Learning Graphical Models with Hypertree Structure
Using a Simulated Annealing Approach

Christian Borgelt and Rudolf Kruse
Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg, Unive#giplatz 2, D-39106 Magdeburg, Germany

Abstract— A major topic of recent research in graphical models has learning time, even at the cost of a less exact representation of
been to develop algorithms to learn them from a dataset of sample cases. the domain under consideration. Therefore we suggest a learn-

However, most of these algorithms do not take into account that learned . . . . .
graphical models may be used for time-critical reasoning tasks and that in ing algorlthm that is based on the well-known paradlgm of sim-

this case the time complexity of evidence propagation may have to be re- Ulated annealing [15], [10] and that directly learns graphs with
stricted, even if this can be achieved only by accepting approximations. In - hypertree structure. In this way a transformation is not neces-

this paper we suggest a simulated annealing approach to learn graphical ; ; ;
models with hypertree structure, with which the complexity of the popu- sary and the complexny can be controlled at Ieammg time by

lar join tree evidence propagation method can be controlled at learning  '€Stricting the size of the cliques of the graph.
time by restricting the size of the cliques of the learned network.
[I. HYPERTREESTRUCTURE AND JOIN TREES

. INTRODUCTION As already mentioned above, a popular method for evidence
propagation in multiply connected networks is so-called join

In recent years graphical models [20], [13] — especiall . . X
Bayesian networks [16], [9] and Markov networks [12], buifree propagation [12], [9], [4]. Here we only review briefly

. me of the basic notions that are used in connection with this
also the more general valuation-based networks [18] andl

though to a lesser degree, the newer possibilistic networ[gethOd and which we need in the following.
[71, [3] — gained considerable popularity as powerful tools The idea of join tree propagation is to transform the graph of

to model dependences in complex domains and thus to ma%é;raphical model into a singly connected structure, namely a
inferences under uncertainty in these domains feasible. Th]é)In tree This is achieved by first modifying the graph in such

are based on the idea that under certain conditions a mulﬁj-ovay that it hasiypertree structureThis notion is defined by

. : o L o e so-calledunning intersection propertjl2]:
d|men5|ona_1l (probabl_ll_ty or p053|b|I|_ty) dls_trlb_utlo_n can be de- Definition 1: Let M be a finite family of subsets of a finite
composed into (conditional or marginal) distributions on lower. . . .
dimensional subspaces. This decomposition is represented QU qnd letm " M. M s said to have theunning in-
. . ' . t&¥section propertyff there is an ordering\/4, . .., M,, of the
a graph, in which each node stands for an attribute and eac
. . setsM; € M, such that
edge for a direct dependence between two attributes.
The graph represgntgtion also supports draw?ng 'im‘erenc'ex%’2 <i<m:3Ik1<k<i: MnN ( U Mj> C M.
because the edges indicate the paths along which information
about attribute values has to be transmitted, usually in the form
of local messages [9], [4]. However, in order to derive corredh undirected grapldr is said to havéwypertree structurdf all
evidence propagation methods, the graphs have to satisfy cpairs of nodes ofy are (possibly indirectly) connected
tain conditions. In general, cycles pose problems, because thayd the familyM of the node sets that induce the maximal
make it possible that the same information can travel on two efiques of G has the running intersection property. An order
more different routes to other attributes. In order to avoid erraf the cliques that demonstrates the running intersection prop-
neous results in this case, the graphs are often transformed iptty is called aonstruction sequender the graphd
singly connected structures, namely so-cajtad or junction The idea underlying the notion of hypertree structure is as
trees[12], [9], [4]. An important step in this transformation is follows: In normal graphs an edge connects only two nodes.
the construction of a graph with so-called hypertree structurelowever, we may drop this restriction and introdugger-
from which the join tree can easily be derived. graphs in which we havehyperedgeghat can connect any
Since constructing graphical models manually can be tewumber of nodes. It is very natural to use a hyperedge to con-
dious and time consuming, a large part of recent researchriect the nodes of a maximal clique, because by doing so we
graphical models has been devoted to learning them fromcan make these cliques easier to recognize. If the sets of nodes
dataset of sample cases [5], [8], [6], [7], [3]. However, mosthat are connected by hyperedges have the running intersection
known learning algorithms do not take into account that thproperty, then the hypergraph is, in a certain seasgclic
learned graphical model may later be used to draw time-criticRlonsequently, such hypergraphs are cdligoertrees
inferences and that in this case the time complexity of evidence There is a simple algorithm to turn a given graph into one
propagation may have to be restricted, even if this can only ltkat has hypertree structure, which is based on the factrthat
achieved by accepting approximations. The main problem @&ngulatingthe graph automatically ensures this property [19].
that during join tree construction edges may have to be addddere, however, we only need a test for this property [11]:
which can make the graph more complex than is acceptable, _
A clique is a complete subgraph (a subset of nodes together with the corre-

In such situations it |s.de5|rable that th_e complexity of the lo@ponding edges, so that each node is (directly) connected to all other nodes in
tree (and thus the evidence propagation) can be controlledti@t subset), and it is maximal if it is not part of another complete subgraph.

1<j<i



Algorithm 1: (Graham reduction) few steps of Graham reduction, randomly selecting the set to
Input: A finite family M of subsets of a finite Séf. be removed if more than one can be removed at the same time,
Output: WhetherM has the running intersection property.  until only a certain percentage of the sets remain or only a

The family M of sets of elements is reduced by iterativel)f:ertain percentage of the nodes is still covered. The reduced
applying one of the following two operations: set M is then extended again in the same way in which it was

1. Remove an elemert ¢ U that i ntained in onlv on tgenerated in the first place (see above).
.Mee (3\4ea element € atis contained inonly one se Unfortunately, this approach has a serious drawback: Sup-

. . . pose that by accident the initial graph is a simple chain.
2. Remove a setl; € M that is a subset of (or identical to) . . :
another seb/, € M\ { M, }. Then in each step only the two sets corresponding to the (hy

per)edges at the ends of (the remainder of) the chain can be

The process stops if neither operation is applicable. If all elggmoyved. Hence there is no or only a very small chance that
mentsA € U appearing inM could be removedM has the - {ne (hyper)edges in the middle of the chain are removed. In

running intersection property, otherwise it does not havéit. general, “inner cliques” are much less likely to be removed,

Note that this algorithm is non-deterministic, since both 0pekjnce certain “outer cliques” have to be removed first. There-
ations may be applicable or one of them may be applicable {gre this method is severely biased, which renders it unsuited
more than one element or more than one set, respectively. Ngig most applications. Nevertheless, it was necessary to con-
also that this algorit_hm yields a construction sequence: The rgger this approach first, since it directly suggests itself.

verse of the order in which the seld © M were removed o second approach is based on the insight that a family
from M obviously is such a sequence. _ .. of node sets has the running intersection property if it is con-

A graph with hypertree structure can be turned infoie  g4y,cted by successively adding node sefsto an initially

tree[4]. In a join tree there is a node for each maximal C"queempty family observing to the following two conditions:
of the graph and its edges connect nodes that represent cliques . .
M, must contain at least one pair of nodes that are un-

having nodes of the original graph in common. In addition;” ted in th h ted by th q t famil
any node of the original graph that is contained in two join tree c{:;wnec eMm }e graph represented by the node set family
1y--ey i1y

nodes must also be contained in all join tree nodes on the path - )
between them. (Despite this strong requirement, a join trée FOr €ach maximal subsét of nodes of)M; that are (di-
for a given graph with hypertree structure need not be unique.) fectly or indirectly) connected to each other in the graph

A join tree also provides an intuition for Graham reduction: 'epresented by M, ..., M;_,} there must be a set/y,
Consider a join tree of a graph corresponding to a family 1 <k <i,sothatS C M.
The node sets are removed by starting with those representeid clear that the first condition ensures that all nodes are cov-
by the leaves of the join tree and then working inwards. ered after a certain number of steps. It also provides us with
a stopping criterion. The running intersection property is en-
IIl. L EARNING GRAPHICAL MODELS sured by the second condition alone.

We now turn to how simulated annealing [15], [10] can be With this method the family\ can be constructed by form-
used to learn graphs with hypertree structure. Our main ta#kg subfamiliesof node sets, each of which represents a con-
is to find efficient methods to randomly generate and modifgected component of the graph represented by the current fam-
graphs with hypertree structure. We consider two alternatively/ M. That the resulting family actually has the running in-
both of which exploit that in order to ensure hypertree structufi@rsection property is ensured by the following theorem:
we only have to make sure that the set of maximal cliques hasTheorem 1:1f a family M of subsets of elements of a given
the running intersection property, which guarantees acyclicitgetU is constructed observing the two conditions stated above,
and that there is a path between any pair of nodes, which gu#ten this familyM has the running intersection property.
antees connectedness (this latter condition may be relaxed). Proof: Adding a node set to a given familyt either adds

Our first approach relies directly on the defining condiisolated nodes (not contained in any subfamily) to a subfamily,
tion of the running intersection property, namely the orderingr connects two or more subfamilies, or both. Hence one can
M, ..., M,,, which specifies a construction sequence. We sshow that the method referred to indeed results in a family
lect the node sets in this order starting with a randomigebf  having the running intersection property by a simple induction
nodes. In step, i > 2, a setMy, 1 < k < i, is selected at ran- argument, which proves that all subfamilies that are created
dom and the se/;, which is to be added in this step, is formedduring the construction have the running intersection property:
by randomly selecting nodes fro/;, U (U — Uicjei M;) A subfamily with a single node set trivially has the running
making sure that at least one node frdfy, and at least one intersection property (induction anchor). So assume that all
node not inJ, ;; M; is chosen. This is repeated until eachsubfamilies up to a certain size, i.e. with a certain number of
node is contained in some sef;, 1 < j < 4. The probabilities node sets, have the running intersection property (induction
of the different set sizes and the probability with which a nodhypothesis). If a new node set only adds isolated nodes to a
in My, or a node inJ, ., M; is selected are parameters ofsubfamily, then the enlarged family obviously has the running
this method. Convenient choices are uniform distributions ointersection property, because in this case the second condition
sizes as well as on nodes. stated above is equivalent to the last part of the defining con-

In order to randomly modify a given graph with hypertreeadition of a construction sequence (cf. definition 1). Hence the
structure, we rely on the fact that Graham reduction can alsmnstruction sequence of the subfamily (which must exist due
be seen as a join tree pruning method: We simply executet@the induction hypothesis) is simply extended by one set.



So assume that a new node set connects two or more sgbnditions a new set has to satisfy are, in a way, too strong. Sit-
families (and maybe adds some isolated nodes, t00). In ordextions can arise, in which a set is rejected, although adding it
to show that there is a construction sequence for the resultimgpuld not destroy the running intersection property. As an ex-
subfamily of node sets, we show first that any set of a family acimple consider the family{ A, Az, A4}, {A2, A4, A5}} and
sets having the running intersection property can be made tthe new se{ A3, A4, A5, Ag}. Since the nodeds, A4, andA;
first set in a construction sequence for this family: Reconsidare connected, but not contained in a single set of the family,
the join tree illustration of Graham reduction. Obviously, thehe new set is rejected. However, if the family were enlarged
reduction can be carried out w.r.t. a join tree even if a given sby this set, it would still have the running intersection prop-
(i.e. a given join tree node) is chosen in advance to be the lasty? It is evident, though, that this bias is negligible.
to be removed, simply because we can work from the (other) Having constructed a random graph, we must evaluate it.
leaves of the join tree towards the corresponding node. Singéere is a large variety of evaluation measures that may be
the reverse of the order in which the node sets are removeduised [1], [3], but here we only consider the (penalized) log-

a construction sequence, there is a construction sequence stideelinood of the training data for probabilistic networks, also
ing with the chosen set, and since the choice is arbitrary, alkmown asinformation criteria[13], and the (penalized) sum
set can be made the first of a construction sequence. of possibility degrees of the training data for possibilistic net-

With this established, the remainder of the proof is simplavorks [2], [3]. Note that in order to compute the value of some
For each of the subfamilies connected by the new node smtaluation measures it may be necessary or at least convenient
we find a construction sequence starting with thelggtmen-  to turn the graph into a directed one. Such a transformation can
tioned in the second condition. Then we form a constructioeasily achieved by exploiting a construction sequence as found
sequence of the resulting enlarged subfamily: The new noty Graham reduction. Details can be found in [3].
set is the first set of this sequence. We append the constructiorinally, for a simulated annealing search, we must consider
sequences for the subfamilies, one after the other. The resthie probability of accepting a solution that is worse than the
is a construction sequence, because thedgtsbviously sat- current on€. The problem here is that we usually do not
isfy the defining condition w.r.t. the first set due to the wayknow in advance the maximal quality difference of two graph-
in which they where chosen. Within the appended sequendesal models and hence we cannot compute the normAagization
the condition holds, because they are construction sequencesistant in the exponential distributidaccept) = ce™ T |
for the subfamilies. There is no interaction between these sehich is often used to describe the acceptance probability
guences, because the subfamilies are node disjoint. Hence (A&) is the quality difference of the current and the new candi-
new subfamily has the running intersection property. B date solution]" is a temperature parameter, which is lowered

The main advantage of this approach is that we can connerith time, andc is a normalization constant). To cope with this
subfamilies of node sets, whereas with the first approach vpeoblem we may use an adaptive approach, which estimates the
can only extend one family. This provides us with considemaximal quality difference from the best and the worst graph-
able freedom w.r.t. a random modification of the representadal model inspected so far. A simple choice is the unbiased
graph. At first sight, one may even think that one could sesstimator for a uniform distribution [14],

Speciing the two condltons. with randomy generated sets B = 22 [Qest ~ Quors]

cgver agIJI nodes. However a{n entirely unreét?icted selection \I/(\?heren s the r.lumber. of'gra'phlcal modgls r—;valuated so far,
not possible bécause a ,subset of a family of node sets h ajt_hough the unlfor.m.d|str|but|or! assumption is, of course, ple-
ing the runni’ng intersection property need not have this pro%_atat_)le. However, itis not very likely that the exact estimation
erty: Consider the familyt = {{ A1, Ay, A3}, {As, Ay, A5}, unction used has a strong influence on the results.

X A With these considerations we eventually have all compo-
{43, 45, Ag}, {A2, A3, A5}}, which has the running intersec- o 0aqed for a simulated annealing approach to learn a

tion property, as can easily be verified with Graham reductlon.raphical model. However, it is clear that the methods to ran-

However, if the last set is removed, this property is lost. There; . .
fore we have to choose the sets to be retained carefully. %omly generate and modify graphs with hypertree structure

) X . . can also easily be adapted for use in a genetic algorithm.
Fortunately, there is a very simple selection method, WhIC% y P g g
ensures that all resulting subfamilies have the running intersec- IV. EXPERIMENTAL RESULTS
tion property. We shuffle the sets of the given fargiiyand try
to agd them n the resulting raf‘qom ordgr toan mmally empt}I/on as part of the INES program (Induction of NEtwork Struc-
family, observing the two conditions, until a certain percentagte

of the sets has been added or a certain percentage of the no [gs) 2], [3] and tested it on the well-known Danish Jersey
. P age ¢ .ca?tﬁe blood group determination problem [17]. For this prob-
is covered. If a node set cannot be added, it is simply dis- ) . . .
em there is a Bayesian network designed by human domain
carded. Clearly, the above theorem ensures that the subfanii- : : .
experts, which serves the purpose to verify parentage for pedi-

lies selected in this way have the running intersection property, . . . ST .
. . X ' . fee registration. The domain modeled in this example is de-
The resulting family of node sets is then filled, again obsen? . . X .
. " . cribed by 21 attributes, eight of which are observable.
ing the two conditions, with randomly generated node sets {0
cover all nodes, which yields a randomly modified graph. 2Note that this family can be constructed if the sets are generated in a differ-

Obviously, this method to modify randomly a given graplfntorder. e.g. if the sts, As, As, Ag} is added first.
ith hvpertree structure is much less biased than the fir. Recall that in simulated annealing better solutions are always accepted,
wi yp @Bile worse ones are accepted only with a probability that depends on how

method. However, it is not completely unbiased, because thich worse the solution is and that, in addition, decreases with time.

We implemented our learning method in a prototypical fash-
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EXPERIMENTAL RESULTS. PROBABILISTIC NETWORKS

V. SUMMARY

In this paper we suggested a simulated annealing approach

to learn graphical models from data. Our algorithm learns

measure | edges| params. train test hs with hvbertree structure. the complexitv of which
— — — graphs with hypertree structure, complexity of which can
ionrtljgénal 25 2;38 _}égg}g _;3323; be controlled at learning time by restricting the clique size.
tree P 20.0 169'5 712149‘2 712292'5 Hence it is well suited to find good approximations that allow
K2 23'3 229'9 —11385'4 _11511'5 for efficient evidence propagation. The main contribution of
Sim. ann 28.3 438.1 —13280.2 _13594'9 this paper is an efficient and almost unbiased method to ran-
en.alizea 27'9 397.6 _13255'7 —13521.8 domly generate and modify graphs with hypertree structure.
P - - - - Our experiments show that this approach seems to be espe-
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