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Abstract— Decision trees are a popular form of classification
models. It is well known that classical trees lack the ability of
modelling vagueness. By connecting fuzzy systems and classical
decision trees, we try to achieve classifiers that can model
vagueness and are comprehensible. We discuss the core problem
of how to compute the information measure used in the induction
of fuzzy trees and propose some improvements. In addition, we
consider fuzzy rule bases derived from fuzzy decision trees and
present some heuristic strategies to prune them. We report the
results of experiments in which we compare our approach to
other well-known classification methods.

I. I NTRODUCTION

Data analysis is the process of computing various sum-
maries and derived values from a given collection of data [1].
Here we discuss data analysis in the classification context.

Different classification models have individual strengths and
weaknesses: sometimes a classifier is good for prediction
but difficult to understand, like neural networks. Or a model
works well in crisp domains, but cannot model vagueness, like
classical decision trees.

In this paper we combine fuzzy theory with classical de-
cision trees in order to learn a classification model, which is
able to handle vagueness and also comprehensible.

In the past several variants of fuzzy decision trees were in-
troduced by different authors. Boyen and Wenkel [5] presented
the automatic induction of binary fuzzy trees based on a new
class of discrimination quality measures. Janikow [6] adapted
the well-known ID3 algorithm so that it works with fuzzy sets.

In this paper, we also adapted the ID3 algorithm to construct
fuzzy decision trees and borrowed some basic ideas from [6].
In Section II we present our algorithm and examine in detail
the core problem of how to compute the information measure
in the attribute selection step. Going beyond Janikow’s work
we consider how to extract a fuzzy rule base from the induced
fuzzy tree, and study heuristics to simplify it. In addition
we discuss how to treat missing values. In Section III we
report experimental results obtained with an implementation
of our algorithm and compare them to those of some popular
classifiers.

II. FUZZY DECISION TREE

A. Tree induction

In this paper we focus on the induction of a fuzzy decision
tree (FDCT) on continuous attributes. Before the tree induction

a fuzzy partition has to be created for each attribute. The
fuzzy sets of these partitions will be used as fuzzy tests in
the nodes of the fuzzy tree. To initialize these fuzzy partitions
we adopted an existing algorithm, which creates them either
completely automatically based on a given data set (called
”automatic partitioning”), or based on a user specification of
the shape and number of the membership functions (called
”individual partitioning”). In the latter case the fuzzy sets are
distributed evenly over the entire domain of each attribute.
Here we assume the fuzzy partitions of the input variables are
given.

Like classical decision trees with the ID3 algorithm, fuzzy
decision trees are constructed in a top-down manner by recur-
sive partitioning of the training set into subsets. We assume
the basic algorithm to be known, and only point out some
particular features of the fuzzy tree learning:

1) The membership degree of examples
The membership degree of an example to an example
set is not a binary element from{0, 1} (as in classical
decision trees), but from the interval[0, 1]. In each node,
an example has a different membership degree to the
current example set, and this degree is calculated from
the conjunctive combination of the membership degrees
of the example to the fuzzy sets along the path to the
node and its membership degrees to the classes, where
different t-norms (>) can be used for this combination.

2) Selection of test attributes
This point will be discussed in detail in the following
subsections.

3) Fuzzy tests
As mentioned above, in the inner nodes fuzzy tests are
used instead of crisp tests. A fuzzy test of an attribute
means to determine the membership degree of the value
of an attribute to a fuzzy set.

4) Stop criteria
Usually classical tree learning is terminated if all at-
tributes are already used on the current path; or if all
examples in the current node belong to the same class.
Here we add another condition, namely whether the
information measure is below a specified threshold. In
FDCT any example can occur in any node with any
membership degree. Thus in general more examples are
considered per node and fuzzy trees are usually larger



than classical trees. The threshold defined here enables a
user to control the tree growth, so that unnecessary nodes
are not added. The experiments prove that an adequate
threshold helps not only to avoid overfitting, but also to
decrease the complexity of the tree.

B. Notation

For the formal discussion of attribute selection we introduce
the following notation:

• C = {C1, ..., Cm} is the set of possible classes.
• A = {A1, A2, ..., An} is a set of input attributes with

domains dom(Ai), 1 ≤ i ≤ n.
• For each variableAi ∈ A, 1 ≤ i ≤ n:

– ui ∈ dom(Ai) is a crisp value of attributeAi.
– Di is the fuzzy partition ofAi

– ai
p denotes the fuzzy set (the linguistic term)p for

the attributeAi. For exampleapressure
low means the

fuzzy set “low” of the attribute “pressure”.
• We consider a reference setE = {e1, . . . , es} of ex-

amplesek = (~uk, ~yk), 1 ≤ k ≤ s. ~uk is the input
vector, ~yk ∈ [0, 1]m the output vector ofek. ui

k (i.e.
the i-th element of~uk) is the (crisp) value of attribute
Ai in exampleek. yj

k (i.e. thej-th element of~yk) is the
membership degree of exampleek to the classCj .
The crisp classification ofek can be computed as
class(ek) = argmaxj:0≤j≤m{y

j
k}. (Note that a classifi-

cation problem can easily be extended for a continuous
target variable by using fuzzy sets instead of crisp classes
Cj . However, we confine ourselves to targets with a finite
number of classes.)

• The training set is a fuzzy set overE defined by initial
confidence weightsχ = {χ1, . . . , χs}, ∀k, 0 ≤ k ≤ s :
0 ≤ χk ≤ 1. If no such information is provided by a
user, we set∀k, 1 ≤ k ≤ s : χk = 1.

• For each nodeN in the fuzzy tree,χN = {χN
1 , . . . , χN

s }
is the fuzzy example set (a fuzzy set overE) in N . In the
root, this fuzzy example set coincides with the training
set, i.e.,∀k, 1 ≤ k ≤ s : χRoot

k = χk.
• ZN

j =
∑s

k=1>(χN
k , yj

k) stands for the example counter
for classCj in node N . ZN =

∑s
j=1 ZN

j is the total
counter for the examples of all classes. (More details
about the computation and the interpretation of member-
ship degrees as case weights are given below.)

• I(χN ) denotes the entropy of the class distribution w.r.t.
the fuzzy example setχN in nodeN . I(χN |Ai) is the
weighted sum of entropies from all child nodes, ifAi is
used as the test attribute in nodeN .

• Gain(χN , Ai) = I(χN ) − I(χN |Ai) is the information
gain w.r.t. attributeAi, which is the first of the two
attribute selection measures we consider.

• SplitI(χN , Ai) denotes the split information—the entropy
w.r.t. the value distribution of attributeAi (instead of the
class distribution).

• GainR(χN , Ai) = Gain(χN , Ai)/SplitI(χN , Ai) is the
information gain ratio w.r.t. attributeAi, which is the
second attribute selection measure we consider.

TABLE I

EXAMPLE1

before split C1 C2

e1 e2 e3 e4 e5

χN
j 1.0 1.0 1.0 1.0 1.0

ZN 2.0 3.0

TABLE II

EXAMPLE1

after split C1 C2

e1 e2 e3 e4 e5

small 0.8 0.7 1.0 0 1.0

large 0.6 0.9 0 1.0 0

χ̂N
j 1.4 1.6 1.0 1.0 1.0

ẐN 3.0 3.0

C. Problems with test attributes selection

A standard method to select a test attribute in classical
decision tree induction is to choose the attribute that yields
the highest information gain. In this subsection we discuss the
problems that occur if we apply this measure in fuzzy decision
tree induction.

The definition of information gain is based on probability
theory. Its value, as we know, can never be negative (a prove
can be found, for instance, in [3]). However, depending on the
computation, in FDCT negative information gain is possible.
This phenomenon occurs due to the following two reasons,
both of which can lead to a situation in which the sum of the
weights of the example cases before and after a split and thus
the class frequency distributions differ.

1) In fuzzy logic, the sum of the membership degrees of a
value to the fuzzy sets of its variable can differ from 1,
depending on how the fuzzy sets overlap.

2) Probability theory prescribes to use the product to ex-
press a (conditional) conjunction (i.e.,P (X ∧ Y ) =
P (X | Y ) · P (Y )), whereas fuzzy logic offers other
possibilities besides the product, for example>min(a, b)
and>Łuka(a, b).

Example 1 The following example illustrates point 1)

• Let E = {e1, e2, e3, e4, e5} be a reference set with
examples coming from two classesC1 and C2, where
y1
1 = y1

2 = 1, y2
1 = y2

2 = 0 (i.e., e1, e2 belong exclusively
to C1), andy1

3 = y1
4 = y1

5 = 0, y2
3 = y2

4 = y2
5 = 1 (i.e.,

e3, e4, e5 belong exclusively toC2).
• Let the membership degree of each example to the current

fuzzy example set in nodeN be χN
k = 1, 1 ≤ k ≤ 5

(see Table I). These membership degrees are interpreted
as case weights and thus we havepC1 : pC2 = 2 : 3 as
the frequency distribution of the classes.

• After splitting the training set according to the fuzzy sets
of attributeA — small and large — we obtain Table II
showing the membership degree of each example. Since



χN
k = 1, 1 ≤ k ≤ 5, the membership degree of each

example is the same as its membership degree to the
respective fuzzy set1, e.g.χN |small

1 = 0.8 andχ
N |large
1 =

0.6. If we interpret the membership degrees to the fuzzy
example set as case weights we can sum the weights for
the subsets to obtain the weights for the whole set (as
it is possible in classical decision tree induction). In this
way we obtain case weights (not membership degrees,
because they may be greater than 1)χ̂N , for which we
have χ̂N

1 = 0.8 + 0.6 = 1.4, χ̂N
2 = 0.7 + 0.9 = 1.6,

and χ̂N
3 = χ̂N

4 = χ̂N
5 = 1. The frequency distribution

of the classes w.r.t. these case weights ispC1 : pC2 =
(1.4 + 1.6) : (1.0 + 1.0 + 1.0) = 3 : 3 = 1 : 1.

Obviously the sum of the case weights has changed after
splitting the training set according to the fuzzy partition
of attribute A. Since the entropy of a uniform probability
distribution is maximal, the entropyI(χ̂N ) after the split is
certainly larger than the entropyI(χN ) before the split. If
we have∀k, 1 ≤ k ≤ 5 : χ̂N

k = χ
N |small
k + χ

N |large
k (as it

is implicitly assumed by the definition of information gain),
we have thatĜain(χN , A) = I(χ̂N )− I(χN |A) is definitely
non-negative. Now it is easy to conclude:

since I(χ̂N ) > I(χN )

and Ĝain(χN , A) = I(χ̂N )− I(χN |A) > 0
=⇒ Gain(χN , A) = I(χN )− I(χN |A) < 0 is possible.

Indeed we have for the example considered above
Gain(χN , A) = 0.917− 0.971 = −0.054.

As mentioned above, negative information gain can also
result from thet-norm (e.g.>min) that is used in the FDCT
to compute the membership degrees of the examples in a node.
An example for such a situation can easily be constructed in
analogy to example 1.

A negative information gain, although it has no real mean-
ing, can still yield a correct ranking of the candidate test
attributes. But if information gain ratio is used, a negative
value for the information gain can produce an inappropriate
answer. To see this, let us consider a simple example: suppose
we have two candidate attributesA and B with information
gain Gain(χN , A) > Gain(χN , B) and split information
SplitI(χN , A) � SplitI(χN , B).

1) In classical decision trees it is alwaysGain(χN , A) >
Gain(χN , B) ≥ 0, and then it may be that

0 ≤ Gain(χN , A)
SplitI(χN , A)

<
Gain(χN , B)
SplitI(χN , B)

.

This is desired, because it reduces the well-known bias
of information gain towards many-valued attributes.

2) In the fuzzy domain, however, we can also have the
situationGain(χN , A) > 0 > Gain(χN , B). In such a

1In general, one has to combine the membership degree to the fuzzy
example set and the membership degree to the fuzzy set of the attribute with
a t-norm.

TABLE III

(FUZZY) CONTINGENCY TABLE FOR NODEN WITH ATTRIBUTE A AS THE

TEST CANDIDATE

N (A) C1 C2 ASum

a1 Z
N|a1
C1

Z
N|a1
C2

ZN|a1

a2 Z
N|a2
C1

Z
N|a2
C2

ZN|a2

CSum ZN
C1

ZN
C2

ZN

case, attributeA is always favored by the information
gain ratio, because

Gain(χN , A)
SplitI(χN , A)

> 0 >
Gain(χN , B)
SplitI(χN , B)

,

independent of the relationship betweenSplitI(χN , A)
andSplitI(χN , B), and this contradicts our intuition.

In this paper we try to eliminate the problems mentioned
above by using the appropriate entropy to ensure a positive
information gain.

D. Extended information measure

As mentioned above, negative information gain can occur
in FDCT induction (e.g. in the version developed in [6]) if
we use the entropyI(χN ) computed from the membership
degrees of the examples (interpreted as case weights) in the
current node, in which a test attribute is to be chosen.

In this section we suggest a different way of computing
the information measure in the fuzzy domain to make infor-
mation gain ratio applicable as a selection measure. Using
the entropyI(χ̂N ) of the examples (derived from the case
weights χ̂N as computed above), which implicitly includes
the information of the test attribute, we can guarantee that
the information measure is non-negative. We proceed as the
following simple example demonstrates:

• Let C = {C1, C2} be the set of classes.
• Let E = {e1, . . . , es} be the reference set andχN be the

fuzzy example set in nodeN .
• Let A be a candidate test attribute that has a fuzzy

partition with two fuzzy sets{a1, a2}, i.e., with A as
the test attribute inN we would have two branches, each
connected to one fuzzy set.

• Let uA
k be the value of attributeA in exampleek, 1 ≤

k ≤ s.
• Let µai

(uA
k ) be the membership degree of attribute

valueuA
k to the fuzzy setai.

• Let χ
N |ai

k = >1(χN
k , µai

(uA
k )), 1 ≤ k ≤ s, be the

membership degree of the exampleek to the fuzzy
example subset for the fuzzy setai, i = 1, 2.

To determine the best test attribute, we create a (fuzzy)
contingency table (see Table III) for each candidateA in
nodeN , from which we can compute the information measure
for attributeA.



1) If A were the test attribute inN , the fuzzy example
subsets in the two child nodes areχN |ai , i = 1, 2. Then
it is χ

N |ai

k = >1(µai
(uA

k ), χN
k ), i = 1, 2, 1 ≤ k ≤ s.

2) Z
N |ai

Cj
(here: j ∈ {0, 1}, i ∈ {0, 1}) is the counter for

the examples that belong to fuzzy setai and classCj . It
can be computed asZN |ai

Cj
=

∑s
k=1>2

(
χ

N |ai

k , yj
k

)
by

interpreting the membership degrees as case weights.
3) ZN

Cj
, j = 1, 2, in row “CSum” is the counter for the

examples which belong to classCj . It is computed as:
ZN

Cj
= Z

N |a1
Cj

+ Z
N |a2
Cj

.
4) From row “CSum” we obtain the class frequency

distribution and its entropy in N : I(χ̂N ) =

−
∑2

j=1

(ZN
Cj

ZN

)
log2

(ZN
Cj

ZN

)
, whereZN is the counter

for the entire examples:ZN = ZN
C1

+ ZN
C2

.
5) Each row “ai” represents a child nodeN |ai. Line-

by-line we can get the entropy of each fuzzy ex-
ample subset for the fuzzy setai as I(χN |ai) =

−
∑2

j=1

(Z
N|ai
Cj

ZN|ai

)
log2

(Z
N|ai
Cj

ZN|ai

)
, whereZN |ai , i = 1, 2,

is the counter for the entire examples in child nodeN |ai:
ZN |ai = Z

N |ai

C1
+ Z

N |ai

C2

6) The weighted sum of entropiesI(χN |A) of the subsets
is then I(χN |A) =

∑2
i=1

ZN|ai

ZN I(χN |ai). We notice
that ZN = ZN |a1 + ZN |a2 = ZN

C1
+ ZN

C2
.

7) The information gain of attributeA is Ĝain(χN , A) =
I(χ̂N )−I(χN |A). Sinceχ̂N

k =
∑2

i=1 χ
N |ai

k , 1 ≤ k ≤ s,
I(χ̂N ) is calculated from the same case weights as
I(χN |A). ThereforeĜain(χN , A) is guaranteed to be
non-negative.

8) The split informationSplitI(χN , A) of attribute A is
computed fromZN |ai , the sum of the membership
degrees of the examples to the fuzzy example sub-
set for the fuzzy setsai. That is SplitI(χN , A) =
−

∑2
i=1

(
ZN|ai

ZN

)
log2

(
ZN|ai

ZN

)
9) The information gain ratio of attributeA is

GainR(χN , A) = Ĝain(χN , A)/ SplitI(χN , A). Since
Ĝain(χN , A) is non-negative,GainR(χN , A) is, of
course, non-negative too.

With the steps described above, we can easily estimate the
information measure for the current candidates in nodeN and
chose the best one as the test attribute.

Remark: information gain ratio is used in C4.5 [9] to
select the test attribute in order to reduce the natural bias of
information gain, i.e., the fact that it favors attributes with
many values (which may lead to a model of low predictive
power). In FDCT induction, fuzzy partitions are created for
all attributes before the tree induction. To keep the tree
simple, usually each partition possesses as few fuzzy sets as
possible. Since the outgoing branches are labelled with fuzzy
sets instead of crisp values, the problem mentioned above
is mitigated, because continuous values are mapped to few
fuzzy sets and thus the problem of many values is less severe.
Therefore the effect of using information gain ratio in FDCT
may not be so obvious as in classical decision trees.

E. Missing value handling

Real data often contain missing values. To handle such data
we extend the learning algorithm, so that deleting examples
with missing values from the training data set is not necessary
anymore.

The first question to be answered is how to assign the
examples with missing values of the test attribute to the
outgoing branches of a tree node. In this paper a popular
method from classical decision trees is adopted: an exampleek

is distributed evenly to all children if the valueui
k for test

attributeAi is unknown. That is

µai
p
(ui

k) =
1
|Di|

if ui
k is unknown, (1)

where|Di| is the number of the fuzzy sets ofAi.
The information gain can be interpreted as “the information

gained about the classes by ascertaining the value of the test
attribute”. A test of an example with a missing value for the
test attribute, can obviously provide no information about the
class membership of this example. Therefore the assessment
of candidate attributes has to be modified accordingly, so that
attributes with missing values are penalized.

Suppose we are given a reference setE having missing
values for attributeAi. Then the calculation of the information
gain for candidate attributeAi from the (fuzzy) contingency
table can, as suggested in [9], be modified as following:

Ĝain(χN , Ai)
= frequency of examples with knownAi

·(I(χ̂N )− I(χN |Ai))
+ frequency of examples with unknownAi

·0

= α · (I(χ̂N )− I(χN |Ai)), whereα =
ZN |Ai known

ZN

Due to the factorα the real information gain is only dependent
on those examples with known values for the test attribute.

The information gain ratio can be amended in a similar way:

GainR(χN , Ai) = α · I(χ̂N )− I(χN |Ai)
SplitI(χN , Ai)

(2)

Since the split informationSplitI(χN , Ai) is the entropy of
the frequency distribution over the values of attributeAi, the
split information is increased artificially by evenly splitting
the examples with missing values, and the information gain
ratio is decreased accordingly (sinceSplitI(χN , Ai) appears
in the denominator). This effect is desired, because an attribute
having missing values should be penalized. Since the increased
split information already penalizes the measure, one may
consider making the use of the factorα (see above) optional.
That is, it is added only when a user explicitly requests it.

F. Fuzzy rule base

An important goal of this paper is to generate a compre-
hensible classification model, here a fuzzy rule base, which



TABLE IV

TEST DATA

data size attributes classes missing value

iris 150 4 3 no

glass 214 10 (incl. Id) 7 no

thyroid 215 5 3 no

wbc 699 10 (incl. Id) 2 yes

pima 768 8 2 no

can be generated from the fuzzy decision tree, that has been
learned from data as described above.

The fuzzy rules are generated by transforming each path to
a leaf of the tree into a rule. A simpler model or a model with
better predictive power cannot be produced by such rewriting
of the tree. To achieve this an optimization of the rule base is
necessary. We optimize the rule base by rule pruning, where
three heuristic strategies are used, which are adapted from [7]:

1) Pruning by information measure: the attribute having the
smallest influence on the output should be deleted.

2) Pruning by redundancy: the linguistic term, which yields
the minimal membership degree in a rule in the least
number of cases, should be deleted.

3) Pruning by classification frequency: The rule, which
yields the maximal fulfillment degree in the least number
of cases, should be deleted.

Since the comprehensibility of a fuzzy system can be defined
by the number of the rules, the number of attributes used in a
rule and the number of fuzzy sets per attribute, the heuristics
used in the strategies above are plausible. The pruning process
can work automatically without any user interactions.

We do not discuss how the fuzzy rule base is used to classify
new data, since it works in basically the same manner as
standard fuzzy systems.

III. E XPERIMENTS

In this section, we report some results obtained from ex-
periments run with the program FDCT, which was written
by the first author of this paper, the well-known decision
tree learner C4.5 (Release 8)2 [9], a neural network training
program [4], and NEFCLASS [8], which can generate a fuzzy
rule based classifier by coupling neural networks with fuzzy
systems. We compare the models generated by these programs
w.r.t. precision, complexity, and the ability of dealing with
missing values. For the tests we used five data sets from the
UC Irvine Machine Learning Reposity [2]. Table IV shows
general information about these data sets.

All experiments were run with 10-fold cross validation.
C4.5 was run with the standard configuration. In NEFCLASS
for each attribute a fuzzy partition with three fuzzy sets was
created, which were evenly distributed over the attribute’s do-
main. Fuzzy sets were also optimized during the rule pruning.
The neural network program trained a multilayer perceptron

2The learning result of C4.5 can be both a tree or a rule base. Here we
used the generated rule base for the experiments.

TABLE V

10-FOLD CROSS VALIDATION

model iris glass thyroid wbc pima

FDCT ε̄ 4.67% 34.29% 3.33% 2.79% 31.32%
(1) n 3 11 5 12 2

FDCT ε̄ 5.33% 31.90% 7.62% 2.64% 18.82%
(2) n 3 33 10 17 40

C4.5 ε̄ 4.01% 33.54% 7.03% 4.83% 23.3%
n 4 14 7 8 8

NEFCLASS ε̄ 3.33% 32.19% 11.60% 2.35% 25.89%
n 3 14 6 21 14

NN ε̄ 6.25% 31.27% 3.54% 5.05% 24.67%

(MLP) with one hidden layer containing 3 neurons for 1000
epochs.

Since we tried to generate comprehensible classification
models, a trade-off between precision and complexity should
be found. With this concern in mind, in FDCT a threshold of
0.05 for the information measure was chosen. That is, a test is
created only if the chosen test attribute yields an information
value higher than 0.05.

A. Precision and complexity

Table V shows the average error rateε̄, as well as the
number of rulesn of the resulting classifiers after pruning.
The best error rate of the models is printed in bold face in the
table.

In these experiments, FDCT was run with two different
initial partitioning of the attributes – the automatic (labelled
as FDCT (1)) and the individual partitioning (labelled as
FDCT (2)) mentioned above. With the individual partitioning
each attribute was partitioned with three fuzzy sets, which
were evenly distributed over the attribute’s domain, while
with automatic partitioning the number of fuzzy sets was
determined by the program.

If we consider only the precision of the models, it is very
difficult to say which method is the best one, since each
method produces the best result at least once. C4.5 never yields
the worst error rate. FDCT (1) gives the highest precision
(3.33%) for thethyroid data and at the same time a very small
rule base (5 rules). For thewbcdata NEFCLASS achieves the
best performance of 2.35% with as many as 21 rules, while
FDCT (1) provides performance only slightly worse (2.79%),
for which it needs only about half the rules (12). The neural
network fares worst for thewbc, which is probably due to the
fact that an MLP with three hidden neurons (as used here) is
comparable in power to about 3 rules. With so few rules no
good performance can be expected for thewbc data.

For thepima data the worst classification rate is provided
by FDCT with the automatic partitioning (however, with only
2 rules). The reason is that the partitioning algorithm created
for only 2 of the 8 attributes two fuzzy sets and only one
fuzzy set for each of the rest. Therefore the potential number
of rules is only four, with which no learning algorithm can
do much. In a comparison with the best result of FDCT (with
individual partitioning, which required as many as 40 rules),



TABLE VI

LEARNING FROM DATA WITH MISSING VALUES

data 5% 10%

FDCT C4.5 Nefclass FDCT C4.5 Nefclass

iris ε̄ 4.67% 8.01% 5.33% 10.67% 12.00% 6.67%
n 4 5 3 3 3 3

glass ε̄ 39.52% 34.61% 37.19% 29.04% 40.25% 39.18%
n 13 11 18 21 10 23

thyroid ε̄ 3.81% 8.34% 33.92% 8.57% 10.24% 18.53%
n 6 7 3 4 6 5

wbc ε̄ 5.51% 4.86% 4.87% 7.68% 5.28% 5.58%
n 23 11 32 20 12 39

pima ε̄ 31.45% 26.71% 22.66% 35.00% 27.23% 27.59%
n 2 8 21 2 6 25

we noticed that the attributes of thepimadata have a relatively
strong interrelationship. Therefore the data can be predicted
better only by combining several attributes. A finer granularity,
which was achieved by FDCT with the individual partitioning,
enhanced the probability of a combination of attributes, and
thus led to a better performance.

The same partitioning like in FDCT (2) was also used
in NEFCLASS. For thepima data NEFCLASS provided a
slightly lower precision, but with less than half the rules. We
assume that the reason is that the fuzzy sets of NEFCLASS
were trained during the learning and pruning phase, so they
probably fit the data better. In contrast to this the fuzzy sets
used in FDCT (2) were created once at the beginning and did
not change anymore.

If we compare the two groups of results yielded by FDCT
— taking not only the precision but also the complexity of
the classifiers into account — we conclude that the learning
process creates better classifiers if it works with automatic
instead of individual partitioning. In particular, the number of
rules of the first variant is often clearly less than that of the
latter. Presumably the reason is that in the first variant the class
information is taken into account, whereas it is neglected in
the latter.

B. Tests on imperfect data

The experiments on the data with missing values, which
were generated by randomly deleting values from each data
set, demonstrate how well different learning methods can cope
with imperfect data. In these tests FDCT was only run with
automatic partitioning. The two sections of Table VI3 show
the results for data sets with 5% and 10% missing values,
respectively. The best results are printed in bold face.

As expected, the performance of all methods decreased with
the increased portion of missing values. FDCT provided for
the thyroid data (both 5% and 10% missing values) the best
result, as well as for theiris data (5%) and theglass data
(10%). However, it is impossible to single out a method that
is consistently superior to the others. The properties of the data
seem to be more important than the portion of missing values.

3The neural network program does not appear in this table, since it cannot
work with missing values.

In C4.5 the threshold values for tests of continuous attributes
are determined dynamically and locally in the nodes; in NEF-
CLASS, although all attributes are partitioned with fuzzy sets
before learning, the fuzzy sets are still optimized afterwards.
In contrast to this the fuzzy sets used in FDCT are not changed
anymore after creation. The lack of such dynamic fitting may
be a disadvantage of the resulting fuzzy decision tree.

IV. CONCLUSIONS

In this paper we tried to extend classical decision trees by
means of fuzzy methods in order to achieve the ability to
model vagueness and to build comprehensible classifiers.

Although the learning principle of FDCT is the same as
that of classical decision trees, it was nevertheless strongly
influenced by fuzzy theory. In particular, in FDCT the infor-
mation measure used for the test attribute selection, because
of the properties of fuzzy logic, can become negative. We
introduced amendments for two measures—information gain
and information gain ratio—to ensure a correct ranking of the
candidates. To deal with missing values, we also presented
further modifications for these measures. To be able to better
control the complexity of the tree, we suggested to use a
threshold for the information measure.

To optimize the fuzzy rules we extract from a FDCT,
we transferred three heuristic pruning strategies from NE-
FCLASS. Since the rules are expressed linguistically, the
classifier is easy to interpret. In our experiments we observed
that the approach proposed here often generates smaller and
at the same time comparably good rule bases. Hence we con-
clude that we reached our goal of obtaining comprehensible
classifiers.

Future work consists in trying other fuzzy partitioning
techniques to enhance the quality of the initial partitioning.
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