and Umkehrer 1991).

From this general discussion it follows that the main tasks of the following sections are to
state the possible values dω of the distribution to represent by a graphical model and to explain
their interpretation, to define the notion of a conditional distribution and using it the notion of
conditional independence, and finally to give an outline of the mechanisms with which inferences
can be drawn.

Learning graphical models from data. In addition, we make some remarks concerning methods
for the automatic induction of graphical models from data. Concerning such methods, problems
arise from the fact that various kinds of prior information can be available, expert knowledge as
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well as a database of sample cases, both of which should be considered in a unified framework.
However, we restrict ourselves to a purely data-oriented approach, i.e. we assume only a database
of observations to be given.

Since constructive methods are rarely available, data oriented learning methods nearly always
consist of two parts: a search method and an evaluation measure. The evaluation measure estimates
the quality of a given (hyper)graph and the search method determines which (hyper)graphs are
inspected. Often the search is guided by the value of the evaluation measure, since it is usually
the goal to maximize (or to minimize) its value. Commonly used search methods include optimum
weight spanning tree construction (Chow and Liu 1968, Dechter 1990) (for undirected graphs) and
greedy parent selection (Cooper and Herskovits 1992) (for directed graphs). Evaluation measures
depend on the underlying uncertainty calculus and are considered in the corresponding sections.

F1.2.4 Relational graphical models

In relational graphical models or relational networks the distribution D, which specifies the generic
knowledge about the domain under consideration, is the indicator function R of a relation. This
function maps elements of Ω to the set {0, 1}, i.e. R : Ω → {0, 1}. We have R(ω) = 1, if the
combination of attribute values in ω is considered to be possible (i.e. if ω is contained in the
relation), and R(ω) = 0 otherwise.

A conditional relation is also represented by an indicator function. For two disjoint subsets X
and Y of attributes the conditional relation over X given Y can be defined as follows:

R(ωX | ωY ) =
{

1, if ∃ω ∈ Ω : projVX(ω) = ωX ∧ projVY (ω) = ωY ∧R(ω) = 1,
0, otherwise.

With this definition established, it is easy to define relational conditional independence: Let X, Y ,
and Z be disjoint subsets of V . Then X is called conditionally independent of Y given Z w.r.t. R,
abbreviated X ⊥⊥R Y | Z, iff

∀ω ∈ Ω : R(ωX∪Y | ωZ) = min{R(ωX | ωZ), R(ωY | ωZ)} (F1.2.1)

Since R(· | ·) ∈ {0, 1}, it is also possible to use the product instead of the minimum.

Reasoning in relational networks. We restrict our outline of the inference mechanism in
relational networks to undirected independence graphs. In this case to each maximal clique with
underlying attribute set X a marginal relation with indicator function

RX(ωX) =
{

1, if ∃ω ∈ Ω : projVX(ω) = ωX ∧R(ω) = 1
0, otherwise

is assigned. Inferences are drawn by carrying out sequences of extension and projection operations
on these marginal distributions. For example, if the actual values of a subset Y ⊂ X of attributes are
observed, this information can be represented as a (one tuple) relation RY . This relation is used to
restrict the marginal relation RX by removing from it all tuples ωX , for which RY (projXY (ωX)) = 0.
From the obtained restricted relation R′

X the possible values of the attributes of a subset Z ⊂ X
can then be inferred by projecting the tuples in RX to Z, yielding a relation RZ . If Z ⊂ W , where
W is the underlying set of attributes of another maximal clique of the independence graph, the
constraints obtained for the possible values of the attributes in Z can be propagated by the same
steps to other attributes not contained in X (Kruse and Schwecke 1990, Kruse et al 1994).

Since the relational inference mechanism is idempotent, cycles in the hypergraph corresponding
to a given undirected independence graph can be tolerated. Nevertheless, cycles should be avoided,
because they can increase the running time of the inference process, since it may be that they have
to be traversed several times to yield the conclusion (Kruse et al 1994).

Learning relational networks from data. It can be shown that the natural join of all the
maximal clique relations of an independence graph G is the original relation R. Hence relational
graphical models represent a lossless join decomposition (Maier 1983, Ullman 1988) of the underlying
relation R, i.e.

R(ω) = min
X∈cliques(G)

RX(ωX), (F1.2.2)
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where cliques(G) is the set of all maximal cliques, each of which is represented by the set of attributes
whose corresponding nodes are contained in it. Hence the quality of a given (hyper)graph can always
be assessed by testing whether the natural join of its associated marginal relations yields the original
relation, and if it does not, by computing the number of additional tuples the join contains (Dechter
1990).

An obstacle for such an induction method is its complexity: If we are given a hypergraph H
and a relation R, then only in cases where H is tractable (for instance, where H is a hypertree)
one can decide in reasonable time whether H yields a lossless join decomposition of R. To select
from a class of hypergraphs a hypergraph yielding a lossless join decomposition of a given relation,
turns out to be an even harder problem, which is presumably intractable even in cases where each
individual member of the class is tractable (Dechter and Pearl 1992).

Hence, for efficiency, heuristic approaches have to be tolerated. For example, the marginal
distributions used by the hypergraph can be evaluated separately by computing the number of
occurring tuples in the subspace relative to the size of the subspace. This evaluation measure is
plausible, because it describes the fraction of Ω still considered possible by the information contained
in the marginal relation. Since the natural join of the marginal relations intersects these fractions,
and since a natural join of marginal projections can produce only additional tuples, a learning
algorithm should strive at minimizing this measure. Optimum weight spanning tree construction
can be used as a search method (Dechter 1990).

F1.2.5 Probabilistic graphical models

In purely probabilistic approaches quantitative knowledge about the dependencies between the
attributes in V is described by a probability distribution P on Ω. P (ω) = p ∈ [0, 1] means that the
combination of attribute values in ω has the probability p.

A conditional probability distribution is defined in the usual way, i.e. as

P (ωX | ωY ) =
P (ωX∪Y )
P (ωY )

.

Conditional independence is defined in accordance with the usual notion of stochastic independence
as follows: Let X, Y , and Z be three disjoint subsets of attributes in V . X is called conditionally
independent of Y given Z w.r.t. P , abbreviated X ⊥⊥P Y | Z, iff

∀ω ∈ Ω : P (ωX∪Y | ωZ) = P (ωX | ωZ) · P (ωY | ωZ) (F1.2.3)

whenever P (ωZ) > 0.
There is a large variety of probabilistic graphical models based on this definition, for

example influence diagrams used to represent decision processes (Smith 1989, Shachter 1990,
Heckerman 1991), Bayesian networks (Pearl 1986, Pearl 1988) and Markov networks (Lauritzen and
Spiegelhalter 1988, Pearl 1988). We restrict our discussion to the latter two, which are an advanced
and widely discussed framework for knowledge representation and propagation in probabilistic
expert systems.

Bayesian networks. The most popular kind of probabilistic graphical models in artificial
intelligence is the Bayesian network, also called belief network (Pearl 1986, Pearl 1988). A Bayesian
network consists of a directed acyclic graph and a set of conditional probability distributions
P (ωA | ωparents(A)), A ∈ V , where parents(A) is the set of attributes corresponding to the parents
of the node corresponding to attribute A.

A Bayesian network specifies a decomposition of the joint probability distribution P on Ω into
a set of conditional probability distributions: A strictly positive probability distribution P on Ω
factorizes w.r.t. a directed acyclic graph, if

P (ω) =
∏

A∈V

P (ωA | ωparents(A)). (F1.2.4)

In this case P satisfies the global Markov property (cf. section F1.2.3). It follows, that a Bayesian
network can also be seen as a graphical representation of a Markov chain.
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Since a Bayesian network is a directed graph, it is well-suited to represent direct causal
dependencies between variables. In many cases this is quite natural for knowledge representation,
e.g. in expert systems designed for diagnostic reasoning (abductive inference) in medical applications.

Markov networks. An alternative type of probabilistic graphical models uses undirected graphs
and is called a Markov network (Pearl 1988, Lauritzen and Spiegelhalter 1988). It represents Markov
random fields, which are used, for instance, in imaging and spatial reasoning (Besag et al 1991) and
in stochastic models for neural networks (Hertz et al 1991).

Similar to Bayesian networks it describes a decomposition of the joint probability distribution
P on Ω, but it uses a potential representation: A strictly positive probability distribution P on Ω
factorizes w.r.t. an undirected graph, if

∀X ∈ cliques(G) : ∃φX : P (ω) =
∏

X∈cliques(G)

φX(ωX), (F1.2.5)

where cliques(G) is the set of all maximal cliques, each of which is represented by the set of attributes
whose corresponding nodes are contained in it. The φX are strictly positive functions defined on
ΩX , X ⊆ V .

Reasoning in probabilistic networks. Oriented at the way the human mind reasons, (Pearl
1986) developed a local propagation algorithm that works in singly connected Bayesian networks,
the details of which we cannot present here. (Lauritzen and Spiegelhalter 1988) approached the
same problem from a purely mathematical point of view. Their method consists in transforming
a given directed acyclic graph into a triangulated undirected graph and creating from it a tree
whose vertices are the cliques of this triangulated graph. To propagate evidence, probabilities in
the original Bayesian network are updated by message passing between the vertices of this clique
tree. Again we cannot describe the method in detail. Flexible software tools using this method are,
for example, HUGIN (Andersen et al 1989, Jensen and Liang 1994) and BAIES (Cowell 1992).

A technique for local computations in hypertrees, which refers to the more general framework
of valuation-based systems (Shenoy 1989) (see section F1.2.3), was proposed in (Shenoy and Shafer
1990, Shafer and Shenoy 1988) and is implemented in PULCINELLA (Saffiotti and Umkehrer 1991).

Learning probabilistic networks from data. Because of the additional task of finding the
probabilities in the conditional or marginal distributions needed in the network, we have to
distinguish between quantitative and qualitative network induction — in contrast to learning
relational networks, where we only needed to consider qualitative network induction.

Quantitative network induction for a given network structure consists in estimating the
joint probability distribution P , where P is selected from a family of parameterized probability
distributions. A lot of approaches have been developed in this field, using methods such as maximum
likelihood, maximum penalized likelihood, or fully Bayesian approaches, which involve different
computational techniques of probabilistic inference such as the expectation maximization (EM)
algorithm, Gibbs sampling, Laplace approximation, and Monte Carlo methods. For an overview,
see (Buntine 1994, Spiegelhalter et al 1993).

Qualitative network induction consists in learning a network structure from a database of sample
cases. In principle one could use the factorization property of a probabilistic network to evaluate its
quality by comparing for each ω ∈ Ω the probability computed from the network with the relative
frequency found in the database to learn from. But just as for relational networks this approach is
usually much too costly.

Other methods are based on linearity and normality assumptions (Pearl and Wermuth 1993),
rely on the extensive testing of conditional independences (CI tests) (Verma and Pearl 1992), or
use a Bayesian approach (Cooper and Herskovits 1992, Lauritzen et al 1993). Unfortunately, the
first group is fairly restrictive, CI tests tend to be unreliable unless the volume of data is enormous,
and with an increasing number of vertices they soon become computationally intractable. Bayesian
learning requires debatable prior assumptions (for example, default uniform priors on distributions,
uniform priors on the possible graphs) and also tends to be inefficient unless greedy search methods
are used.

Nevertheless, several network induction algorithms have successfully been applied. The oldest
example is an algorithm to decompose a multi-variate probability distribution into a tree of two-
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dimensional distributions (Chow and Liu 1968). It uses mutual information as the evaluation
measure and optimum weight spanning tree construction as the search method.

Another example is the K2 algorithm (Cooper and Herskovits 1992), which uses a greedy parent
search and a Bayesian evaluation measure. Its drawback, which consists in the fact that it needs
a topological order of the attributes, can be overcome by a hybrid algorithm (Singh and Valtorta
1993), which combines CI tests (to find a topological order) and K2 (to construct the Bayesian
network with respect to this topological order). Unfortunately, K2 can deal only with complete and
precise data. The treatment of missing values and hidden variables is clear only from a theoretical
point of view (Cooper and Herskovits 1992).

A third algorithm, which uses a backward search strategy, is described in (Højsgaard and
Thiesson 1994). Several evaluation measures, which can be used with optimum weight spanning
tree construction and greedy parent search as well as other search methods, are surveyed in (Borgelt
and Kruse 1997).

F1.2.6 Possibilistic graphical models

Possibility distributions. A possibility distribution π on a universe of discourse Ω is a mapping
from Ω into the unit interval, i.e. π : Ω → [0, 1] (Zadeh 1978). From an intuitive point of view, π(ω)
quantifies the degree of possibility that ω = ω0 is true, where ω0 is the actual state of the world (cf.
section F1.2.2): π(ω) = 0 means that ω = ω0 is impossible, π(ω) = 1 means that ω = ω0 is possible
without any restrictions, and π(ω) ∈ (0, 1) means that ω = ω0 is possible only with restrictions, i.e.
that there is evidence that supports ω = ω0 as well as evidence that contradicts ω = ω0.

Several suggestions have been made for semantics of a theory of possibility as a framework for
reasoning with uncertain and imprecise data. Among the numerical approaches, we like to mention
possibility distributions as epistemic interpretations of fuzzy sets (Zadeh 1978), the axiomatic view
of possibility theory based on the concept of a possibility measure (Dubois and Prade 1988), Spohn’s
theory of epistemic states (Spohn 1990), possibility distributions as one-point coverages of random
sets (Nguyen 1978, Hestir et al 1991), contour functions of consonant belief functions (Shafer 1976),
falling shadows in set-valued statistics (Wang 1983), and possibility theory based on likelihoods
(Dubois et al 1993).

The view of a possibility distribution as an information-compressed representation of uncertain
and imprecise knowledge about a state ω0 of the world can be clarified in a random set framework
that generalizes traditional approaches like (Strassen 1964, Dempster 1967, Kampé de Fériet 1982).
Let (C, 2C , P ), C = {c1, c2, . . . , cm}, be a finite probability space and γ : C → 2Ω a set-valued
mapping. C is seen as a set of contexts that have to be distinguished for a set-valued specification
of ω0. The contexts are supposed to describe different physical and observation-related frame
conditions. P ({c}) is the (subjective) probability of the (occurence or selection of the) context c.

A set γ(c) is assumed to be the most specific correct set-valued specification of ω0, which
is implied by the frame conditions that characterize the context c. By ‘most specific set-valued
specification’ we mean that ω0 ∈ γ(c) is guaranteed to be true for γ(c), but is not guaranteed for
any proper subset of γ(c). The resulting random set Γ = (γ, P ) is an imperfect (i.e. imprecise and
uncertain) specification of ω0. Let πΓ denote the one-point coverage of Γ (the possibility distribution
induced by Γ), which is defined as

πΓ : Ω → [0, 1], πΓ(ω) = P ({c ∈ C | ω ∈ γ(c)}) .

In a complete modeling, the contexts in C must be specified in detail, so that the relationships
between all contexts cj and their corresponding specifications γ(cj) are made explicit. But if the
contexts are unknown or ignored, then πΓ(ω) is the total mass of all contexts c that provide a
specification γ(c) in which ω0 is contained, and this quantifies the possibility of truth of the statement
“ω = ω0” (Gebhardt and Kruse 1993b, Gebhardt and Kruse 1996a).

That in this interpretation a possibility distribution represents uncertain and imprecise
knowledge can be understood best by comparing it to a probability distribution and to a relation.
A probability distribution covers uncertain, but precise knowledge. This becomes obvious, if one
notices that a possibility distribution in the interpretation described above reduces to a probability
distribution, if ∀cj ∈ C : |γ(cj)| = 1, i.e. if for all contexts the specification of ω0 is precise. On
the other hand, a relation represents imprecise, but certain knowledge about dependencies between
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attributes. Thus, not surprisingly, a relation can also be seen as a special case of a possibility
distribution in the interpretation given above, namely if there is only one context. Hence the context-
dependent specifications are responsible for the imprecision, the contexts for the uncertainty in the
imperfect knowledge expressed by a possibility distribution.

From this distinction it is clear, that the uncertainty part can be excluded from the (information-
compressed) imperfect knowledge represented by πΓ by assuming α-correctness of Γ w.r.t. ω0.
α-correctness means that there exists a subset C ′ ⊆ C of contexts such that P (C ′) ≥ α and
∀c′ ∈ C ′ : ω0 ∈ γ(c′). In this case the α-cut [πΓ]α = {ω | πΓ(ω) ≥ α} of the possibility distribution
πΓ turns out to be the most specific correct set-valued specification of ω0 (Gebhardt and Kruse
1993a).

Operations on possibility distributions can also be performed within a pure random set
background (Kampé de Fériet 1982, Hestir et al 1991), but this has the disadvantage that it is
not in accordance with the extension principle (Zadeh 1975). From a semantical point of view
this principle has been claimed to be the adequate way of generalizing operations from crisp or
imprecise (multi-valued) data to the possibilistic setting (Dubois and Prade 1991, Kruse et al 1994).
Therefore it seems to be more appropriate to base the interpretation of possibility degrees on the
above mentioned concepts of α-correctness and maximum specificity. For an detailed discussion of
this view of possibility theory, we refer to (Gebhardt and Kruse 1993a, Gebhardt and Kruse 1995).
These papers justify the extension principle as a theorem in the underlying formal and semantical
framework. Special aspects of possibility measures for decision making are considered in (Gebhardt
and Kruse 1994).

Possibilistic networks. Although well-known for a couple of years (Hisdal 1978), a unique concept
of possibilistic independence has not been fixed yet. For some recent discussions, see (Farinas del
Cerro and Herzig 1994, Fonck 1994). In our opinion, the main problem is that possibility theory is
a calculus for uncertain and imprecise reasoning, the first of which is related to probability theory,
the latter to relational theory (see above). But due to their reference to different types of imperfect
knowledge, relational and probability theory lead to different concepts of independence, namely
lossless join decomposability and stochastic independence, respectively. Stochastic independence is
an uncertainty-based type of independence, whereas lossless join decomposability is an imprecision-
based type of independence. Since possibility theory addresses both kinds of imperfect knowledge,
notions of possibilistic independence can be uncertainty-based or imprecision-based. Hence there
are at least two ways of introducing and justifying them.

A more fundamental justification of the distinction between imprecision and uncertainty starts
from considering two levels of reasoning, namely the credal level, on which all operations on pieces
of knowledge take place, and the pignistic level, on which the final step of decision making follows
(Smets and Kennes 1994). Imprecision-based possibilistic independence is strongly oriented at
the credal level, applying the extension principle as the basic concept of operating on possibility
distributions. On this level normalization of possibility distributions is avoided, since it would
change absolute to relative degrees of possibility. In contrast to this, an uncertainty-based approach
to possibilistic independence refers to the pignistic level. Here decision making aspects are taken
into account and thus relative degrees of possibility of events are used. On this level, the need for
normalization is obvious.

With respect to this consideration in (de Campos et al 1995) two definitions of possibilistic
independence have been justified, namely uncertainty-based possibilistic independence, which is
derived from Dempster’s rule of conditioning (Shafer 1976) adapted to possibility measures,
and imprecision-based possibilistic independence, which coincides with the well-known concept of
possibilistic non-interactivity (Dubois and Prade 1988). The latter can be seen as a generalization
of lossless join decomposability to the possibilistic setting, since it treats each α-cut of a possibility
distribution like a relation.

Because of its consistency with the extension principle, we confine to possibilistic non-
interactivity. As a concept of possibilistic independence it can be defined as follows: Let X, Y ,
and Z be three disjoint subsets of variables in V . Then X is called conditionally independent of Y
given Z w.r.t. π, abbreviated X ⊥⊥π Y | Z, iff

∀ω ∈ Ω : π(ωX∪Y | ωZ) = min{π(ωX | ωZ), π(ωY | ωZ)} (F1.2.6)
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whenever π(ωZ) > 0, where π(· | ·) is a non-normalized conditional possibility distribution, i.e.

π(ωX | ωZ) = max{π(ω′) | ω′ ∈ Ω ∧ proj V
X(ω) = ωX ∧ proj V

Z (ω) = ωZ}.

Both mentioned types of possibilistic independence satisfy the semi-graphoid axioms (see
section F1.2.3). Possibilistic independence based on Dempster’s rule in addition satisfies the
intersection axiom (Fonck 1994). But note that the intersection axiom is related to uncertainty-
based independence. Relational independence does not satisfy this axiom, and therefore it cannot be
satisfied by possibilistic non-interactivity as a more general type of imprecision-based independence.

Similar to probabilistic networks, a possibilistic network can be seen as a decomposition
of a multi-variate possibility distribution. The factorization formulae can be derived from the
corresponding probabilistic factorization formulae (for Markov networks) by replacing the product
by the minimum.

Reasoning in possibilistic networks In section F1.2.3 we already mentioned valuation-
based systems (VBS), which can handle imperfect knowledge w.r.t. various uncertainty calculi,
possibility theory among them. Possibilistic independence in VBSs corresponds to uncertainty-
based independence based on Dempster’s rule. Hence, is this type of conditional independence is
chosen, the VBSs propagation algorithm (Shafer and Shenoy 1988, Shenoy and Shafer 1990) can be
used to draw inferences.

But if possibilistic non-interactivity is chosen as the notion of conditional independence in order
to be consistent with the extension principle, the VBS approach has to be slightly modified, since no
normalization takes place. The related local propagation algorithms for hypertree structures, which
we cannot describe in detail here, are presented in (Kruse et al 1994) and have been implemented in
the tool POSSINFER (Kruse et al 1994, Gebhardt and Kruse 1996a). They are closely related to the
projection-extension-mechanism described in section F1.2.4. Since this type of possibilistic inference
propagation is idempotent (just like relational mechanism), cycles in the underlying hypergraph can
be tolerated.

Learning possibilistic networks from data. Just as for relational and probabilistic networks,
it is possible in principle to estimate the quality of a given possibilistic network by exploiting its
factorization property. For each ω ∈ Ω the degree of possibility computed from the network is
compared to the degree of possibility derived from the database to learn from. But again this
approach can be costly.

Contrary to probabilistic networks, the induction of possibilistic networks from data has been
studied much less extensively. A first result, which consists in an algorithm that is closely related
to the K2 algorithm for the induction of Bayesian networks, was presented in (Gebhardt and Kruse
1995). Instead of the Bayesian evaluation measure used in K2, it relies on a measure derived from
the nonspecificity of a possibility distribution. Roughly speaking, the notion of nonspecificity plays
the same role in possibility theory that the notion of entropy plays in probability theory. Based on
the connection of the imprecision part of a possibility distribution to relations, the nonspecificity of
a possibility distribution can also be seen as a generalization of Hartley information (Hartley 1928)
to the possibilistic setting.

In (Gebhardt and Kruse 1996b) a rigid foundation of a learning algorithm for possibilistic
networks is given. It starts from a comparison of the nonspecificity of a given multi-variate possibility
distribution to the distribution represented by a possibilistic network, thus measuring the loss of
specificity, if the multi-variate possibility distribution is represented by the network. In order to
arrive at an efficient algorithm, an approximation for this loss of specificity is derived, which can be
computed locally on the hyperedges of the network. As the search method a generalization of the
optimum weight spanning tree algorithm to hypergraphs is used.

Several other heuristic local evaluation measures, which can be used with different search
methods, are presented in (Borgelt and Kruse 1997).

It should be emphasized, that, as already discussed above, an essential advantage of possibilistic
networks over probabilistic ones is their ability to deal with imprecision, i.e. multi-valued,
information. When learning possibilistic networks from data, this leads to the convenient situation
that missing values in an observation or a set of values for an attribute, all of which have to be
considered possible, do not pose any problems.
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