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Abstract— Recently several papers studied resampling ap-
proaches to determine the number of clusters in prototype-based
clustering. The core idea underlying these approaches is that with
the right choice for the number of clusters basically the same
cluster structures should be obtained from subsamples of the
given data set, while a wrong choice should produce considerably
varying cluster structures. In this paper we investigate whether
these approaches can be transferred to fuzzy clustering. It turns
out that they are applicable to fuzzy clustering as well, but that
not all relative cluster evaluation measures that work for crisp
clustering can also be used for fuzzy clustering.

I. INTRODUCTION

A core problem of prototype-based clustering algorithms—
like the classical c-means algorithm [1], [18], [23], its fuzzy
counterpart (fuzzy c-means) [2], [4], [19], or the expectation
maximization algorithm for estimating a mixture of Gaussians
[9], [12], [5]—is that they require the number of clusters
to be known in advance. This is, of course, inconvenient in
practice, since in applications we rarely find ourselves in such
a favorable position. Rather we would like to have a method
to determine the number of clusters from the data set.

A common approach to tackle this problem is to cluster the
given data set several times, each time with a different number
of clusters from a user-specified range. The clustering results
are evaluated and then the number of clusters yielding the
best evaluation is chosen. In some cases the selection criterion
may also be a (reasonably clear) local optimum for a certain
number of clusters, or a clear change in the behavior of the
evaluation over the number of clusters (for example, a knee or
a maximum or minimum in the first or second derivative). In
fuzzy clustering, this approach is very common in connection
with so-called internal cluster evaluation measures, like, for
example, the partition entropy [2], [27], the Fukuyama-Sugeno
index [14], or the Xie-Beni index [28] (overviews can be found
in [4], [19], [16], [17], [7]). However, most of these measures
are pretty unreliable and often yield inconclusive results even
if the cluster structure is actually fairly clear.

In this paper we study an alternative approach that has
recently attracted a lot of attention in crisp and probabilistic
clustering. The core idea of this approach is that if we
cluster subsamples of the given data set with the “right”
number of clusters, we should end up with basically the
same cluster structure in each run. With a “wrong” number

of clusters, however, the clustering result should be unstable,
showing considerable variation between different subsamples.
Thus, by measuring the stability of the clustering result w.r.t.
subsampling (similarity of results from different runs), one
may be able to determine the “best” number of clusters: it is
the one for which the clustering results are most stable.

Intuitively, one may think of this as follows: if the “true”
number of clusters is c and we try to find c + 1 clusters,
one cluster has to be split. If we try to find c − 1 clusters,
some pair of clusters has to be merged. As it depends on
particular properties of the subsample which cluster is split or
which clusters are merged, we should get somewhat differing
structures in each run. By measuring how well the clustering
results coincide, we can thus discover such situations and
choose the number of clusters based on this information.

This paper is organized as follows: in Section II we review
the basics of relative cluster evaluation measures for crisp
clustering, and transfer them, in a straightforward way, to
fuzzy clustering. In Section III we review two basic schemes
for resampling, and corresponding cluster evaluation schemes,
which have been suggested. In Section IV we report exper-
imental results we obtained for hard and fuzzy clustering.
They reveal that the approach is feasible, but that for fuzzy
clustering one has to choose the evaluation measure with care.

II. RELATIVE CLUSTER EVALUATION MEASURES

Relative cluster evaluation measures compare two partitions
of given data, one being a clustering result and the other either
also a clustering result or given by a classification or a user-
defined grouping. In the latter case one also speaks of external
cluster evaluation measures [16], [17], although the methods
used are usually the same. Two clustering results, however,
may also be compared based on the cluster parameters alone,
although we do not discuss such methods here.

We assume that a partition of the given data set is described
by a c×n partition matrix U = (uij)1≤i≤c,1≤j≤n, where c is
the number of clusters and n the number of data points. An
element uij of such a matrix states, in the crisp case, whether
the j-th data point belongs to the i-th cluster (uij = 1) or not
(uij = 0). In the fuzzy case, uij is the degree of membership
to which the j-th data point belongs to the i-th cluster (usually
satisfying the constraint ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1).



We also assume that the two partition matrices we have
to compare have the same dimensions, that is, refer to the
same numbers of clusters and data points. However, it is also
imaginable to compare matrices with different numbers of
rows, although some measures may give misleading results
in this case, since they are based on the assumption that it is
possible to set up a bijective mapping between the cluster.

Regardless of whether the numbers of rows coincide or not,
we face the problem of relating the clusters of the one partition
to the clusters of the other partition. There are basically three
solutions to this problem: (1) for each cluster in the one
partition we determine the best fitting cluster in the other,
(2) we find the best permutation of the rows of one partition
matrix, that is, the best one-to-one mapping of the clusters, or
(3) we compare the partition matrices indirectly by first setting
up a coincidence matrix for each of them, which records for
each pair of data points whether they are assigned to the same
cluster or not, and then compare the coincidence matrices.

The first alternative has the advantage of being fairly
efficient (time complexity O(nc2), but the severe disadvan-
tage that we cannot make sure that we obtain a one-to-one
relationship. Some clusters in the second partition may not
be paired with any cluster in the first, which also renders the
approach asymmetric. The second alternative has the advan-
tage that it definitely finds the best one-to-one relationship. Its
disadvantage is the slightly higher computational cost (time
complexity O(nc2 + c3), see below). The third alternative has
the disadvantages that it does not yield a direct indication of
how to relate the clusters to each other and that it can have
fairly high computational costs (time complexity O(n2c)),
especially for a large number of data points. However, the
fact that it does not need an explicit mapping between the
clusters can also be seen as an advantage, because it renders
this method very flexible. In particular, this method is well
suited to compare partitions with different numbers of clusters.

A. Comparing Partition Matrices

The first two approaches outlined above directly compare
two c×n partition matrices U(1) and U(2). For both of them
we need a measure that compares two rows, one from each
matrix. Such measures can be derived from measures compar-
ing binary classifications, like, for example, the accuracy or
the F1-measure [25]. Formally, we set up a 2×2 contingency
table for each pair of rows, one from each matrix (cf. Table I).
That is, for each pair (i, k) ∈ {1, . . . , c}2 we compute
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TABLE I
CONTINGENCY TABLE COMPARING ROWS OF TWO PARTITION MATRICES
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(In the following we generally drop the arguments U(1) and
U(2) to make the formulae easier to read.) All of these
numbers may also be computed from fuzzy or probabilistic
membership degrees. Actually they have a fairly natural in-
terpretation in fuzzy clustering. This can be seen as follows:
in the crisp case, n11 is the number of data points that are
assigned to the i-th cluster of the first partition and to the k-
th cluster of the second partition, where the and is formally
expressed by a product. Allowing membership degrees from
[0, 1] and drawing on the theory of fuzzy logic, we see that this
is only a special case of a t-norm that combines the two state-
ments. Hence, in the general case, we may replace the product
by an arbitrary t-norm. Analogously, the expressions 1 − uij

can be seen as resulting from an application of the standard
fuzzy negation, and indeed: they refer to negated statements
“The j-th data point does not belong to the i-th cluster.” In
this way we achieve a straightforward generalization of all
following measures to fuzzy clustering results, even though we
confine ourselves to the above formulae for this paper (which
use the product to express a conjunction).

From the above numbers we may compute any measure that
can be used to evaluate a binary classification, maximizing the
result over all permutations, each of which provides a column
mapping.1 An example is the (averaged) F1 measure [25]
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where Π(c) is the set of all permutations of the c numbers
1, . . . , c and cluster-specific precision and recall are
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Another example is the (cross-classification) accuracy, aver-
aged over all columns, that is,
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Two partition matrices U(1) and U(2) are the more similar,
the higher the values of the (averaged) F1 measure or the
(cross-classification) accuracy.

1Note that with the so-called Hungarian method for solving optimum
weighted bipartite matching problems [24] the time complexity of finding
the maximum over all permutations for given pairwise column comparison
values is only O(c3) and not O(c!).



TABLE II
CONTINGENCY TABLE FOR COMPARING COINCIDENCE MATRICES
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An alternative to these classification-based measures is a
simple mean squared difference comparison of the partition
matrices (which, at least to the authors’ knowledge, has not
been used before). That is, we compute
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The smaller this measure, the more similar are the partitions.
Note that for crisp clustering (that is, for uij ∈ {0, 1}) this
measure may also be written as
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Hence it is closely related to the (cross-classification) accuracy,
since it is obviously n(i,k)
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crisp partitions. This measure is actually the most natural for
fuzzy clustering and thus it is not surprising that, as we will
see in Section IV, it performs best for fuzzy clustering.

B. Comparing Coincidence Matrices

As an alternative to comparing the partition matrices di-
rectly, one may first compute from each of them an n × n
coincidence matrix, also called a cluster connectivity matrix
[22], which states for each pair of data points whether they are
assigned to the same cluster or not. Formally, a coincidence
matrix Ψ = (ψjl)1≤j,l≤n can be computed from a partition
matrix U = (uij)1≤i≤c,1≤j≤n by

ψjl =
c∑

i=1

uijuil.

Note again that these values may also be computed from fuzzy
or probabilistic membership degrees, possibly replacing the
product (which represents a conjunction) by another t-norm.

After coincidence matrices Ψ(1) and Ψ(2) are computed
from the two partition matrices U(1) and U(2), the comparison
is carried out by computing statistics of the number of data
point pairs that are in the same group in both partitions, in
the same group in one, but in different groups in the other,
or in different groups in both. The main advantage of this
approach is, of course, that we are freed of the need to pair
the groups of the two partitions. We rather exploit that data
points that are considered (dis)similar by one partition should
also be considered (dis)similar by the other.

Formally, we compute a 2×2 contingency table (cf. Table II)
containing the numbers (which are basically counts of the
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where the index S stands for “same group” and the index D
stands for “different groups” and the two indices refer to the
two partitions. Again the product may be replaced by any t-
norm. (To make the formulae easier to read, the arguments
Ψ(1) and Ψ(2) are dropped in the following.) From these
number a large variety of measures may be computed. Well-
known examples include the Rand statistic
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which is a simple ratio of the number of data point pairs treated
the same in both partitions to all data point pairs, and the
Jaccard coefficient
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which ignores negative information, that is, pairs that are
assigned to different groups in both partitions. Both measures
are to be maximized. Another frequently encountered measure
is the Folkes–Mallows index
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which can be interpreted as a cosine similarity measure, be-
cause it computes the cosine between two binary vectors, each
of which contains all elements of one of the two coincidence
matrices Ψ(1) and Ψ(2). Consequently, this measure is also to
be maximized. A final example is the Hubert index
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which may either be interpreted as a product-moment correla-
tion, computed from the set of pairs
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Alternatively, it may be interpreted as the square root of the
(normalized) χ2 measure, as it can be computed from the 2×2
contingency table shown in Table II.2 Hence this measure is
also to be maximized (like the preceding ones).

It should be clear that this list does not exhaust all pos-
sibilities. Basically all of the abundance measures by which
(binary) vectors and matrices can be compared are applicable.

2The χ2 measure can be seen as measuring the strength of dependence
between two random variables, one for each partition, which indicate for
each data point pair whether the data points are in the same group or not.



III. RESAMPLING

Resampling [15] can be seen as a special Monte Carlo
method, that is, as a method for finding solutions to math-
ematical and statistical problems by simulation [13], [16]. It
has been applied to cluster estimation problems already fairly
early [20], [8] and it seems to have gained increased attention
in this domain recently [22], [26], [21]. Its main purpose in
clustering is the validation of clustering results as well as the
selection of an appropriate cluster model—in particular the
choice of an appropriate number of clusters—by estimating
the variability (or, equivalently, the stability) of the result.

Resampling methods can be found with basically two sam-
pling strategies. In the first place, one may use subsampling,
that is, the samples are drawn without replacement from the
given data set, so that each data point appears in at most
one data subset. This strategy is usually applied in a cross
validation style, that is, the given data set is split into a
certain number of disjoint subsets (with two subsets being
the most common choice). The alternative is bootstrapping
[11], in which samples are drawn with replacement, so that a
data point may even appear multiple times in the same data
subset. There are good arguments in favor and against both
approaches, but the result often do not differ much.

The general idea of applying resampling for cluster val-
idation and model selection was already outlined in the
introduction: a cluster model can usually be applied as a
classifier with as many classes as there are clusters (i.e. one
class per cluster). In this way data points that have not been
used to build the cluster model can be assigned to clusters
(or the corresponding classes). Thus we obtain, with the same
algorithm, two different groupings of the same set of data
points. For example, one may be obtained by clustering the
data set, the other by applying a cluster model that was built on
another data set. These two groupings can be compared using,
for example, one of the measures discussed in the preceding
section. By repeating such comparisons with several samples
drawn from the original data set, one can obtain an assessment
of the variability of the cluster structure (or, more precisely,
an assessment of the variability of the evaluation measure for
the similarity of partitions).

Specific algorithms following this general scheme have been
proposed in [22], [26], [21]. The approaches by [22] and [21]
are basically identical. Both are based on a bootstrapping
approach and work as follows: first the full given data set
is clustered with the chosen algorithm. Formally, this may be
seen as an estimate of the “average” partition [21]. Then a
user-defined number of random samples of user-defined size
are drawn (with replacement) from the data set and clustered as
well. The cluster models obtained from the samples are applied
to the full data set, thus obtaining two groupings of this data
set. These two groupings are compared by one of the relative
evaluation measures based on coincidence matrices that were
discussed in Section II. Finally, the average of the evaluation
measure values for each of these comparisons is taken as an
assessment of the cluster variability. As an alternative, [21]

mention that one may do without an estimate for the “average”
partition (which is estimated by the cluster model obtained
from the full data set) and rather assess the variability of
the cluster structures by comparing all pairs of cluster models
obtained from the samples on the full data set.

This resampling approach may be applied to select the most
appropriate cluster model, in particular, the “best” number
of clusters, by executing the above algorithm for different
parameterizations of the clustering algorithm and then to select
the one showing the lowest variability. Experimental results
reported by [21] indicate that this approach is very robust and
a fairly reliable way of choosing the number of crisp clusters.

In contrast to the bootstrapping approaches, [26] rely on a
(repeated) two-fold cross validation sampling scheme. In each
step the given data set is split randomly into two parts of about
equal size. Both parts are processed with the same clustering
algorithm and the cluster model obtained on the second half
of the data is applied to the first half. Thus one obtains two
groupings for the first half of the data, which are compared
with a risk-based evaluation measure. This (relative) measure
is defined on the two partition matrices and thus has to find
the best matching of the clusters of the two groupings (see
above). However, in principle all relative measures discussed
in the preceding section (including those based on coincidence
matrices) may be applied (just as measures based on partition
matrices may be applied in the bootstrapping approaches by
[22], [21]). [26] report experimental results on several data
sets, which show that the number of Gaussian distribution
clusters can thus be selected in a fairly reliable way.

When applying these resampling methods it should be noted
that all approaches in this direction only assess the variability
in the results obtained with some clustering algorithm. Al-
though a low variability is surely a desirable property, it is not
sufficient to guarantee a good clustering result. For example,
a clustering algorithm that always yields the same partition of
the data space, regardless of the data it is provided with, has
no variability at all, but surely yields unsatisfactory clustering
results [21]. Hence the clustering algorithms that are com-
pared with such schemes should not differ too much in their
flexibility, because otherwise the simpler and thus more stable
algorithm may be judged superior without actually being.

Furthermore, [16], [17] remark that the power of many
such statistical tests, like the estimation of the variability of
the clustering structure as it was discussed above, decreases
quickly with increasing data dimensionality. This is not sur-
prising, because due to what is usually called the curse of
dimensionality, the data space necessarily is less and less
densely populated, the more dimensions there are. In addition,
the noise in the different dimensions tends to sum, which
in combination with the tendency of larger average distances
between the data points [10], makes it more and more difficult
for a clustering algorithm to find reasonable groups in the
data. This, of course, must lead to a higher variability in
the clustering result. For low-dimensional data sets, however,
resampling is a very powerful technique and seems to be the
best available approach to determine the number of clusters.



Fig. 1. An artificial data set with 3 clusters (equally populated)

TABLE III
HARD CLUSTERING RESULTS ON ARTIFICAL DATA SET (3 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .2364 .7637 .7622 .6994 .6046 .7222 .3950
3 .0032 .9968 .9953 .9936 .9810 .9903 .9855
4 .1235 .8765 .6849 .8833 .6546 .7859 .7058
5 .1281 .8719 .6107 .8613 .5520 .7058 .6171
6 .1074 .8926 .6475 .8707 .4898 .6507 .5716
7 .1169 .8831 .5607 .8610 .4114 .5792 .4967
8 .0919 .9081 .6155 .8855 .3946 .5643 .4987

TABLE IV
FUZZY CLUSTERING RESULTS ON ARTIFICAL DATA SET (3 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .0460 .6513 .6510 .5553 .3851 .5554 .1105
3 .0004 .8082 .7119 .6992 .3775 .5481 .3227
4 .0090 .7936 .5802 .7134 .2733 .4293 .2379
5 .0363 .7846 .4557 .7364 .2109 .3482 .1830
6 .0119 .8280 .4848 .7719 .1877 .3161 .1792
7 .0164 .8393 .4352 .7943 .1662 .2849 .1648
8 .0122 .8582 .4309 .8154 .1548 .2681 .1624

IV. EXPERIMENTS

We applied a resampling approach for hard and fuzzy clus-
tering based on the above explanations to four data sets. The
first three are artifical two-dimensional data sets of 400 data
points each with three, four, and six clusters, respectively,
which are shown in Figures 1 to 3. They were generated by
sampling from normal distributions (variance 1), located at
(0, 0), (4, 0), and (2, 3) for the first data set (equal cluster
probabilities), at (0, 0), (4, 0), (0, 4), and (4, 4) for the second
data set (different cluster probabilities), and at (0, 0), (2,−3),
(6,−3), (8, 0), (6, 3), and (2, 3) for the third data set (equal

Fig. 2. An artificial data set with 4 clusters (differently populated)

TABLE V
HARD CLUSTERING RESULTS ON ARTIFICAL DATA SET (4 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .0831 .9169 .9166 .8538 .7569 .8542 .7076
3 .0810 .9190 .8388 .9091 .8110 .8794 .8070
4 .0044 .9956 .9882 .9938 .9810 .9894 .9850
5 .1001 .8999 .7292 .8981 .6575 .7863 .7202
6 .0983 .9017 .7045 .8818 .5129 .6776 .6066
7 .0918 .9082 .6551 .8932 .5286 .6822 .6186
8 .0739 .9261 .6769 .9089 .5021 .6664 .6144

TABLE VI
FUZZY CLUSTERING RESULTS ON ARTIFICAL DATA SET (4 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .0001 .7861 .7849 .6636 .4982 .6650 .3271
3 .0157 .7867 .6598 .6886 .3800 .5503 .3121
4 .0009 .8351 .6441 .7402 .3520 .5207 .3425
5 .0203 .8183 .5373 .7503 .2541 .4052 .2472
6 .0150 .8358 .5079 .7755 .2119 .3497 .2141
7 .0132 .8518 .4813 .8004 .1881 .3166 .1997
8 .0159 .8607 .4384 .8176 .1706 .2914 .1868

cluster probabilities). The fourth data set is the well-known
wine data set from the UCI machine learning repository [6].
It comprises three classes of Italian wines and thus one expects
to find three clusters.

When clustering all datasets were normalized in all dimen-
sions to mean 0 and standard deviation 1 to rule out scaling
effects. The experiments were carried out with a scheme that
lies between the two schemes that were discussed in the
preceding section. First the whole data set was clustered. Then
100 random samples without replacement were drawn from
the data set, each of which comprised about half of the data



Fig. 3. An artificial data set with 6 clusters (equally populated)

TABLE VII
HARD CLUSTERING RESULTS ON ARTIFICAL DATA SET (6 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .2393 .7607 .7561 .6827 .5607 .6933 .3667
3 .1989 .8011 .6816 .7435 .5131 .6669 .4597
4 .1527 .8473 .6698 .8296 .5619 .7074 .5894
5 .1397 .8603 .5665 .8457 .5448 .6969 .5955
6 .0593 .9407 .7931 .9457 .7637 .8631 .8326
7 .0592 .9408 .7109 .9465 .7382 .8465 .8164
8 .0624 .9376 .6612 .9447 .6925 .8169 .7861

TABLE VIII
FUZZY CLUSTERING RESULTS ON ARTIFICAL DATA SET (6 CLUSTERS)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .0079 .5178 .5178 .5007 .3339 .5007 .0015
3 .0403 .6557 .4832 .5846 .2319 .3762 .0648
4 .0658 .7630 .5248 .6924 .2374 .3830 .1781
5 .0365 .8752 .6867 .8168 .3705 .5395 .4251
6 .0000 .9628 .8885 .9308 .6535 .7904 .7490
7 .0221 .9311 .7054 .9166 .5635 .7206 .6716
8 .0305 .9170 .6133 .9075 .4843 .6522 .5988

points. (The data set was split into two equal parts, one of
which was used). Each sample was clustered with the same
number of clusters as the full data set and then the two cluster
structures (one obtained from the full data set and one from the
sample) were compared on the full data set using the measures
described in Section II. The evaluation results were averaged
over the 100 samples, thus yielding a stability measure.

The results of our experiments are shown in the eight
Tables III to X. They are grouped in pairs, with the first table
referring to crisp clustering (classical c-means) and the second
to fuzzy clustering (standard fuzzy c-means). The first column

Fig. 4. The wine data set (attributes 7 and 10)

TABLE IX
HARD CLUSTERING RESULTS ON THE WINE DATA SET (3 CLASSES)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .1664 .8336 .8303 .7685 .6866 .7910 .5322
3 .0239 .9761 .9625 .9528 .8752 .9328 .8967
4 .1008 .8992 .7724 .8848 .6790 .7905 .7113
5 .0732 .9268 .8062 .8996 .6390 .7704 .7069
6 .0828 .9172 .7323 .8976 .5637 .7149 .6537
7 .0851 .9149 .6225 .8903 .5243 .6846 .6195
8 .0735 .9265 .6428 .9056 .5027 .6644 .6099

TABLE X
FUZZY CLUSTERING RESULTS ON THE WINE DATA SET (3 CLASSES)

partition matrix coincidence matrix
# diff acc F1 Rand Jaccard Folkes Hubert
2 .0102 .7084 .7048 .5900 .4231 .5944 .1798
3 .0013 .7945 .6853 .6781 .3633 .5329 .2874
4 .0244 .7779 .5503 .6980 .2633 .4166 .2129
5 .0056 .8234 .5569 .7436 .2351 .3806 .2190
6 .0125 .8296 .4923 .7798 .1918 .3219 .1833
7 .0115 .8434 .4500 .7929 .1689 .2891 .1679
8 .0133 .8546 .4107 .8114 .1535 .2662 .1580

of these tables states the number of clusters, the next three
results for measures comparing partition matrices, the last four
results for measures comparing coincidence matrices.

As can be seen from these tables all measures work fairly
well in the crisp case: the best value is obtained for the true
or expected number of clusters. Only for the artificial data set
with six clusters some measures seem to weakly prefer seven
clusters instead of six. In the fuzzy case, however, for three
and four clusters (on both the artificial and the real world data
set) the Rand statistic fails completely, the Jaccard index and
the Folkes–Mallows index fail or indicate the right number of



clusters only with a weak local maximum. Similar observa-
tions can be made about the (cross-classification) accuracy and
the F1-measure. For six clusters, on the other hand, all these
measures clearly indicate the “correct” number of clusters,
and in an even clearer way than they do for crisp clustering.
However, the sum of squared differences and the Hubert index
yield excellent results in all cases (regardless of the number
of clusters) and thus appear to be the methods of choice for
fuzzy clustering. Especially the sum of squared differences is
particulary clear in its selection behavior and can even exhibit
a local minimum at twice the number of clusters, proving its
high sensitivity to the cluster structure.

V. CONCLUSIONS

In this paper we transferred resampling ideas that have been
used in classical crisp clustering to fuzzy clustering and intro-
duced the mean square error as a simple, but effective measure
for comparing fuzzy and probabilistic partition matrices. As
the experiments show, the resampling approach is applicable
for fuzzy clustering as well, but one has to be careful which
relative cluster evaluation measure to choose: not all measures
that work with crisp clustering also work with fuzzy clustering,
at least for a low number of clusters. The best results we
obtained with a direct comparison of the partition matrices
based on the mean squared difference. A close competitor is
the Hubert index, which is equally clear.
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