
Feature Weighting and Feature Selection in Fuzzy Clustering

Christian Borgelt

Abstract—This paper studies the problem of weighting and
selecting attributes and principal axes in fuzzy clustering. Its
main contribution is a selection method that is not based on
simply applying a threshold to computed feature weights, but
directly assigns zero weights to features that are not informative
enough. This has the important advantage that the clustering
result that can be obtained on the selected subspace coincides
with the projection (to the selected subspace) of the clustering
result that is obtained on the full data space.

I. INTRODUCTION

A serious problem in distance-based clustering is that the
more dimensions (attributes) a datasets has, the more the

distances between data points—and thus also the distances
between data points and constructed cluster centers—tend to
become uniform. This, of course, impedes the effectiveness
of clustering, as distance-based clustering exploits that these
distances differ. In addition, in practice often only a subset of
the available attributes is relevant for forming clusters, even
though this may not be known beforehand. In such cases it
is desirable to have a clustering algorithm that automatically
weights the attributes or even selects a proper subset.

In general, there are three principles to do feature selection
for clustering. The first is a filter approach (see e.g. [7], [12]),
which tries to assess and select features without any explicit
reference to the clustering algorithm to be employed. The sec-
ond is a wrapper approach (see e.g. [6], [8], [5]), which uses a
clustering algorithm as an evaluator for chosen feature subsets
and may employ different search strategies for choosing the
subsets to evaluate. The final approach tries to combine clus-
tering and feature selection by pushing the feature selection
method into the clustering algorithm (see e.g. [18], [16]). It
should also be noted that any feature weighting scheme (which
may, in itself, employ any of these three principles) can be
turned into a feature selection method by simply applying a
weight threshold to the computed feature weights.

In this paper I study the problem of weighting and selecting
features in clustering [1], [2], [11], [4]. Apart from reviewing
straighforward modifications of Gustafson–Kessel fuzzy clus-
tering [10] and attribute weighting fuzzy clustering [13] that
lead to attribute weighting schemes, it introduces a new feature
selection method by applying the idea of an alternative to the
fuzzifier [14] to the latter scheme. The resulting combined
feature weighting and selection method has the advantage that
the obtained clustering result on the chosen subspace coincides
with the projection of the result obtained on the full data space.
Finally extensions to principal axes selection are discussed.
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II. PRELIMINARIES AND NOTATION

Throughout this paper I assume that as input we are given
an m-dimensional data set X that consists of n data points
~xj = (xj1, . . . , xjm), 1 ≤ j ≤ n. This data set may also be
seen as a data matrix X = (xjk)1≤j≤n,1≤k≤m, the rows of
which are the data points. The objective is to group the data
points into c clusters, which are described by m-dimensional
cluster centers ~µi = (µi1, . . . , µim), 1 ≤ i ≤ c. These cluster
centers as well as the feature weights that will be derived (as
they can be interpreted as cluster shape and size parameters)
are jointly denoted by the parameter set C. The (fuzzy)
assignment of the data points to the cluster centers is described
by a (fuzzy) membership matrix U = (uij)1≤i≤c,1≤j≤n.

III. ATTRIBUTE WEIGHTING

This section reviews two basic methods to compute attribute
weights in fuzzy clustering that can be derived in a straight-
forward manner from known algorithms. Its main purpose is
to contrast these closely related methods and to set the stage
for the attribute selection approach developed in this paper.

A. Axes-parallel Gustafson–Kessel Fuzzy Clustering

A very direct way to obtain attribute weights is to apply
axes-parallel Gustafson–Kessel fuzzy clustering [15] with one
global set of variances instead of the usual c cluster-specific
sets. In this case we have to minimize the objective function

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
k (xjk − µik)2

subject to
∏m
k=1 σ

−2
k = 1 (equivalent to

∏m
k=1 σ

2
k = 1) and

again the standard constraints ∀j, 1 ≤ j ≤ n :
∑c
i=1 uij = 1

and ∀i, 1 ≤ i ≤ c :
∑n
j=1 uij > 0. The inverse variances σ−2

k

are the desired attribute weights, which have to be found by
optimizing the objective function. The membership transfor-
mation function h is a convex function on the unit interval.
Usually h(uij) = uαij with a user-specified fuzzifier α (most
often α = 2) is chosen, but there are also other suggestions,
for example [14] (see also Section IV-B). As the methods
discussed in this paper work with any choice of the function h,
its exact form will be left unspecified in the following.

Incorporating the constraint on the variances σ2
k into the

objective function yields the Lagrange functional (with the
Lagrange multiplier λ)

L(X,C,U, λ)

=
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
k (xjk − µik)2 + λ

(
1−

m∏
k=1

σ−2
k

)
.



We therefore obtain as necessary conditions for a minimum

∂

∂σ−2
k

L(X,C,U, λ) = s2k − λ
m∏
r=1
r 6=k

σ−2
r = s2k − λσ2

k
!= 0,

where

s2k
def=

c∑
i=1

n∑
j=1

h(uij)(xjk − µik)2

and the second step follows from the fact that, since it is∏m
r=1 σ

−2
r = 1, we have

∏m
r=1;r!=k σ

−2
r = σ2

k. From these
conditions (one for each value of k, 1 ≤ k ≤ m) it follows

λσ2
k = s2k and thus σ2

k = λ−1s2k.

In order to determine λ, we exploit the variance constraint:
m∏
k=1

λσ2
k = λm

m∏
k=1

σ2
k = λm =

m∏
k=1

s2k,

which leads to

λ =
( m∏
k=1

s2k

) 1
m

and thus σ2
k = s2k

( m∏
r=1

s2r

)− 1
m

as the resulting update rule for the variances σ2
k. The desired

feature weights can now easily be found by inverting the σ2
k.

B. Attribute Weighting Fuzzy Clustering

An alternative attribute weighting scheme was suggested in
[13]. Again the original suggestion employed cluster-specific
attribute weights, while here I am using only one global weight
set {w1, . . . , wm}. The objective function to minimize is

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

wvk(xjk − µik)2,

subject to
∑m
k=1 wk = 1 and again the standard constraints

∀j, 1≤ j≤n :
∑c
i=1 uij = 1 and ∀i, 1≤ i≤ c :

∑n
j=1 uij > 0.

The difference to the approach in the preceding section
consists in the (user-specified) exponent v that controls the
influence of the attribute weights (which is analogous to the
fuzzifier in the standard transformation of the membership
degrees) and the different weight constraint (the sum of the
weights, instead of their product, has to be equal to 1).

Incorporating the constraint on the attribute weights into the
objective function yields the Lagrange functional

L(X,C,U, λ)

=
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

wvk(xjk − µik)2 + λ
(

1−
m∑
k=1

wk

)
.

We therefore obtain as necessary conditions for a minimum

∇wk
L(X,C,U, λ) = vwv−1

k s2k − λ
!= 0

with s2k defined as above. It follows

λ = vwv−1
k s2k and thus wk =

(λ
v
s−2
k

) 1
v−1

In order to determine λ, we exploit the weight constraint:

1 =
m∑
k=1

wk =
m∑
k=1

(λ
v
s−2
k

) 1
v−1

=
(λ
v

) 1
v−1

m∑
k=1

s
2

1−v

k ,

which leads to

λ = v
( m∑
k=1

s
2

1−v

k

)1−v
.

The resulting update rule for the attribute weights is therefore

wk =
s

2
1−v

k∑m
r=1 s

2
1−v
r

, or wk =
s−2
k∑m

r=1 s
−2
r

if v = 2.

Note how this update rule compares to that of axes-parallel
Gustafson–Kessel fuzzy clustering, which may be written as

σ−2
k =

s−2
k

(
∏m
r=1 s

−2
r )−

1
m

.

The difference resides in the normalization factor and the
exponent v that is used in attribute weighting fuzzy clustering.

IV. ATTRIBUTE SELECTION

The methods reviewed in the preceding section yield at-
tribute weights, either as inverse variances σ−2

k or directly
as weights wk, 1 ≤ k ≤ m. It is important to note that in
both cases it is impossible that any attribute weight vanishes
(which, for axes-parallel Gustafson–Kessel fuzzy clustering
this is already obvious from the constraint

∏m
i=1 σ

−2
k = 1,

since a vanishing weight would lead to a violation of this
constraint). Therefore an additional step or a modification of
the approach is necessary in order to select attributes (which
may be achieved by allowing attribute weights to become 0).
This section discusses two possible approaches, the second of
which is the main contribution of this paper.

A. Attribute Weight Threshold

The most straightforward way of selecting attributes with
the two methods reviewed above is, of course, to simply apply
a weight threshold: select those attributes that were assigned
a weight greater than the threshold. The advantage of such
an approach is that one may also keep the threshold flexible,
choosing it dynamically in such a way that the best r attributes
(with r to be specified by a user) are selected.

However, a severe disadvantage of this approach is that
the weights of the attributes that are discarded are actually
not zero. Hence the projection of the result of the clustering
algorithm, as it is obtained on the full data space, will usually
not coincide with the clustering result that is obtained on
only the subspace. The reason is simply that the discarded
attributes, even if their weight is small, influence the member-
ship degrees in the clustering result on the full data space and
thus the cluster parameters. In contrast to this, there is no such
influence when clustering the projected data set, because the
discarded attribute are never accessed. As a consequence it is
desirable to have a method that assigns attribute weights that
may be 0, so that their influence is actually removed from the
clustering result (as it is obtained on the whole data set).



B. Alternative Convex Transformation

The core idea of the attribute selection method introduced
in this section is to transfer the analysis of the effect of the
fuzzifier (the exponent of the membership degrees) and its
possible alternatives, as it was carried out in [14], to attribute
weights. As [14] showed, it is necessary to apply a convex
function h(·) to the membership degrees in order to rule out
a crisp assignment. Raising the membership degrees uij to a
user-specified power (namely the fuzzifier) is, of course, such
a convex function, but has the disadvantage that it forces all
assignments to be fuzzy (that is, to differ from 0 and 1). The
reason is that the derivative of this function vanishes at 0. If
we want to maintain the possibility of crisp assignments, we
rather have to choose a function h with h′(0) > 0.

With the approach of attribute weighting fuzzy clustering
it becomes possible to transfer this idea to the transformation
of the attribute weights. That is, instead raising them to the
power v as in [13], we may transform the attribute weights by

g(x) = αx2 + (1− α)x with α ∈ (0, 1].

The same function was suggested as an alternative transforma-
tion of the membership degrees in [14], and a fuzzy clustering
algorithm was derived that allowed for crisp memberships in
case the distances of a data point to different clusters differed
considerably. Here the idea is that the same method applied to
attribute weights should allow us to derive a fuzzy clustering
algorithm that assigns zero weights to some attributes, thus
effectively selecting attributes during the clustering process.

However, as was also discussed in [14], the above function
has the disadvantage that its parameter α is difficult to interpret
and thus difficult to choose adequately. Fortunately, [14] also
provided a better parameterization, namely

g(x) =
1− β
1 + β

x2 +
2β

1 + β
x with β ∈ [0, 1).

Transferred to attribute weights the underlying rationale is as
follows: suppose that the data set to cluster has only two
dimensions. Then the objective function to minimize is

J(X,C,U) = g(w)s21 + g(1− w)s22

with s2k defined as above and w the weight of the first attribute.
Taking the partial derivative of this function w.r.t. the attribute
weight w yields as a necessary condition for a minimum

∂

∂w
J(X,C,U) = g′(w)s21 − g′(1− w)s22

!= 0.

Suppose now, without loss of generality (as the dimensions
can always be exchanged), that s21 > s22 and w = 1. Then

s21
s22

=
g′(0)
g′(1)

=
2β

1+β

2 1−β
1+β + 2β

1+β

= β.

That is, β is the smallest ratio of total intra-cluster variances
(since σ2

1/σ
2
2 = s21/s

2
2) at which the dimension having the

larger total intra-cluster variance will be suppressed. This is
fairly intuitive and thus reasonably easy to choose.

Generally, we have to minimize the objective function

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

g(wk)(xjk − µik)2

subject to
∑m
k=1 wk = 1 and again the standard constraints

∀j, 1≤ j≤n :
∑c
i=1 uij = 1 and ∀i, 1≤ i≤ c :

∑n
j=1 uij > 0.

Incorporating the constraint on the attribute weights into the
objective function yields the Lagrange functional

L(X,C,U, λ)

=
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

g(wk)(xjk − µik)2 + λ
(

1−
m∑
k=1

wk

)
.

We therefore obtain as necessary conditions for a minimum

∇wk
L(X,C,U, λ) =

(
2

1− β
1 + β

wk +
2β

1 + β

)
s2k − λ

!= 0

with s2k defined as above. It follows

wk =
1 + β

2(1− β)

(
λs−2
k −

2β
1 + β

)
.

In order to determine λ, we exploit the weight constraint:

1 =
m∑
k=1
wk>0

wk =
1 + β

2(1− β)

m∑
k=1
wk>0

(
λs−2
k −

2β
1 + β

)

= − 2βm⊕
2(1− β)

+
1 + β

2(1− β)

m∑
k=1
wk>0

λs−2
k ,

where m⊕ denotes the number of attributes that have a positive
weight (that is, for which wk > 0). This leads to

λ =
2(1 + β(m⊕ − 1))

(1 + β)
∑m
k=1;wk>0 s

−2
k

The resulting update rule for the attribute weights is therefore

wk =
1 + β

2(1− β)

(
2(1 + β(m⊕ − 1))

(1 + β)
∑m
r=1;wr>0 s

−2
r

s−2
k −

2β
1 + β

)

=
1

1− β

(
1 + β(m⊕ − 1)∑m
r=1;wr>0 s

−2
r

s−2
k − β

)
The needed value m⊕ can be determined as follows: if an
attribute weight wk does not vanish, it is obviously propor-
tional to the value of the corresponding s−2

k . Hence we sort
the attributes descendingly w.r.t. the values s−2

k , 1 ≤ k ≤ m.
Let ς describe the index permutation that sorts the attributes
into this order (that is, let ς(r) = 1 if s−2

r is largest among
all s−2

k , ς(r) = 2 if s−2
r is the second largest etc). Then m⊕

can be determined from the fact that the second factor in the
update rule for the weight wk must be positive, namely as

m⊕ = max

{
k

∣∣∣∣∣ s−2
ς(k) >

β

1 + β(k − 1)

k∑
r=1

s−2
ς(r)

}
.

Note that these results are completely analogous to the results
obtained in [14] for membership degrees.



V. PRINCIPAL AXES WEIGHTING

A standard problem of attribute weighting and selection
approaches is that often attributes that are highly correlated
will receive very similar weights or will both be selected, even
though they are obviously redundant: one of them contains
already almost all of the relevant information. In order to
cope with this problem, an approach in the spirit of principal
component analysis may be employed: instead of weighting
and selecting attributes, one may try to find (and weight)
linear combinations of the attributes, and thus (principal)
axes of the data set. This section shows how the methods
of Section III can be extended to principal axes weighting.
In the case of Gustafsson–Kessel fuzzy clustering this is
trivial (see Section V-A), while the extension of attribute
weighting fuzzy clustering can be achieved by reformulating
Gustafsson–Kessel fuzzy clustering so that the specification of
the (principal) axes and their weights is separated.

A. Gustafson–Kessel Fuzzy Clustering

Gustafson-Kessel fuzzy clustering uses a Mahalanobis dis-
tance, which, in the standard form of this algorithm, is based
on cluster-specific covariance matrices Σi, i = 1, . . . , c.
Here, however, since I am interested in a global weighting
of (principal) axes of the data space, I use a only a single
covariance matrix Σ. That is, I consider the objective function

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)(~xj − ~µi)>Σ−1(~xj − ~µi),

which is to be minimized subject to |Σ−1| = 1 (equivalent
to |Σ| = 1; intuitive interpretation: fixed cluster volume) and
the standard constraints ∀j, 1 ≤ j ≤ n :

∑c
i=1 uij = 1 and

∀i, 1 ≤ i ≤ c :
∑n
j=1 uij > 0. Incorporating the constraint on

the covariance matrix Σ into the objective function yields the
Lagrange functional (with the Lagrange multiplier λ)

L(X,C,U, λ)

=
c∑
i=1

n∑
j=1

h(uij)(~xj − ~µi)>Σ−1(~xj − ~µi) + λ(1− |Σ−1|).

We therefore obtain as a necessary condition for a minimum

∇Σ−1L(X,C,U,Λ) = S− λ|Σ−1|Σ != 0

where 0 is an m×m zero matrix and

S def=
c∑
i=1

n∑
j=1

h(uij)(~xj − ~µi)(~xj − ~µi)>.

From this condition it follows that

λ|Σ−1|Σ = λΣ = S and thus Σ = λ−1S.

In order to determine λ, we look at the determinant:

|λΣ| = λm|Σ| = λm = |S| and thus λ = |S|
1
m .

The resulting update rule for the covariance matrix Σ is

Σ = S|S|−
1
m .

In order to obtain explicit weights for (principal) axes, we
observe that, since Σ is a symmetric and positive definite
matrix, it possesses an eigenvalue decomposition

Σ = RD2R> with D = diag(σ1, . . . , σm)

(i.e., eigenvalues σ2
1 to σ2

m) and an orthogonal matrix R, the
columns of which are the corresponding eigenvectors.1 This
enables us to write the inverse of the covariance matrix Σ as

Σ−1 = TT> with T = RD−1.

As a consequence, we can rewrite the objective function as

J(X,C,U)

=
c∑
i=1

n∑
j=1

h(uij)(~xj − ~µi)>TT>(~xj − ~µi)

=
c∑
i=1

n∑
j=1

h(uij)((~xj − ~µi)>RD−1)((~xj − ~µi)>RD−1)>

=
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
k

( m∑
l=1

(xjl − µil)rlk
)2

,

In this form the scaling and the rotation of the data space that
are encoded in the covariance matrix Σ are nicely separated:
the former is represented by the variances σ2

k, k = 1, . . . ,m
(or their inverses σ−2

k ), the latter by the orthogonal matrix R.
In other words: the inverse variances σ−2

k (the eigenvalues of
Σ−1) provide the desired axes weights, while the correspond-
ing eigenvectors (the columns of R) indicate the axes.

B. Reformulation of Gustafson–Kessel Fuzzy Clustering

In order to transfer the approach of [13] and the one de-
veloped in Section IV-B, we start from the rewritten objective
function, in which the scaling and the rotation of the data
space are separated and thus can be treated independently.
Deriving the update rule for the scaling factors σ−2

k is trivial,
since basically the same result is obtained as for axes-parallel
Gustafson–Kessel fuzzy clustering (see Section III-A), namely

σ2
k = s2k

( m∏
r=1

s2r

)− 1
m

,

with the only difference that now we have

s2k
def=

c∑
i=1

n∑
j=1

h(uij)
( m∑
l=1

(xjl − µil)rlk
)2

.

Note that this update rule reduces to the update rule for axes-
parallel Gustafson–Kessel clustering derived in Section III-A
if R = 1 (where 1 is an m×m unit matrix), which provides
a simple sanity check of this rule.

In order to derive an update rule for the orthogonal matrix
R, we have to take into account that in contrast to how the
covariance matrix Σ is treated in normal Gustafson–Kessel
fuzzy clustering, there is an additional constraint, namely that
R must be orthogonal, that is, R> = R−1. This constraint

1Note that the eigenvalues of a symmetric and positive definite matrix are
all positive and thus it is possible to write them as squares.



can conveniently be expressed by requiring RR> = 1.
Incorporating this constraint2 into the objective function yields
the Lagrange functional

L(X,C,U,Λ)

=
c∑
i=1

n∑
j=1

h(uij)((~xj − ~µi)>RD−1)((~xj − ~µi)>RD−1)>

+ trace
(
Λ(1−RR>)

)
,

where Λ a symmetric m×m matrix of Lagrange multipliers
and trace(·) is the trace operator, which for an m×m matrix
M is defined as trace(M) =

∑m
k=1mkk. We thus obtain as

a necessary condition for a minimum (see the appendix for
detailed computations of the derivatives)

∇RL(X,C,U, λ) = 2SRD−2 − 2ΛR != 0,

where 0 is an m×m zero matrix and S is defined as in standard
Gustafson–Kessel fuzzy clustering (see above). It follows

Λ = SRD−2R> = SΣ−1.

Since S is clearly a symmetric and positive definite matrix, it
possesses an eigenvalue decomposition

S = OE2O> with E = diag(e1, . . . , em)

(positive eigenvalues e21 to e2m) and an orthogonal matrix O.
Furthermore we observe that RD−2R> = Σ−1 is also
symmetric (and positive definite) and that the product SΣ−1 is
symmetric (as it equals Λ, which is symmetric by definition).
As a consequence, S and Σ−1 commute and have the same
eigenspaces [9], which immediately yields the update rule3

R = O.

As a sanity check I show that first updating the orthogonal
matrix R and then applying the update rule for the vari-
ances σ2

k (using the updated matrix R) yields the same update
rule for the covariance matrix Σ as a direct derivation (see
Section V-A). To do so, observe that

E2 = O>SO =
c∑
i=1

n∑
j=1

h(uij)O>(~xj − ~µi)(~xj − ~µi)>O

and therefore (since E2 = diag(e21, . . . , e
2
m))

e2k =
c∑
i=1

n∑
j=1

h(uij)
( m∑
l=1

(xjl − µil)olk
)2

,

which coincides with the definition of s2k (see above), since
R = O. Hence we can write the update rule for the σ2

k as

D2 = E2|E2|−
1
m .

2Note that, in principle, the orthogonality constraint alone is not enough
as it is compatible with |R| = −1, while we need |R| = 1. However, we
will see in the following that the unit determinant constraint is automatically
satisfied by the solution and thus we can avoid incorporating it. This is
similar to the treatment of the covariance matrix Σ in standard Gustafson–
Kessel clustering, where, in principle, we need constraints ensuring that it
is symmetric and positive definite. However, since the result automatically
satisfies these constraints, they are neglected.

3Note that this rule satisfies |R| = 1 as claimed in the preceding footnote.

Therefore the new value of Σ = RD2R> is

Σ = OE2O>|E2|−
1
m = OE2O>|OE2O>|−

1
m = S|S|−

1
m ,

which is the update rule of standard Gustafson–Kessel fuzzy
clustering (with joint treatment of scaling and rotation).

C. Alternative Weighting

With the reformulation of Gustafson–Kessel fuzzy cluster-
ing, as it was obtained in the preceding section, it becomes
possible to replace the weight update while keeping the update
of the (principal) axes (the update of the orthogonal matrix R).
In particular, we can use the update rule for the wk of attribute
weighting fuzzy clustering instead of the Gustafsson–Kessel
rule for the σ−2

k . The resulting update rule (the derivation
follows exactly the same lines as above) is

wk =
s

2
1−v

k∑m
r=1 s

2
1−v
r

, or wk =
s−2
k∑m

r=1 s
−2
r

if v = 2,

with s2k defined as for Gustafson–Kessel clustering, that is, as

s2k
def=

c∑
i=1

n∑
j=1

h(uij)
( m∑
l=1

(xjl − µil)rlk
)2

.

Note that diag(w1, . . . , wm) corresponds to the diagonal ma-
trix D−2 in normal Gustafson–Kessel fuzzy clustering.

VI. PRINCIPAL AXES SELECTION

In analogy to the transition from attribute weighting (Sec-
tion III) to attribute selection (Section IV), it is possible to
make the transition from (principal) axes weighting (Sec-
tion V) to (principal) axes selection (this section).

A. Axis Weight Threshold

Again the most straightforward approach to select a (prin-
cipal) axes based on a weighting scheme is to use a weight
threshold, which is completely in line with the normal pro-
cedure in principal component analysis. It has the same
advantages and disadvantages that were already discussed
in Section IV-A. Therefore a selection method that directly
assigns vanishing weights to irrelevant axes is desirable.

B. Alternative Convex Transformation

With the reformulated Gustafson–Kessel fuzzy clustering
algorithm derived in Section V-B a (principal) axes selection
method can easily be obtained: we simply replace the update
rule for the weights with the one obtained in Section IV-B.
This leads (after a fairly straightforward and analogous deriva-
tion, which I do not spell out here) to the update rule

wk =
1

1− β

(
1 + β(m⊕ − 1)∑m
r=1;wr>0 s

−2
r

s−2
k − β

)
,

again with the modified definition of the sk, that is,

s2k
def=

c∑
i=1

n∑
j=1

h(uij)
( m∑
l=1

(xjl − µil)rlk
)2

and m⊕ defined as described at the end of Section IV-B.



TABLE I
RESULTS ON THE IRIS DATA WITH 2 CLUSTERS.

attribute gk v = 2 β = .126 β = .235 β = .500 β = .662

sepal length 0.7367 0.1501 0.0901 0.0000 0.0000 0.0000
sepal width 0.4698 0.0937 0.0000 0.0000 0.0000 0.0000
petal length 2.0011 0.4447 0.5618 0.6461 0.7859 1.0000
petal width 1.4437 0.3115 0.3481 0.3539 0.2141 0.0000

TABLE II
RESULTS ON THE IRIS DATA WITH 3 CLUSTERS.

attribute gk v = 2 β = .049 β = .095 β = .300 β = .530

sepal length 0.5666 0.0788 0.0420 0.0000 0.0000 0.0000
sepal width 0.3019 0.0427 0.0000 0.0000 0.0000 0.0000
petal length 2.7300 0.4826 0.5296 0.5529 0.5989 1.0000
petal width 2.1413 0.3959 0.4284 0.4471 0.4011 0.0000

VII. EXPERIMENTS

In order to test the methods suggested above I implemented
them as part of my fuzzy and probabilistic clustering toolbox.4

In all experiments reported in the following I used the standard
membership degree transformation h(uij) = u2

ij .
Tables I and II show the results of the attribute weighting

and selection methods on the well-known Iris data, with 2
and 3 clusters, respectively. Table III shows the results on
the equally well-known wine data set from the UCI machine
learning repository [3]. Each table lists, in the first column, the
attributes used for clustering the data (the class attribute was,
of course, not used in both cases). The following columns state
the attribute weights obtained with (different parameterizations
of) the suggested feature weighting and selection methods.

The second column of each table refers to axes-parallel
Gustafson–Kessel fuzzy clustering and states the σ−2

k as the
attribute weights. Note that this is the only column in which
the sum of the entries does not equal 1, since here the
constraint is that their product must be 1. The third column
refers to attribute weighting fuzzy clustering with a weight
exponent v = 2 and states the obtained wk. Note that the
weights in this column are identical to those that would be
obtained with the attribute selection method introduced in this
paper and β = 0, since then g(wk) = w2

k.
All following columns refer to the new attribute selection

method, with different values for the parameter β. Except for
the columns with β = 0.5 in Table I and β = 0.3 in Table II,
which have been added to provide an additional impression
of the effect on attribute weighting, the chosen values for β
are the smallest ones that yield the number of non-vanishing
weights in the corresponding column. Clearly, the larger the
value of β, the fewer attributes get selected.

Experiments with principal axes weighting and selection are
still under way (since the implementation is not quite finished
yet) and will be included in the final version of the paper.

4This toolbox is a set of command line programs written in C, but
there also exists a graphical user interface written in Java. The tool-
box as well as the graphical user interface can be downloaded from
http://www.borgelt.net/software.html. The current version does not yet include
the methods described here, but the extended version will be available soon.

TABLE III
RESULTS ON THE WINE DATA WITH 3 CLUSTERS.

attribute gk v = 2 β = .109 β = .120 β = 0.153 β = .374

att01 0.9667 0.0649 0.0000 0.0000 0.0000 0.0000
att02 0.8749 0.0563 0.0000 0.0000 0.0000 0.0000
att03 0.7449 0.0493 0.0000 0.0000 0.0000 0.0000
att04 0.8471 0.0553 0.0000 0.0000 0.0000 0.0000
att05 0.7819 0.0520 0.0000 0.0000 0.0000 0.0000
att06 1.2341 0.1024 0.2008 0.2067 0.2057 0.0000
att07 1.6027 0.1515 0.4504 0.4768 0.5415 1.0000
att08 0.8760 0.0589 0.0000 0.0000 0.0000 0.0000
att09 0.9410 0.0690 0.0424 0.0344 0.0000 0.0000
att10 0.9102 0.0633 0.0090 0.0000 0.0000 0.0000
att11 1.0407 0.0763 0.0401 0.0304 0.0000 0.0000
att12 1.3766 0.1247 0.2478 0.2516 0.2528 0.0000
att13 1.1272 0.0760 0.0095 0.0000 0.0000 0.0000

VIII. CONCLUSIONS

In this paper I reviewed feature weighting schemes that
can be derived in a fairly straightforward manner from known
algorithms and introduced a powerful feature selection method
by modifying the weight transformation of attribute weighting
fuzzy clustering. In addition, by reformulating Gustafson–
Kessel fuzzy clustering so that the rotation (orthogonal ma-
trix R) and the axes weights (inverse eigenvalues), which
are encoded in the covariance matrix, are separated, it was
possible to transfer the approach from attribute selection to
(principal) axes selection. Future work includes making the
feature weights cluster-specific (again), which paves the way
to apply the method to subspace clustering (as in [17]).
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APPENDIX

1. Derivative of the objective function in the reformulation
of Gustafson–Kessel fuzzy clustering w.r.t. the orthogonal
matrix R: it is

∂

∂rab
J(X,C,U)

=
∂

∂rab

c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
k

( m∑
l=1

(xjl − µil)rlk
)2

=
c∑
i=1

n∑
j=1

h(uij)σ−2
b

∂

∂rab

( m∑
l=1

(xjl − µil)rlb
)2

= 2
c∑
i=1

n∑
j=1

h(uij)σ−2
b

( m∑
l=1

(xjl − µil)rlb
)

(xja − µia)

and therefore
∇RJ(X,C,U)

= 2
c∑
i=1

n∑
j=1

h(uij)(~xj − ~µi)(~xj − ~µi)>RD−2.

2. Derivative of the orthogonality constraint w.r.t. R: it is
∂

∂rab
trace(Λ(1−RR>))

=
∂

∂rab

m∑
i=1

m∑
k=1

λik

m∑
l=1

(δki − rklril)

= −
m∑
k=1
k 6=a

λakrkb −
m∑
k=1
k 6=a

λkarkb − 2λaarab

= −2
m∑
k=1

λakrkb,

since λka = λak as Λ is symmetric, and therefore

∇R trace(Λ(1−RR>)) = −2ΛR.


