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Abstract: Evidence propagation in inference net-
works, probabilistic or possibilistic, can be done in two
different ways — using a product/sum scheme or us-
ing a minimum/maximum scheme — depending on the
type of answers one expects from the network. Usually
the first is seen in connection with probabilistic, the
second in connection with possibilistic reasoning, al-
though we argue that both schemes are applicable in
both settings. We discuss learning inference networks
from data and examine some evaluation measures with
respect to the chosen propagation method.
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1 Introduction

Since reasoning in multi-dimensional domains tends to
be infeasible in the domains as a whole — and the
more so, if uncertainty is involved — decomposition
techniques, that reduce the reasoning process to com-
putations in lower-dimensional subspaces, have become
very popular. For example, decomposition based on
dependence and independence relations between vari-
ables has extensively been studied in the field of graph-
ical modeling [16]. Some of the best-known approaches
are Bayesian networks [22], Markov networks [19], and
the more general valuation-based networks [27]. They
all led to the development of efficient implementa-
tions, for example HUGIN [1], PULCINELLA [26],
PATHFINDER [11] and POSSINFER [7].

In this paper we examine two propagation methods
used for reasoning in probabilistic and possibilistic net-
works. Although these two methods are usually seen as
tied to the underlying uncertainty calculus, i.e. prob-
ability or possibility theory, we argue that both are
applicable in both domains. Hence inference networks

should not only be characterized by the uncertainty
calculus but also by the propagation method used.
Since a large part of recent research has been de-
voted to learning inference networks from data [4,
12, 8], we examine, with respect to the propagation
method of the network to be learned, some evaluation
measures that can be used in learning algorithms.

2 Degrees of Possibility

Before we discuss propagation in inference networks,
we explain our interpretation of a degree of possibil-
ity, which is based on the context model [6, 17]. In
this model possibility distributions are interpreted as
information-compressed representations of (not neces-
sarily nested) random sets, a degree of possibility as
the one-point coverage of a random set [21].

More intuitively, a degree of possibility is the least
upper bound on the probability of the possibility of a
value. We explain this interpretation in three steps. In
the first place, the possibility of a value is just what we
understand by this term in daily life: whether a value
is possible or not. At this point we do not assume
intermediate degrees, i.e. if a value is possible, we can-
not say more than that. We can not give a probability
for that value. All we know is that if a value is not
possible, its probability must be zero.

Secondly, imagine that we can distinguish between
certain disjoint contexts or scenarios, to each of which
we can assign a probability and for each of which we
can state whether in it the value under consideration
is possible or not. Then we can assign to the value as
a degree of possibility the sum of the probabilities of
the contexts in which it is possible. Thus we arrive at a
degree of possibility as the probability of the possibility
of a value.

Thirdly, we drop the requirement that the contexts
or scenarios must be disjoint. They may overlap, but



we assume, that we do not know how. This seems to
be a sensible assumption, since we should be able to
split contexts, if we knew how they overlap. If we now
assign to a value as the degree of possibility the sum of
the probabilities of the contexts in which it is possible,
this value may exceed the actual probability, because of
the possible overlap. But since we do not know which
contexts overlap and how they overlap, this is the least
upper bound consistent with the available information.

Note, that in this interpretation probability distri-
butions are just special possibility distributions. If we
have disjoint contexts and if in all contexts in which
a value is possible it has the probability 1, the degree
of possibility is identical to the probability. Note also,
that in this interpretation the degree of possibility can
not be less than the probability.

3 Two Propagation Methods

The basic presupposition underlying every inference
network, probabilistic or possibilistic, is that a multi-
dimensional distribution can be decomposed without
much loss of information into a set of (overlapping)
lower-dimensional distributions.! This set of lower-
dimensional distributions is usually represented as a
hypergraph, in which there is a node for each variable
and a hyperedge for each distribution of the decomposi-
tion. To each node and to each hyperedge a projection
of the multi-dimensional distribution (a marginal dis-
tribution) is assigned: to the node a projection to its
variable and to a hypergraph a projection to the set of
variables connected by it. Thus hyperedges represent
direct influences that the connected variables have on
each other, i.e. how constraints on the value of one vari-
able affect the probabilities or possibilities of the values
of the other variables in the hyperedge. Reasoning in
such a hypergraph is done by propagating evidence, i.e.
observed constraints on the possible values of a subset
of all variables, along the hyperedges.

The idea of propagation can be understood best by
a simple example. Imagine three variables, A, B, and
C (all with a finite number of values — throughout this
paper we assume that all variables have a finite number
of values), and a (hyper)graph A—B—C. When evi-
dence about A is fed into the network it is propagated
like this: The constraints on the values of variable A
stated by the evidence are extended to the space A x B
to obtain constraints on tuples (a;, b;), which are then
projected to the variable B to compute the constraints

1Of course, this presupposition need not hold. A distribution
need not be decomposable, even if one accepts a certain limited
loss of information. But in such a situation inference networks
cannot be used.

on the values of this variable. These constraints are
then in turn extended to the subspace B x C and pro-
jected to variable C.

For this scheme to be feasible, the main opera-
tions, projection and extension of distributions, have
to satisfy certain preconditions [27]. We consider here
two pairs of operations satisfying these preconditions:
product/sum and minimum/maximum.

The first pair, product/sum, is used in probability
theory, in which the marginal distribution of e.g. a two-
dimensional distribution is calculated by summing over
one dimension, that is P(a;) = 3_; P(a;, b;). Extension
consists in multiplying the prior probability distribu-
tion on the superset with the quotient of posterior and
prior probability on the subset.

An example is given in figures 1 and 2. Fig-
ure 1 shows a three-dimensional probability distri-
bution on the joint domain of the variables A =
{a17a27a37a4}, B = {bl, bg, bg}, and C' = {61, 62,63},
and the marginal distributions calculated by summing
over lines/columns. Since in this distribution the equa-
tions Vi, j, k : P(a;, bj,c) = P(ai’lnggbj’ k) hold, it
can be decomposed into the marginal jdistributions on
the subspaces A x B and B x C. Therefore it is pos-
sible to propagate the observation that variable A has
value a4 using the scheme in figure 2.2 One can easily
check that the resulting marginal distributions are the
same as those that can be computed from the three-
dimensional distribution directly.

The second pair of operations, minimum/maximum,
is used in possibility theory. The projection of e.g. a
two-dimensional distribution is calculated by determin-
ing the maximum over one dimension, extension by cal-
culating the minimum of the prior joint distribution on
the superset and the posterior marginal distribution.

An example is given in figures 3 and 4. Fig-
ure 3 shows a three-dimensional possibility distribu-
tion on the joint domain of the variables A, B, and
C and various marginal distributions determined by
computing the maximum over lines/columns. Since in
this distribution the equations Vi, j, k : w(a;,bj,cx) =
min; (maxy, 7(a;, by, ¢k ), max; m(a;, b;, cx)) hold, it can
be decomposed into marginal distributions on the sub-
spaces A x B and B x C. Therefore it is possible to
propagate the observation that variable A has value
a4 using the scheme in figure 4. Again the marginal
distributions obtained are the same as those that can
be computed directly from the three-dimensional dis-
tribution.

2This scheme is a simplification and does not lend itself to di-
rect implementation. Especially joining evidence from two (hy-
per)edges needs additional computations, which we omitted here.
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Note, that although we used a probability dis- joint possibility distribution and want to know the de-
tribution as an example for product/sum propaga- gree of possibility of a value of some variable, is to sum
tion and a possibility distribution as an example for over the values of all other variables. This is consis-
minimum/maximum propagation, both propagation tent with our interpretation, since the result (bounded
schemes can be used in both cases. Whether a cer- by 1, if necessary) is indeed the least upper bound on
tain scheme is applicable or not depends only on the the probability of the possibility of that value that can
equations that have to hold (at least approximately) to be inferred from the available information. We could
render the distribution decomposable, but not on the derive a lower bound only if we had information about
interpretation of the distribution. the underlying contexts.

Which propagation scheme to choose, if both are
possible, depends on the questions one wants the net-
work to answer. If we are interested in asking questions
like “What is the probability (or the degree of possi-
bility) that variable A has value a?”, the first scheme
should be used, but if we are interested in asking ques-
tions like “What is the probability (or degree of possi-
bility) of the most probable value vector (or the value
vector with the highest degree of possibility) in which
variable A has value a?”, we may prefer the second.?

The only problem that can occur is that when us-
ing sum projection the values of marginal possibility
distributions can get greater than 1. The obvious solu-
tion to this problem would be to use a bounded sum,
but this would interfere with the propagation scheme.
We therefore assume that the possibility degrees are
bounded only when the results of a propagation are
read from the network, but not during propagation.

Summing degrees of possibility should not be re-
jected in general. Given our interpretation of a degree
of possibility, the only thing we can do, if we are given a 3Note, that it is always possible to answer questions of the
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Note, that the minimum/maximum propagation
scheme enforces to define some special terms and no-
tations. When using sum projection for probability
distributions one can speak of a marginal probability
distribution, but this is not possible, if maximum pro-
jection is used. Although the values of a maximum-
projected distribution are probabilities, they need not
add up to one. We will therefore call them probability
mazima and denote them by Pp.x. Analogously we
use the term possibility degree mazimum and Ty ax.

4 Evaluation Measures

An algorithm for learning inference networks consists
always of two parts: an evaluation measure and a
search method. The evaluation measure estimates the
quality of a given decomposition (a given hypergraph)

second type from a network designed for questions of the first
type by determining the joint distribution. At least this holds in
theory, in practice the computational costs may be too high.

and the search method determines which decomposi-
tions (which hypergraphs) are inspected. Often the
search is guided by the value of the evaluation mea-
sure, since it is usually the goal to maximize (or to
minimize) its value.

A desirable property of an evaluation function is
a certain locality, i.e. the possibility to evaluate sub-
graphs, at best single hyperedges, separately. This is
desirable, not only because it facilitates computation,
but also because some search methods can make use
of such locality. For example, in [3] the value of an
evaluation measure is computed on all two-dimensional
distributions and then the Kruskal algorithm is applied
to determine a maximum weight spanning tree.

In this section we review some evaluation functions
that can be used for learning inference networks from
data. All of them estimate the quality of single hy-
peredges and are based on the empirical probability or
possibility distributions found in the database. That
is, if IV is the total number of tuples in the database



and N; the number of tuples in which variable A has
value a;, then P(a;) = &t

We do not examine search methods, since the eval-
uation functions presented here can be used with any
general heuristic search algorithm, e.g. simulated an-
nealing or genetic programming. Of course, there are
also special search methods like the K2 algorithm [4]
(start with a topological order on the variables to
restrict the permissible network structures and then
carry out a greedy search to determine the parents of
each variable), but limits of space prevent us from dis-
cussing them in detail.

4.1 Product/Sum Propagation

The basic idea of nearly all evaluation measures used
for learning networks based on product/sum propa-
gation is to compare the joint distribution with the
product of the marginal distributions. This seems to
be reasonable, since the more these two distributions
differ, the more dependent the variables are on each
other. Nevertheless this can lead to superfluous edges,
because a dependence that is not genuine but mediated
through another variable, i.e. a situation of conditional
independence, can not be recognized as such.

4.1.1 The y?>-Measure

The y2-measure directly implements the idea to com-
pare the joint distribution and the product of the
marginal distributions by computing their squared dif-
ference. For two variables A and B it is defined as
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X —;N »
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The second version, in which all but one variable are
combined into one pseudo-variable, is especially suited
for directed edges, since the parent variables are the
obvious ones to combine. If not stated otherwise, all
measures described for two variables in the following
can be extended in these two ways.

4.1.2 Entropy-based Measures

In [3] the (two-dimensional) edges of a tree-decom-
position of a multi-dimensional distribution are se-
lected with the help of mutual information. Under the
name of information gain this measure was later used
for the induction of decision trees [23, 24|, which is
closely related to learning inference networks (with di-
rected edges): A hyperedge consisting of a variable and
its parents can be seen as a decision tree with the re-
striction that all leaves have to lie on the same level
and all decisions in the same level of the tree have to
be made on the same attribute.

Mutual information implements the idea to compare
the joint distribution and the product of the marginal
distributions by computing their quotient. For two
variables A and B it is defined as

P(a;, bj)
Tl = 3 Pl b)) oga 5
%]
= Ha+Hp—Hap = Igain,

where H is the Shannon entropy [28]. It can be shown,
that mutual information is always greater or equal to
zero, and equal to zero, if and only if the joint distri-
bution and the product of the marginal distributions
coincide [18]. Hence it can be seen as measuring the
difference of the two distributions. In the interpreta-
tion as information gain, it measures the information
(in bits) gained about the value of one variable from
the knowledge of the value of the other variable.

When using information gain for decision tree induc-
tion, it was discovered that information gain is biased
towards many-valued attributes. To adjust for this bias
the information gain ratio was introduced, which is de-
fined as the information gain divided by the entropy of
the split attribute [23, 24]:

Hy =Y, P(a;)logy P(a;)’

Transfered to learning inference networks this means to
divide the generalized information gain by the sum of
the entropies of the parent variables. (Obviously this
is only applicable when directed edges are used. Oth-
erwise there would be no “split attribute” in contrast
to the “class attribute.”)

An alternative is the symmetric information gain
ratio defined in [20], which is the information gain di-
vided by the entropy of the joint distribution:

Iain Iain
I = g g
gr —

Igain Igain

IS r — - .
¢ Hap _Zi,j P(a;, bj)log, P(ai, bj)

Because of its symmetry it is also applicable for undi-
rected edges.



The measures discussed above are all based on Shan-
non entropy, which can be seen as a special case (for
B — 1) of generalized entropy [5]:

B r 91 g
.pr) = z;pzﬁ( -p; )
1=
Setting 8 = 2 yields the quadratic entropy
)= 2pi(1—pi)=2-2> pi.
i=1 i=1

Using it in a similar way as Shannon entropy leads to
the so-called Gini index

Ho (..

H(py, .

Gini = %(Hﬁ — H3p),

a well known measure for decision tree induction [2, 29].
Because of its asymmetry (in general it is Hi‘ B 7
H %l ) it can be used only with directed graphs. An ex-
tension to more than two variables should be achieved
by combining all conditioning variable into one pseudo-
variable.

4.1.3 MDL-based Measures

Information gain can also be seen as measuring the
reduction in the description length of a dataset, if the
values of a set of variables are encoded together (one
symbol per tuple) instead of separately (one symbol per
value). The minimum description length principle [25]
in addition takes into account the information needed
to transmit the coding scheme, thus adding a “penalty”
for making the model more complex by enlarging a
hyperedge.

Unfortunately limits of space prevent us from a de-
tailed discussion of these measures, especially the ex-
tension of the two MDL-based measures suggested in
[15] for decision tree induction, to learning inference
networks.

4.1.4 Bayesian Measures

In [4] as an evaluation measure the g-function is used,
which is defined as

Mpar 4
nA — 1

g(Aapa‘rA):C' H (N +nA_1 |HNZ]7

j=1

where A is a variable and par, the set of its par-
ents. Npa., is the number of distinct instantiations
(value vectors) of the parent variables that occur in
the database to learn from and n4 the number of val-
ues of variable A. N;; is the number of cases (tuples)

in the database in which variable A has the ith value
and the parent variables are instantiated with the jth
value vector, N; the number of cases in which the par-
ent variables are instantiated with the the jth value
vector, that is N; = "% N,;. cis a constant prior
probability, which is usually set to 1, since with com-
mon search methods only the relation between the val-
ues of the evaluation measure for different sets of parent
variables matters.

The g-function estimates (for a certain value of ¢)
the probability of finding the joint distribution of the
variable and its parents that is present in the database.
That is, assuming that all network structures are
equally likely, and that, given a certain structure, all
conditional probability distributions compatible with
the structure are equally likely, it uses Bayesian reason-
ing to compute the probability of the network structure
given the database from the probability of the database
given the network structure. This function seems to be
applicable only in the probabilistic setting.

4.2 Minimum/Maximum Propagation

Analogous to the product/sum case the idea of some
of the measures presented in this section is to compare
the joint distribution with the minimum (instead of the
product) of the marginal distributions.

4.2.1 Comparison-based Measures

For networks based on product/sum propagation the
x2-measure and mutual information both compare di-
rectly the joint distribution and the product of the
marginal distributions: the first by the difference, the
latter by the quotient. Hence the idea suggests itself
to apply the same scheme to networks based on mini-
mum,/maximum propagation, replacing the product by
the minimum and the sum by the maximum.

We thus obtain for two variables A and B

- (min(mmax (a;), 7rrnaX(bj)) — 7(ay, bj))z
de =3 0 (o (1), e (07))

i,J
as the analogon of the y2-measure and

F(ai,bj)

min(ﬂmax (ai ) » Tmax (bj ) )

i = — »_ m(a;, b;)log,

.3

as the analogon of mutual information. Since both
measures are always greater or equal to zero, and zero,
if and only if the two distributions coincide, they can
be seen as measuring how much the two distributions

differ.



4.2.2 Nonspecificity-based Measures

A possibilistic evaluation measure can also be derived
from the U-uncertainty measure of nonspecificity of a
possibility distribution [14], which is defined as

sup()
wsp(e) = [ logy [l fdo

and can be justified as a generalization of Hartley in-
formation [10] to the possibilistic setting [13]. nsp(r)
reflects the expected amount of information (measured
in bits) that has to be added in order to identify the ac-
tual value within the set [r], of alternatives, assuming
a uniform distribution on the set [0, sup(w)] of possi-
bilistic confidence levels a [9].

The role nonspecificity plays in possibility theory
is similar to that of Shannon entropy in probability
theory. Thus the idea suggests itself to construct an
evaluation measure from nonspecificity in the same way
as information gain and (symmetric) information gain
ratio are constructed from Shannon entropy.

By analogy to information gain we define specificity
gain as

Sgain = NSP(Tmax A) + 0SP(Tmax B) — 1SP(TAB),

or for more than two variables

m

Sgain = Z 0SP(Tpnax A ) — DSP(T A1), aGm))-
k=1

This measure is equivalent to the one defined in [9].
Then, just like information gain ratio and symmetric
information gain ratio, specificity gain ratio

Sgain

nsp (ﬂ'max A)

gr —

and symmetric specificity gain ratio

Sgain

ser = nsp(mag)

can be defined. Extensions to more than two variables
are obtained in the same way as above.

The idea of specificity gain is illustrated in figure 5.
The joint possibility distribution is seen as a set of re-
lational cases, one for each a-level. Specificity gain
aggregates the gain in Hartley information for these
relational cases by computing the integral over all a-
levels.

5 Experimental Results

For the two examples described in section 3 the correct
decomposition is found by all measures corresponding

to the used propagation method and optimum weight
spanning tree construction. First results on larger
datasets, which we obtained with a prototype imple-
mentation, indicate that all presented measures are
well suited for learning inference networks. For prod-
uct/sum propagation the g-function and the minimum
description length measures, for minimum/maximum
propagation d,; seem to yield the best results. But
more tests are necessary for definite conclusions.
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