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Abstract—Decision trees are a popular form of classification a fuzzy partition has to be created for each attribute. The
models. It is well known that classical trees lack the ability of fuzzy sets of these partitions will be used as fuzzy tests in
modelling vagueness. By connecting fuzzy systems and classicaj,a nodes of the fuzzy tree. To initialize these fuzzy partitions

decision trees, we try to achieve classifiers that can model dopted isti lqorith hich tes th ith
vagueness and are comprehensible. We discuss the core problerﬁNe adopted an existing algorithm, which creates them either

of how to compute the information measure used in the induction Completely automatically based on a given data set (called

of fuzzy trees and propose some improvements. In addition, we "automatic partitioning”), or based on a user specification of

consider fuzzy rule_bases deri\_/ed from fuzzy decision trees and the shape and number of the membership functions (called

present some heuristic strategies to prune them. We report the »inqjyidual partitioning”). In the latter case the fuzzy sets are

results of experiments in which we compare our approach to . . . - -

other well-known classification methods. distributed evenly over the entire domain of each attribute.
Here we assume the fuzzy partitions of the input variables are

I. INTRODUCTION given.

Data analysis is the process of computing various Sum_Like classical decision trees with the ID3 algorithm, fuzzy
maries and derived values from a given collection of data [1J€cision trees are constructed in a top-down manner by recur-
Here we discuss data analysis in the classification context.Sive partitioning of the training set into subsets. We assume

Different classification models have individual strengths ari€ basic algorithm to be known, and only point out some
weaknesses: sometimes a classifier is good for predictié@rticular features of the fuzzy tree learning:

but difficult to understand, like neural networks. Or a model
works well in crisp domains, but cannot model vagueness, like
classical decision trees.

In this paper we combine fuzzy theory with classical de-
cision trees in order to learn a classification model, which is
able to handle vagueness and also comprehensible.

In the past several variants of fuzzy decision trees were in-
troduced by different authors. Boyen and Wenkel [5] presented
the automatic induction of binary fuzzy trees based on a new
class of discrimination quality measures. Janikow [6] adapted
the well-known ID3 algorithm so that it works with fuzzy sets. 2)

In this paper, we also adapted the ID3 algorithm to construct
fuzzy decision trees and borrowed some basic ideas from [6].
In Section Il we present our algorithm and examine in detail 3)
the core problem of how to compute the information measure
in the attribute selection step. Going beyond Janikow's work
we consider how to extract a fuzzy rule base from the induced
fuzzy tree, and study heuristics to simplify it. In addition
we discuss how to treat missing values. In Section Il we 4)
report experimental results obtained with an implementation
of our algorithm and compare them to those of some popular
classifiers.

1)

Il. Fuzzy DECISION TREE
A. Tree induction

In this paper we focus on the induction of a fuzzy decision
tree (FDCT) on continuous attributes. Before the tree induction

The membership degree of examples

The membership degree of an example to an example
set is not a binary element fro§0,1} (as in classical
decision trees), but from the interval 1]. In each node,

an example has a different membership degree to the
current example set, and this degree is calculated from
the conjunctive combination of the membership degrees
of the example to the fuzzy sets along the path to the
node and its membership degrees to the classes, where
different¢-norms (') can be used for this combination.
Selection of test attributes

This point will be discussed in detail in the following
subsections.

Fuzzy tests

As mentioned above, in the inner nodes fuzzy tests are
used instead of crisp tests. A fuzzy test of an attribute
means to determine the membership degree of the value
of an attribute to a fuzzy set.

Stop criteria

Usually classical tree learning is terminated if all at-
tributes are already used on the current path; or if all
examples in the current node belong to the same class.
Here we add another condition, namely whether the
information measure is below a specified threshold. In
FDCT any example can occur in any node with any
membership degree. Thus in general more examples are
considered per node and fuzzy trees are usually larger



. . TABLE |
than classical trees. The threshold defined here enables a

user to control the tree growth, so that unnecessary nodes EXAMPLEL
are not added. The experiments prove that an adequate before split 1 Cs
threshold helps not only to avoid overfitting, but also to er | es | es | ea | es
decrease the complexity of the tree. N 10 ‘ 10| 1.0 ‘ 10 ‘ 10
B. Notation ZN 2.0 3.0
For the formal discussion of attribute selection we introduce
the following notation: TABLE |I
o« C={Cy,...,Cy,} is the set of possible classes. ExAMPLE1
o« A ={A1,A,,..,A,} is a set of input attributes with :
domains dorfd;), 1 <i < n. after split || C1 Co
« For each variablet; € 4,1 <i<n: e lex|es[ea]es
— ui € dom(4;) is a crisp value of attributel;. small 08107]10] 0 |10
— D is the fuzzy partition of4; large 06/09] 0 | 10] O
— a}, denotes the fuzzy set (the linguistic termyor X§V 14]16]10]10] 10
the attribute 4;. For examplea] ****" means the i 3.0 3.0
fuzzy set fow” of the attribute ‘pressuré.
o We consider a reference sé&t = {ej,...,es} of ex-

amplese, = (Uk, k), 1 < k < s. 4 is the input C. Problems with test attributes selection
vector, 5, € [0,1]™ the output vector ofe,. u}, (i.e.
the i-th element ofuy;) is the (crisp) value of attribute
A; in exampleey,. yi (i.e. thej-th element ofyy) is the
membership degree of examplg to the class’).
The crisp classification ofe, can be computed as . .
clasger) = argm <. {y/}. (Note that a classifi- tree induction.
. Bf:0<j<m WS- . The definition of information gain is based on probability
cation problem can easily be extended for a contlnuo%s X
: : : ; eory. Its value, as we know, can never be negative (a prove
target variable by using fuzzy sets instead of crisp classes : . :
. . .~~can be found, for instance, in [3]). However, depending on the
C;. However, we confine ourselves to targets with a finite o L : o .
computation, in FDCT negative information gain is possible.
number of classes.) : ;
- : , ... This phenomenon occurs due to the following two reasons,
« The training set is a fuzzy set ovér defined by initial ; o :
, . both of which can lead to a situation in which the sum of the
confidence weights; = {x1,...,x}, k,0 < k < s : weights of the example cases before and after a split and thus
0 < xx < 1. If no such information is provided by a 9 P P

user, we sevk, 1 <k <s:yx = 1. the class frequency distributions differ.

A standard method to select a test attribute in classical
decision tree induction is to choose the attribute that yields
the highest information gain. In this subsection we discuss the
problems that occur if we apply this measure in fuzzy decision

« For each nodeV in the fuzzy treex™ = {xV,...,yN} 1) In fuzzy logic, the sum of the membership degrees of a
is the fuzzy example set (a fuzzy set ovey i1n7N. in ihe value to the fuzzy sets of its variable can differ from 1,
root, this fuzzy example set coincides with the training _ depending on how the fuzzy sets overlap.
set, i.e.vh,1 < k < s: 2% = y.. 2) Probability theory prescribes to use the product to ex-

« ZN =35 T(V,y!) stands for the example counter press a (conditional) conjunction (i.,eR(X AY) =
J Rt Ak Ok : P(X | Y) - P(Y)), whereas fuzzy logic offers other
for classC; in node N. zV = >>° | ZY is the total (X | ¥ 7 y o9
counter for the examples of all Classes. (More details ~ POssibilities besides the product, for examplgix (a, b)

about the computation and the interpretation of member- and Tuka(a, b).

ship degrees as case weights are given below.) Example 1 The following example illustrates point 1)

« I(xY) denotes the entropy of the class distribution w.r.t. « Let E = {ej,ea,e3,e4,e5} be a reference set with
the fuzzy example set” in node N. I(xV|4;) is the examples coming from two class€$ and C,, where
weighted sum of entropies from all child nodes Af is yl =92 =1,y? =92 =0 (i.e., e, e2 belong exclusively
used as the test attribute in node toCy), andyl =yl =yl =0, 92 =vyi=9y2 =1 (e,

o GainxV, A;) = I(xN) — I(xV]4;) is the information es, eq, e5 belong exclusively tay).
gain w.r.t. attribute 4;, which is the first of the two « Letthe membership degree of each example to the current
attribute selection measures we consider. fuzzy example set in nod& be xY =1,1 <k <5

« Splitl(x", A;) denotes the split information—the entropy ~ (see Table I). These membership degrees are interpreted
w.r.t. the value distribution of attributd; (instead of the as case weights and thus we havg : pc, =2:3 as
class distribution). the frequency distribution of the classes.

o GainRxN,4;) = Gain(xV, 4;)/SplitI(xV, A;) is the o After splitting the training set according to the fuzzy sets
information gain ratio w.r.t. attributed;, which is the of attribute A — small andlarge — we obtain Table I

second attribute selection measure we consider. showing the membership degree of each example. Since



. TABLE Il
XN =1,1 < k < 5, the membership degree of each
. . . H:UZZY) CONTINGENCY TABLE FOR NODEN WITH ATTRIBUTE A AS THE
example is the same as its membership degree to the

. sm. Arg TEST CANDIDATE
respective fuzzy skte.g.x '™ = 0.8 andy e =
0.6. If we interpret the membership degrees to the fuzzy N [ o Cs ASum

example set as case weights we can sum the weights for

K X ZN|(L1 ZN\al ZNlay
the subsets to obtain the weights for the whole set (as

a1 C1 Co

it is possible in classical decision tree induction). In this az zgler | zhle | zNle:
way we obtain case weightsi§t membership degrees, csum N N N
because they may be greater thany1), for which we = =
have x¥¥ = 0.8 + 0.6 = 1.4, XYY = 0.7+ 0.9 = 1.6,
and ¥y = x¥ = ¥’ = 1. The frequency distribution
of the classes w.r.t. these case weight®ds : pc, = case, attributed is always favored by the information
(14+16):(1.04+1.0+1.0)=3:3=1:1. gain ratio, because
Obviously the sum of the case weights has changed after Gain(xN, A) Gain(x~, B)
splitting the training set according to the fuzzy partition 81171\”14 W,
of attribute A. Since the entropy of a uniform probability PlitI(x™, 4) PlitI(x", B)
distribution is maximal, the entropy(x”) after the split is independent of the relationship betweplitI(x, A)
certainly larger than the entropy(x") before the split. If andSplitI(y~, B), and this contradicts our intuition.

we havevk,1 < k < 5: ¢V = Xivlsma“ + X,iv“arge (as it
is implicitly assumed by the definition of information gain)
we have thaGain(xV, A) = I(x") — I(x"|A) is definitely
non-negative. Now it is easy to conclude:

In this paper we try to eliminate the problems mentioned
above by using the appropriate entropy to ensure a positive
information gain.

D. Extended information measure

since I(x™) > I(x™)
and @H(XNvA) =I(N) = I(xXN|A4) > 0 As mentioned above, negative information gain can occur
. N N N . . in FDCT induction (e.g. in the version developed in [6]) if
= Gain(x",A)=I(x")—-I(x"|A) <0 is possible.

we use the entropy (x") computed from the membership

Indeed we have for the example considered abogggrees of the examples (interpreted as case weights) in the
Gain(x™, A) = 0.917 — 0.971 = —0.054. current node, in which a test attribute is to be chosen.

As mentioned above, negative information gain can also!" this section we suggest a different way of computing
result from thet-norm (e.g. i) that is used in the FDCT the information measure in the fuzzy domain to make infor-
to compute the membership degrees of the examples in a ndgétion gain r"j‘g\'fo applicable as a selection measure. Using
An example for such a situation can easily be constructedtnﬁ entr?;I)Vy[ (x") of the examples (d_enyed frqm t.he case
analogy to example 1. weights y*¥ as computed above), which implicitly includes

A negative information gain, although it has no real meafhe information of the test attribute, we can guarantee that
ing, can still yield a correct ranking of the candidate teéPe information measure is non-negative. We proceed as the

attributes. But if information gain ratio is used, a negativi?!loWing simple example demonstrates:
value for the information gain can produce an inappropriates Let C = {C1,C>} be the set of classes.

answer. To see this, let us consider a simple example: suppose Let E = {e1,.. ., e} be the reference set and" be the
we have two candidate attributes and B with information fuzzy example set in nod#.

gain Gain(x™,A) > Gain(x",B) and split information « Let A be a candidate test attribute that has a fuzzy
SplitI(x™, A) > SplitI(xV, B). partition with two fuzzy sets{a;,az}, i.e., with A as

the test attribute inV we would have two branches, each
connected to one fuzzy set.
o Let uﬁ be the value of attributel in exampleey, 1 <

1) In classical decision trees it is alwagin(yV, A) >
Gain(x", B) > 0, and then it may be that

Gain(xN,4)  Gain(x",B) k <s.
= SplitI(xN, A) ~ SplitI(x™, B)’ o Let p,,(uil) be the membership degree of attribute
. _ _ . valueus! to the fuzzy set;.
Th!s is des'lred, pecause it reduces the Well—known bias, [ et XQ’ Y= T e, (u), 1 < k< s, be the
of information gain towards many-valued attributes. membership degree of the examplg to the fuzzy

2) In the fuzzy domain, however, we can also have the example subset for the fuzzy set i = 1, 2.

. . . N . N
situation Gain(x™, 4) > 0 > Gain(x™, B). In such a To determine the best test attribute, we create a (fuzzy)

1 . . contingency table (see Table IIl) for each candidatein
In general, one has to combine the membership degree to the fuzzgﬁld N f hich he inf fi
example set and the membership degree to the fuzzy set of the attribute WIRG€V, rom which we can compute the information measure

at-norm. for attribute A.



1) If A were the test attribute iV, the fuzzy example E. Missing value handling

subsets in the two child nodes a(€'*/, i =1,2. Then  zo gata often contain missing values. To handle such data

Nla; _ .
it ]'?‘aX = T1(pa, (upd), X)), i=1,2, 1 <k <s. we extend the learning algorithm, so that deleting examples
2) Zg. " (here:j € {0,1},i € {0,1}) is the counter for with missing values from the training data set is not necessary
the examples that belong to fuzzy sgtand clas<’;. anymore.

can be computed agN‘aT =>_ ﬂ’z()(;.c ‘al,yk) by The first question to be answered is how to assign the

interpreting the membershlp degrees as case weightsexamples with missing values of the test attribute to the
3) Z&, j = 1,2, in row “CSum” is the counter for the outgoing branches of a tree node. In this paper a popular

examples which belong to clags;. It is computed as: method from classical decision trees is adopted: an example

ZC ZN‘“1 + ZN‘“2 is distributed evenly to all children if the valug, for test
4) From row “CSum" we obtain the class frequencyattnbuteA is unknown. That is
distribution and its entropy inN: I(¥Y) = 1
zy zN e
-y (ﬁ) log, (i> where ZV is the counter Hay (u) = D it} is unknown, (1)

for the entire examplesz™ = Z{¥ + Z}..
5) Each row &;” represents a child nodé\f\a, Line-
by-line we can get the entropy of each fuzzy ex

ample subset for the fuzzy set; as I(xyNl*) =

where|D;| is the number of the fuzzy sets df;.

The information gain can be interpreted as “the information
gained about the classes by ascertaining the value of the test
2N Nlog attribute”. A test of an example with a missing value for the

— Z?:l s ) logs Z%) whereZNlei ;= 1,2,  test attribute, can obviously provide no information about the

is the counter;‘or the entirelexamples in child node;: class membership of this example. Therefore the assessment

gNlai — gNlai | Nl of candidate attributes has to be modified accordingly, so that
1 c attributes with missing values are penalized.
Suppose we are given a reference gethaving missing
i=1 ZN i . i i i
that ZN — ZNla1 4 7Nlas _ ZN + 7N vallues for attr!buteéll. Then the calculation of the mft_)rmatlon
2l gain for candidate attributel; from the (fuzzy) contingency

7) The information gain of att”bUt? is %ﬁ:n(x »4) = table can, as suggested in [9], be modified as following:

I(XN)—I(xN]A). Sincexyy => i X, 1<k <s,

I(xY) is calculated _from the same case weights asGam(X AL

I(xN|A). ThereforeGam(X ,A) is guaranteed to be = frequency of examples with know;
non-negative. (I3 — T(vN 1A,

8) The split informationSplitI(x", A) of attribute A is (I0¢T) = I0¢T144))
computed fromZN1ei the sum of the membership +
degrees of the examples to the fuzzy example sub- -0 |
set for the fuzzy setss;. That is SplitI(yN, 4) = . Z NI A known
() o () A o (I(2%) = 10V 40), wherea = =

9) The information /galn ratio of attributeA is Due to the factor the real information gain is only dependent
GalnR(X ,A) = Gain(xV, A)/SplitI(xV, A). Since on those examples with known values for the test attribute.
Galn(X ,A) is non-negative,GainR(x", A) is, of The information gain ratio can be amended in a similar way:
course, non-negative too. .

I(XY) — I(xM]A:)

6) The weighted sum of entropid$y”|A) of the subsets
is then I(xV|A) = Y2 20 I(y N'“') We notice

frequency of examples with unknowt

With the steps described above, we can easily estimate the GainR(x", 4;) = a - TN A @
. . ; . SplitI(x ™, A;)

information measure for the current candidates in n&dand

chose the best one as the test attribute. Since the split informatiorsplitI(x?V, A;) is the entropy of

Remark: information gain ratio is used in C4.5 [9] tdhe frequency distribution over the values of attributg the
select the test attribute in order to reduce the natural biasS#ilit information is increased artificially by evenly splitting
information gain, i.e., the fact that it favors attributes witfhe examples with missing values, and the information gain
many values (which may lead to a model of low predictivEatio is decreased accordingly (sinBelitI(x ", A;) appears
power). In FDCT induction, fuzzy partitions are created fof the denominator). This effect is desired, because an attribute
all attributes before the tree induction. To keep the trd®ving missing values should be penalized. Since the increased
simple, usually each partition possesses as few fuzzy setsSBéf information already penalizes the measure, one may
possible. Since the outgoing branches are labelled with fuzegnsider making the use of the facter(see above) optional.
sets instead of crisp values, the problem mentioned abolat is, it is added only when a user explicitly requests it.
is mitigated, because continuous values are mapped to few
fuzzy sets and thus the problem of many values is less sevére!
Therefore the effect of using information gain ratio in FDCT An important goal of this paper is to generate a compre-
may not be so obvious as in classical decision trees. hensible classification model, here a fuzzy rule base, which

Fuzzy rule base



TABLE IV TABLE V

TEST DATA 10-FOLD CROSS VALIDATION
data H size\ attributes \ classes\ missing value l model H iris \ glass thyroid \ wbc \ pima
iris 150 4 3 no FDCT g || 467% | 34.29% | 3.33% | 2.79% | 31.32%
glass 214 | 10 (incl. Id) 7 no @ nj3 11 5 12 2
thyroid || 215 5 3 no FDCT € || 5.33% | 31.90% | 7.62% | 2.64% | 18.82%
- 2 1 17 4
whc 699 | 10 (incl. 1d) | 2 ves (2) nj 3 33 0 0
- C4.5 g || 4.01% | 33.54% | 7.03% | 4.83% | 23.3%
pima 768 8 2 no nll a 14 7 8 8
NEFCLASS| £ || 3.33% | 32.19% | 11.60% | 2.35% | 25.89%
ni 3 14 6 21 14
NN € || 6.25% | 31.27% | 3.54% | 5.05% | 24.67%

can be generated from the fuzzy decision tree, that has beer
learned from data as described above.
The fuzzy rules are generated by transforming each path to
a leaf of the tree into a rule. A simpler model or a model wittMLP) with one hidden layer containing 3 neurons for 1000
better predictive power cannot be produced by such rewritiegochs.
of the tree. To achieve this an optimization of the rule base isSince we tried to generate comprehensible classification
necessary. We optimize the rule base by rule pruning, whar@dels, a trade-off between precision and complexity should
three heuristic strategies are used, which are adapted from [8:found. With this concern in mind, in FDCT a threshold of
1) Pruning by information measure: the attribute having tH&05 for the information measure was chosen. That is, a test is
smallest influence on the output should be deleted. created only if the chosen test attribute yields an information
2) Pruning by redundancy: the linguistic term, which yield¥alue higher than 0.05.
the minimal membership degree in a rule in the leagt
number of cases, should be deleted.
3) Pruning by classification frequency: The rule, which Table V shows the average error raie as well as the

yields the maximal fulfillment degree in the Ieastnumbé}umber of rulesn of the resulting classifiers after pruning.
of cases. should be deleted The best error rate of the models is printed in bold face in the

Since th hensibility of a f be defing <
ince the comprehensibility of a fuzzy system can be defined,, these experiments, FDCT was run with two different

by the number of the rules, the number of attributes used irTrﬁ‘tial partitioning of the attributes — the automatic (labelled

rule and the number of fuzzy sets per attribute, the heuristi&g FDCT (1) and the individual partitioning (labelled as

used in the strategies above are plausible. The pruning ProcegeT (2) mentioned above. With the individual partitioning

ca\r;vwgrk altj'[Ciqmatlca::y W{Lhort any ulsebr |ntgract|ogst. | %?&Ch attribute was partitioned with three fuzzy sets, which
€ do not discuss howne fuzzy rule Dase IS used to Classiy o evenly distributed over the attribute’s domain, while

ntew dda(tja% since |ttworks in basically the same manner dfth automatic partitioning the number of fuzzy sets was
standard fuzzy systems. determined by the program.

I1l. EXPERIMENTS . If we consider only the precigion of the models,_it is very
difficult to say which method is the best one, since each

In this sect|on,_ we report some results optamed fro”.‘ “Kethod produces the best result at least once. C4.5 never yields
periments run with the program FDCT, which was writte

: . ._.“the worst error rate. FDCT (1) gives the highest precision
?r)éetta:lrzztr gljltgozR?aflei];Sezg;?e; ;23r;\llerile_zlt(vr\llg\rﬂlintrgiencilrlsgljo&'33%) for thethyroid data and at the same time a very small
orogram [4], and NEFCLASS [8], which can generate a fuz rule base (5 rules). For thebc data NEFCLASS achieves the

o o .
rule based classifier by coupling neural networks with fuz est performance of 2.35% with as many as 21 rules, while

. . 0
systems. We compare the models generated by these progrzg%(s:—r (1) provides performance only slightly worse (2.79%),

L ) I : 2 Tor which it needs only about half the rules (12). The neural
w.r.t. precision, complexity, and the ability of dealing with o
L ! etwork fares worst for thevbg which is probably due to the
missing values. For the tests we used five data sets from

e . : .
UC Irvine Machine Learning Reposity [2]. Table IV showsaCt that an MLP with three hidden neurons (as used here) is

. . comparable in power to about 3 rules. With so few rules no
general information about these data sets.

. . ... good performance can be expected for Wiz data.
All experiments were run with 10-fold cross validation: . e . :
. ) . For the pima data the worst classification rate is provided
C4.5 was run with the standard configuration. In NEFCLAS . : . .
FDCT with the automatic partitioning (however, with only

I:c;re :g;h V%Ltir(l:?]u\fe?efg\zlglp%rigttlr?gu\tlélého?gffh;u;fgibsuettes,svg “rules). The reason is that the partitioning algorithm created
’ y for only 2 of the 8 attributes two fuzzy sets and only one

main. Fuzzy sets were also optimized during the rule prunin%.

. . zzy set for each of the rest. Therefore the potential number
The neural network program trained a multilayer perceptror? . . . . :
of rules is only four, with which no learning algorithm can

2The learning result of C4.5 can be both a tree or a rule base. Here WQ _m_UCh' In a_c_omparlson_ with th_e best result of FDCT (W'th
used the generated rule base for the experiments. individual partitioning, which required as many as 40 rules),

Precision and complexity



TABLE VI

In C4.5 the threshold values for tests of continuous attributes
LEARNING FROM DATA WITH MISSING VALUES

are determined dynamically and locally in the nodes; in NEF-

data 5% 10% CLASS, although all attributes are partitioned with fuzzy sets
FOCT [C45 |[Nefclass| FDCT [C45 | Nefolass| pofore Jearning, the fuzzy sets are still optimized afterwards.
iris g 3.67% 2.01% 3.33% 50.67% éZ.OO% 2.67% In contrast to this the fuzzy sets used in FDCT are not changed
'j anymore after creation. The lack of such dynamic fitting may
glass | & || 39.529| 34.61% | 37.19% | 20.04% | 40.25% | 39.18% | |\ "y £ th iting f decisi
nll 13 11 18 o1 10 23 e a disadvantage of the resulting fuzzy decision tree.
thyroid | & || 3.81% | 8.34% | 33.92% | 8.57% | 10.24% | 18.53% IV. CONCLUSIONS
n|6 7 3 4 6 5 :
whe 1z 11551% | 4.86% | 4.87% | 7.68% |5.28% | 5.58% In this paper we tried to extend classical decision trees by
n| 23 11 32 20 12 39 means of fuzzy methods in order to achieve the ability to
pima | & || 31.45%) 26.71% | 22.66% | 35.00% | 27.23% | 27.59% | model vagueness and to build comprehensible classifiers.
nj2 8 21 2 6 25 Although the learning principle of FDCT is the same as

that of classical decision trees, it was nevertheless strongly
influenced by fuzzy theory. In particular, in FDCT the infor-

we noticed that the attributes of tpégmadata have a relatively mation measure used for the test attribute selection, because
strong interrelationship. Therefore the data can be predictaidthe properties of fuzzy logic, can become negative. We
better only by combining several attributes. A finer granularitiptroduced amendments for two measures—information gain
which was achieved by FDCT with the individual partitioningand information gain ratio—to ensure a correct ranking of the
enhanced the probability of a combination of attributes, am@ndidates. To deal with missing values, we also presented
thus led to a better performance. further modifications for these measures. To be able to better

The same partitioning like in FDCT (2) was also usedontrol the complexity of the tree, we suggested to use a
in NEFCLASS. For thepima data NEFCLASS provided a threshold for the information measure.
slightly lower precision, but with less than half the rules. We To optimize the fuzzy rules we extract from a FDCT,
assume that the reason is that the fuzzy sets of NEFCLA®® transferred three heuristic pruning strategies from NE-
were trained during the learning and pruning phase, so thegLASS. Since the rules are expressed linguistically, the
probably fit the data better. In contrast to this the fuzzy setfassifier is easy to interpret. In our experiments we observed
used in FDCT (2) were created once at the beginning and dit the approach proposed here often generates smaller and
not change anymore. at the same time comparably good rule bases. Hence we con-

If we compare the two groups of results yielded by FDCTlude that we reached our goal of obtaining comprehensible
— taking not only the precision but also the complexity oflassifiers.
the classifiers into account — we conclude that the learningFuture work consists in trying other fuzzy partitioning
process creates better classifiers if it works with automatechniques to enhance the quality of the initial partitioning.
instead of individual partitioning. In particular, the number of
rules of the first variant is often clearly less than that of the
latter. Presumably the reason is that in the first variant the clasg he authors would like to thank Dr. Detlef Nauck for his
information is taken into account, whereas it is neglected f¢lp. This work was supported in part by the British Telecom.
the latter.
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