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Abstract— A major topic of recent research in graphical models has
been to develop algorithms to learn them from a dataset of sample cases.
However, most of these algorithms do not take into account that learned
graphical models may be used for time-critical reasoning tasks and that in
this case the time complexity of evidence propagation may have to be re-
stricted, even if this can be achieved only by accepting approximations. In
this paper we suggest a simulated annealing approach to learn graphical
models with hypertree structure, with which the complexity of the popu-
lar join tree evidence propagation method can be controlled at learning
time by restricting the size of the cliques of the learned network.

I. I NTRODUCTION

In recent years graphical models [20], [13] — especially
Bayesian networks [16], [9] and Markov networks [12], but
also the more general valuation-based networks [18] and,
though to a lesser degree, the newer possibilistic networks
[7], [3] — gained considerable popularity as powerful tools
to model dependences in complex domains and thus to make
inferences under uncertainty in these domains feasible. They
are based on the idea that under certain conditions a multi-
dimensional (probability or possibility) distribution can be de-
composed into (conditional or marginal) distributions on lower
dimensional subspaces. This decomposition is represented by
a graph, in which each node stands for an attribute and each
edge for a direct dependence between two attributes.

The graph representation also supports drawing inferences,
because the edges indicate the paths along which information
about attribute values has to be transmitted, usually in the form
of local messages [9], [4]. However, in order to derive correct
evidence propagation methods, the graphs have to satisfy cer-
tain conditions. In general, cycles pose problems, because they
make it possible that the same information can travel on two or
more different routes to other attributes. In order to avoid erro-
neous results in this case, the graphs are often transformed into
singly connected structures, namely so-calledjoin or junction
trees[12], [9], [4]. An important step in this transformation is
the construction of a graph with so-called hypertree structure,
from which the join tree can easily be derived.

Since constructing graphical models manually can be te-
dious and time consuming, a large part of recent research in
graphical models has been devoted to learning them from a
dataset of sample cases [5], [8], [6], [7], [3]. However, most
known learning algorithms do not take into account that the
learned graphical model may later be used to draw time-critical
inferences and that in this case the time complexity of evidence
propagation may have to be restricted, even if this can only be
achieved by accepting approximations. The main problem is
that during join tree construction edges may have to be added,
which can make the graph more complex than is acceptable.
In such situations it is desirable that the complexity of the join
tree (and thus the evidence propagation) can be controlled at

learning time, even at the cost of a less exact representation of
the domain under consideration. Therefore we suggest a learn-
ing algorithm that is based on the well-known paradigm of sim-
ulated annealing [15], [10] and that directly learns graphs with
hypertree structure. In this way a transformation is not neces-
sary and the complexity can be controlled at learning time by
restricting the size of the cliques of the graph.

II. H YPERTREESTRUCTURE AND JOIN TREES

As already mentioned above, a popular method for evidence
propagation in multiply connected networks is so-called join
tree propagation [12], [9], [4]. Here we only review briefly
some of the basic notions that are used in connection with this
method and which we need in the following.

The idea of join tree propagation is to transform the graph of
a graphical model into a singly connected structure, namely a
join tree. This is achieved by first modifying the graph in such
a way that it hashypertree structure. This notion is defined by
the so-calledrunning intersection property[12]:

Definition 1: LetM be a finite family of subsets of a finite
setU and letm = |M|. M is said to have therunning in-
tersection propertyiff there is an orderingM1, . . . ,Mm of the
setsMi ∈M, such that

∀i, 2 ≤ i ≤ m : ∃k, 1 ≤ k < i : Mi ∩
( ⋃

1≤j<i

Mj

)
⊆ Mk.

A undirected graphG is said to havehypertree structureif all
pairs of nodes ofG are (possibly indirectly) connected inG
and the familyM of the node sets that induce the maximal
cliques1 of G has the running intersection property. An order
of the cliques that demonstrates the running intersection prop-
erty is called aconstruction sequencefor the graph.2

The idea underlying the notion of hypertree structure is as
follows: In normal graphs an edge connects only two nodes.
However, we may drop this restriction and introducehyper-
graphs, in which we havehyperedgesthat can connect any
number of nodes. It is very natural to use a hyperedge to con-
nect the nodes of a maximal clique, because by doing so we
can make these cliques easier to recognize. If the sets of nodes
that are connected by hyperedges have the running intersection
property, then the hypergraph is, in a certain sense,acyclic.
Consequently, such hypergraphs are calledhypertrees.

There is a simple algorithm to turn a given graph into one
that has hypertree structure, which is based on the fact thattri-
angulatingthe graph automatically ensures this property [19].
Here, however, we only need a test for this property [11]:

1A clique is a complete subgraph (a subset of nodes together with the corre-
sponding edges, so that each node is (directly) connected to all other nodes in
the subset), and it is maximal if it is not part of another complete subgraph.



Algorithm 1: (Graham reduction)

Input: A finite family M of subsets of a finite setU.
Output: WhetherM has the running intersection property.

The familyM of sets of elements is reduced by iteratively
applying one of the following two operations:

1. Remove an elementA ∈ U that is contained in only one set
M ∈M.

2. Remove a setM1 ∈ M that is a subset of (or identical to)
another setM2 ∈M\{M1}.

The process stops if neither operation is applicable. If all ele-
mentsA ∈ U appearing inM could be removed,M has the
running intersection property, otherwise it does not have it.2

Note that this algorithm is non-deterministic, since both oper-
ations may be applicable or one of them may be applicable to
more than one element or more than one set, respectively. Note
also that this algorithm yields a construction sequence: The re-
verse of the order in which the setsM ∈ M were removed
fromM obviously is such a sequence.

A graph with hypertree structure can be turned into ajoin
tree [4]. In a join tree there is a node for each maximal clique
of the graph and its edges connect nodes that represent cliques
having nodes of the original graph in common. In addition,
any node of the original graph that is contained in two join tree
nodes must also be contained in all join tree nodes on the path
between them. (Despite this strong requirement, a join tree
for a given graph with hypertree structure need not be unique.)
A join tree also provides an intuition for Graham reduction:
Consider a join tree of a graph corresponding to a familyM.
The node sets are removed by starting with those represented
by the leaves of the join tree and then working inwards.

III. L EARNING GRAPHICAL MODELS

We now turn to how simulated annealing [15], [10] can be
used to learn graphs with hypertree structure. Our main task
is to find efficient methods to randomly generate and modify
graphs with hypertree structure. We consider two alternatives,
both of which exploit that in order to ensure hypertree structure
we only have to make sure that the set of maximal cliques has
the running intersection property, which guarantees acyclicity,
and that there is a path between any pair of nodes, which guar-
antees connectedness (this latter condition may be relaxed).

Our first approach relies directly on the defining condi-
tion of the running intersection property, namely the ordering
M1, . . . ,Mm, which specifies a construction sequence. We se-
lect the node sets in this order starting with a random setM1 of
nodes. In stepi, i ≥ 2, a setMk, 1 ≤ k < i, is selected at ran-
dom and the setMi, which is to be added in this step, is formed
by randomly selecting nodes fromMk ∪

(
U −

⋃
1≤j<i Mj

)
making sure that at least one node fromMk and at least one
node not in

⋃
1≤j<i Mj is chosen. This is repeated until each

node is contained in some setMj , 1 ≤ j ≤ i. The probabilities
of the different set sizes and the probability with which a node
in Mk or a node in

⋃
1≤j<i Mj is selected are parameters of

this method. Convenient choices are uniform distributions on
sizes as well as on nodes.

In order to randomly modify a given graph with hypertree
structure, we rely on the fact that Graham reduction can also
be seen as a join tree pruning method: We simply execute a

few steps of Graham reduction, randomly selecting the set to
be removed if more than one can be removed at the same time,
until only a certain percentage of the sets remain or only a
certain percentage of the nodes is still covered. The reduced
setM is then extended again in the same way in which it was
generated in the first place (see above).

Unfortunately, this approach has a serious drawback: Sup-
pose that by accident the initial graph is a simple chain.
Then in each step only the two sets corresponding to the (hy-
per)edges at the ends of (the remainder of) the chain can be
removed. Hence there is no or only a very small chance that
the (hyper)edges in the middle of the chain are removed. In
general, “inner cliques” are much less likely to be removed,
since certain “outer cliques” have to be removed first. There-
fore this method is severely biased, which renders it unsuited
for most applications. Nevertheless, it was necessary to con-
sider this approach first, since it directly suggests itself.

Our second approach is based on the insight that a family
of node sets has the running intersection property if it is con-
structed by successively adding node setsMi to an initially
empty family observing to the following two conditions:

1. Mi must contain at least one pair of nodes that are un-
connected in the graph represented by the node set family
{M1, . . . ,Mi−1}.

2. For each maximal subsetS of nodes ofMi that are (di-
rectly or indirectly) connected to each other in the graph
represented by{M1, . . . ,Mi−1} there must be a setMk,
1 ≤ k < i, so thatS ⊂ Mk.

It is clear that the first condition ensures that all nodes are cov-
ered after a certain number of steps. It also provides us with
a stopping criterion. The running intersection property is en-
sured by the second condition alone.

With this method the familyM can be constructed by form-
ing subfamiliesof node sets, each of which represents a con-
nected component of the graph represented by the current fam-
ily M. That the resulting family actually has the running in-
tersection property is ensured by the following theorem:

Theorem 1:If a familyM of subsets of elements of a given
setU is constructed observing the two conditions stated above,
then this familyM has the running intersection property.

Proof: Adding a node set to a given familyM either adds
isolated nodes (not contained in any subfamily) to a subfamily,
or connects two or more subfamilies, or both. Hence one can
show that the method referred to indeed results in a familyM
having the running intersection property by a simple induction
argument, which proves that all subfamilies that are created
during the construction have the running intersection property:

A subfamily with a single node set trivially has the running
intersection property (induction anchor). So assume that all
subfamilies up to a certain size, i.e. with a certain number of
node sets, have the running intersection property (induction
hypothesis). If a new node set only adds isolated nodes to a
subfamily, then the enlarged family obviously has the running
intersection property, because in this case the second condition
stated above is equivalent to the last part of the defining con-
dition of a construction sequence (cf. definition 1). Hence the
construction sequence of the subfamily (which must exist due
to the induction hypothesis) is simply extended by one set.



So assume that a new node set connects two or more sub-
families (and maybe adds some isolated nodes, too). In order
to show that there is a construction sequence for the resulting
subfamily of node sets, we show first that any set of a family of
sets having the running intersection property can be made the
first set in a construction sequence for this family: Reconsider
the join tree illustration of Graham reduction. Obviously, the
reduction can be carried out w.r.t. a join tree even if a given set
(i.e. a given join tree node) is chosen in advance to be the last
to be removed, simply because we can work from the (other)
leaves of the join tree towards the corresponding node. Since
the reverse of the order in which the node sets are removed is
a construction sequence, there is a construction sequence start-
ing with the chosen set, and since the choice is arbitrary, any
set can be made the first of a construction sequence.

With this established, the remainder of the proof is simple:
For each of the subfamilies connected by the new node set
we find a construction sequence starting with the setMk men-
tioned in the second condition. Then we form a construction
sequence of the resulting enlarged subfamily: The new node
set is the first set of this sequence. We append the construction
sequences for the subfamilies, one after the other. The result
is a construction sequence, because the setsMk obviously sat-
isfy the defining condition w.r.t. the first set due to the way
in which they where chosen. Within the appended sequences
the condition holds, because they are construction sequences
for the subfamilies. There is no interaction between these se-
quences, because the subfamilies are node disjoint. Hence the
new subfamily has the running intersection property.

The main advantage of this approach is that we can connect
subfamilies of node sets, whereas with the first approach we
can only extend one family. This provides us with consider-
able freedom w.r.t. a random modification of the represented
graph. At first sight, one may even think that one could se-
lect any subset of a given family of node sets and fill it, re-
specting the two conditions, with randomly generated sets to
cover all nodes. However, an entirely unrestricted selection is
not possible, because a subset of a family of node sets hav-
ing the running intersection property need not have this prop-
erty: Consider the familyM = {{A1, A2, A3}, {A2, A4, A5},
{A3, A5, A6}, {A2, A3, A5}}, which has the running intersec-
tion property, as can easily be verified with Graham reduction.
However, if the last set is removed, this property is lost. There-
fore we have to choose the sets to be retained carefully.

Fortunately, there is a very simple selection method, which
ensures that all resulting subfamilies have the running intersec-
tion property. We shuffle the sets of the given familyM and try
to add them in the resulting random order to an initially empty
family, observing the two conditions, until a certain percentage
of the sets has been added or a certain percentage of the nodes
is covered. If a node set cannot be added, it is simply dis-
carded. Clearly, the above theorem ensures that the subfami-
lies selected in this way have the running intersection property.
The resulting family of node sets is then filled, again observ-
ing the two conditions, with randomly generated node sets to
cover all nodes, which yields a randomly modified graph.

Obviously, this method to modify randomly a given graph
with hypertree structure is much less biased than the first
method. However, it is not completely unbiased, because the

conditions a new set has to satisfy are, in a way, too strong. Sit-
uations can arise, in which a set is rejected, although adding it
would not destroy the running intersection property. As an ex-
ample consider the family{{A1, A3, A4}, {A2, A4, A5}} and
the new set{A3, A4, A5, A6}. Since the nodesA3, A4, andA5

are connected, but not contained in a single set of the family,
the new set is rejected. However, if the family were enlarged
by this set, it would still have the running intersection prop-
erty.2 It is evident, though, that this bias is negligible.

Having constructed a random graph, we must evaluate it.
There is a large variety of evaluation measures that may be
used [1], [3], but here we only consider the (penalized) log-
likelihood of the training data for probabilistic networks, also
known asinformation criteria [13], and the (penalized) sum
of possibility degrees of the training data for possibilistic net-
works [2], [3]. Note that in order to compute the value of some
evaluation measures it may be necessary or at least convenient
to turn the graph into a directed one. Such a transformation can
easily achieved by exploiting a construction sequence as found
by Graham reduction. Details can be found in [3].

Finally, for a simulated annealing search, we must consider
the probability of accepting a solution that is worse than the
current one.3 The problem here is that we usually do not
know in advance the maximal quality difference of two graph-
ical models and hence we cannot compute the normalization
constant in the exponential distributionP (accept) = ce−

∆Q
T ,

which is often used to describe the acceptance probability
(∆Q is the quality difference of the current and the new candi-
date solution,T is a temperature parameter, which is lowered
with time, andc is a normalization constant). To cope with this
problem we may use an adaptive approach, which estimates the
maximal quality difference from the best and the worst graph-
ical model inspected so far. A simple choice is the unbiased
estimator for a uniform distribution [14],

∆̂Qmax = n+1
n |Qbest −Qworst|,

wheren is the number of graphical models evaluated so far,
although the uniform distribution assumption is, of course, de-
batable. However, it is not very likely that the exact estimation
function used has a strong influence on the results.

With these considerations we eventually have all compo-
nents needed for a simulated annealing approach to learn a
graphical model. However, it is clear that the methods to ran-
domly generate and modify graphs with hypertree structure
can also easily be adapted for use in a genetic algorithm.

IV. EXPERIMENTAL RESULTS

We implemented our learning method in a prototypical fash-
ion as part of the INES program (Induction of NEtwork Struc-
tures) [2], [3] and tested it on the well-known Danish Jersey
cattle blood group determination problem [17]. For this prob-
lem there is a Bayesian network designed by human domain
experts, which serves the purpose to verify parentage for pedi-
gree registration. The domain modeled in this example is de-
scribed by 21 attributes, eight of which are observable.

2Note that this family can be constructed if the sets are generated in a differ-
ent order, e.g. if the set{A3, A4, A5, A6} is added first.

3Recall that in simulated annealing better solutions are always accepted,
while worse ones are accepted only with a probability that depends on how
much worse the solution is and that, in addition, decreases with time.



TABLE I

EXPERIMENTAL RESULTS: PROBABILISTIC NETWORKS

measure edges params. train test
original 22 219.0 −11391.0 −11506.1
indep. 0 59.0 −19921.2 −20087.2
tree 20.0 169.5 −12149.2 −12292.5
K2 23.3 229.9 −11385.4 −11511.5
sim. ann. 28.3 438.1 −13280.2 −13594.9
penalized 27.9 397.6 −13255.7 −13521.8

TABLE II

EXPERIMENTAL RESULTS: POSSIBILISTIC NETWORKS

measure edges params. min. avg. max.
original 22.0 308.0 9.888 9.917 11.318
indep. 0.0 80.0 10.064 10.160 11.390
tree 20.0 404.0 8.466 8.598 10.386
greedy 33.0 774.0 8.206 8.344 10.416
sim. ann. 22.6 787.2 8.013 8.291 9.981
penalized 20.6 419.1 8.211 8.488 10.133

For our probabilistic tests, we generated from this network
ten pairs of databases with 1000 tuples each. The first database
of each pair was used to induce a graphical model, the second
to test it. The results were averaged over all ten pairs. As
a baseline for comparisons we used the original graph and a
graph without any edges, i.e. independent attributes. In ad-
dition, we used an optimum spanning tree constructed with
mutual information as edge weights [16] and the well-known
K2 algorithm [5]. Our simulated annealing method we ap-
plied in two version, one using only the log-likelihood of the
database and one using also a penalty term computed from the
number of parameters of the model. The clique size was re-
stricted to three attributes. Table I shows the results. Unfortu-
nately, the simulated annealing approach fares worse than the
alternatives. We assume, however, that better results can be
achieved by initializing the search with a good base structure,
for instance, with an optimum weight spanning tree.

Besides the domain expert designed reference structure
mentioned above there is a database of 500 real world sam-
ple cases. We used this database for our possibilistic tests, be-
cause it contains a large number of missing values (only a little
over half of the tuples are complete) and is thus well suited to
show the strengths of a possibilistic approach. As for proba-
bilistic networks we compared the results of our approach with
the reference structure (that is, a possibilistic network with the
same structure as the human expert designed network and de-
grees of possibility determined from the database), and a graph
without edges. In addition, we used optimum spanning tree
construction and greedy parent selection (both employing the
evaluation measure that led to the best results [3]). The results
are shown in table II, with the last three columns showing the
sums of the minimum, average, and maximum degree of pos-
sibility over the tuples in the database [2] (incomplete tuples
do not have a unique degree of possibility). In contrast to the
probabilistic case, our approach clearly led to the best results,
even though it was not initialized with a good base structure.

V. SUMMARY

In this paper we suggested a simulated annealing approach
to learn graphical models from data. Our algorithm learns
graphs with hypertree structure, the complexity of which can
be controlled at learning time by restricting the clique size.
Hence it is well suited to find good approximations that allow
for efficient evidence propagation. The main contribution of
this paper is an efficient and almost unbiased method to ran-
domly generate and modify graphs with hypertree structure.
Our experiments show that this approach seems to be espe-
cially useful for learning possibilistic graphical models.
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