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Abstract

In meeting the challenges that resulted from the
explosion of collected, stored, and transferred data,
Knowledge Discovery in Databases or Data Mining has
emerged as a new research area. However, the ap-
proaches studied in this area have mainly been ori-
ented at highly structured and precise data. In addi-
tion, the goal to obtain understandable results is often
neglected. Therefore we suggest to concentrate on In-
formation Mining, i.e., the analysis of heterogeneous in-
formation sources with the prominent aim of producing
comprehensible results. Since the aim of fuzzy technol-
ogy has always been to model linguistic information and
to achieve understandable solutions, we expect it to play
an important role in information mining.

1. Introduction: A View of Information Mining

Due to modern information technology, which pro-
duces ever more powerful computers every year, it is
possible today to collect, store, transfer, and combine
huge amounts of data at very low costs. Thus an
ever-increasing number of companies and scientific and
governmental institutions can afford to build up large
archives of documents and other data like numbers, ta-
bles, images, and sounds. However, exploiting the in-
formation contained in these archives in an intelligent
way turns out to be fairly difficult. In contrast to the
abundance of data there is a lack of tools that can trans-
form these data into useful information and knowledge.
Although a user often has a vague understanding of his
data and their meaning—he can usually formulate hy-
potheses and guess dependencies—, he rarely knows

e where to find the “interesting” or “relevant” pieces
of information,

e whether these pieces of information support his hy-
potheses and models,

e whether (other) interesting phenomena are hidden
in the data,

e which methods are best suited to find the needed
pieces of information in a fast and reliable way,

e how the data can be translated into human notions

that are appropriate for the context in which they
are needed.

In reply to these challenges a new area of research has
emerged, which has been named “Knowledge Discovery
in Databases” or “Data Mining”. Although the stan-
dard definition of knowledge discovery and data mining
[7] only speaks of discovery in data, thus not restricting
the type and the organization of the data to work on, it
has to be admitted that research up to now concentrated
on highly structured data. Usually a minimal require-
ment is relational data. Most methods (e.g. classical
methods like decision trees and neural networks) even
demand as input a single uniform table, i.e., a set of tu-
ples of attribute values. It is obvious, however, that this
paradigm is hardly adequate for mining image or sound
data or even textual descriptions, since it is inappropri-
ate to see such data as, say, tuples of picture elements.
Although such data can often be treated successfully by
transforming them into structured tables using feature
extraction, it is not hard to see that methods are needed
which yield, for example, descriptions of what an image
depicts, and other methods which can make use of such
descriptions e.g. for retrieval purposes.

Another important point to be made is the following:
The fact that pure neural networks are often seen as data
mining methods, although their learning result (matrices
of numbers) is hardly interpretable, shows that in con-
trast to the standard definition the goal of understand-
able patterns is often neglected. Of course, there are ap-
plications where comprehensible results are not needed
and, for example, the prediction accuracy of a classifier
is the only criterion of success. Therefore interpretable
results should not be seen as a conditio sine qua non.
However, our own experience—gathered in several coop-
erations with industry—is that modern technologies are
accepted more readily, if the methods applied are easy
to understand and the results can be checked against
human intuition. In addition, if we want to gain insight
into a domain, training, for instance, a neural network
is not of much help.

Therefore we suggest to concentrate on information
mining, which we see as an extension of data mining and
which can be defined in analogy to the KDD definition
given in [7] as follows:

Information mining is the non-trivial process
of identifying valid, novel, potentially useful,
and understandable patterns in heterogeneous
information sources.



The term information is thus meant to indicate two
things: In the first place, it points out that the hetero-
geneous sources to mine can already provide informa-
tion, understood as expert background knowledge, tex-
tual descriptions, images and sounds etc., and not only
raw data. Secondly, it emphasizes that the results must
be comprehensible (“must provide a user with informa-
tion”), so that a user can check their plausibility and can
get insight into the domain the data comes from.
For research this results in the challenges

e to develop theories and scalable techniques that
can extract knowledge from large, dynamic, multi-
relational, and multi-medial information sources,

e to close the semantic gap between structured data
and human notions and concepts, i.e., to be able
to translate computer representations into human
notions and concepts and vice versa.

The goal of fuzzy systems has always been to model hu-
man expert knowledge and to produce systems that are
easy to understand. Therefore we expect fuzzy systems
technology to play a prominent role in the quest to meet
these challenges. In the following we try to point out how
fuzzy techniques can help to do information mining.

2. Strengths of Fuzzy Set Models

Although there is still some philosophical discussion
going on whether a (symbolic) language is necessary for
consciousness and thinking abilities, it is undisputed that
language is a humans most effective tool to structure his
experience and to model his environment. Therefore, in
order to represent the background knowledge of human
experts and to arrive at understandable data mining re-
sults, it is absolutely necessary to model linguistic terms
and do what Zadeh so pointedly called computing with
words [17].

A fundamental property of linguistic terms is their in-
herent vagueness, i.e., they have “fuzzy” boundaries: For
each linguistic term there usually are some phenomena to
which it can clearly be applied and some others, which
can not be described using this term. But in between
these phenomena there lies a “penumbra” of phenomena
for which it is not definite whether the term is applica-
ble or not. Well-known examples include the terms pile
of sand (which is the basis of the classic sorites para-
dox) and bald. In both cases no precise number of hairs
or grains of sand, respectively, can be given which sep-
arates the situations in which the terms are applicable
from those in which they are not.

The reason for this inherent vagueness is that for prac-
tical purposes full precision is not necessary and may
even be a waste of resources. To quote an example
by Wittgenstein [16]: The request “Please stay around
here!” is, of course, inexact. It would be more precise to

draw a line on the ground, or, because the line has a cer-
tain width and thus would still not be fully exact, to use
a color boundary. But this precision would be entirely
pointless, since the inexact request can be expected to
work absolutely fine.

Fuzzy set theory provides excellent means to model
the “fuzzy” boundaries of linguistic terms by introduc-
ing gradual memberships. In contrast to classical set
theory, in which an object or a case either is a member
of a given set (defined, e.g., by some property) or not,
fuzzy set theory makes it possible that an object or a
case belongs to a set only to a certain degree, thus mod-
eling the penumbra of the linguistic term describing the
property that defines the set.

Interpretations of membership degrees include simi-
larity, preference, and uncertainty: They can state how
similar an object or case is to a prototypical one, they
can indicate preferences between suboptimal solutions
to a problem, or they can model uncertainty about the
true situation, if this situation is described in imprecise
terms. Drawing on Wittgenstein’s example as an illus-
tration, we may say that the locations “around here”
are (for example, w.r.t. the person being in sight or call-
ing distance) sufficiently similar to “here”, so that the
request works fine. Or we may say that it would be
preferred, if the person stayed exactly “here”, but some
deviation from “here” would still be acceptable. Finally,
if we tell someone to stay “around here” and then go
away, we are uncertain about the exact location this
person is in at a given moment. It is obvious that all
of these interpretations are needed in applications and
thus it is not surprising that they all have proven useful
for solving practical problems. They also turned out to
be worth considering when non-linguistic, but imprecise,
i.e., set-valued information has to be modeled.

In general, due to their closeness to human reasoning,
solutions obtained using fuzzy approaches are easy to
understand and to apply. Due to these strengths, fuzzy
systems are the method of choice, if linguistic, vague, or
imprecise information has to be modeled.

3. Fuzzy Set Methods in Data Mining

The research in knowledge discovery in databases and
data mining has lead to a large number of suggestions
for a general model of the knowledge discovery process.
A recent suggestion for such a model, which can be ex-
pected to have considerable impact, since it is backed by
several large companies like NCR and DaimlerChrysler,
is the CRISP-DM model (CRoss Industry Standard Pro-
cess for Data Mining) [5].

The basic structure of this process model is depicted
in figure 1. The circle indicates that data mining is es-
sentially a circular process, in which the evaluation of
the results can trigger a re-execution of the data prepa-



Buginess { Data
Understanding Understanding

Data
Preparation

Deployment

Modelling

Figure 1: The CRISP-DM Model.

ration and model generation steps. In this process, fuzzy
set methods can profitably be applied in several phases:

The business understanding and data understanding
phases are usually strongly human centered and only lit-
tle automation can be achieved here. These phases serve
mainly to define the goals of the knowledge discovery
project, to estimate its potential benefit, and to identify
and collect the necessary data. In addition, background
domain knowledge and meta-knowledge about the data
is gathered. In these phases, fuzzy set methods can be
used to formulate, for instance, the background domain
knowledge in vague terms, but still in a form that can
be used in a subsequent modeling phase. Furthermore,
fuzzy database queries are useful to find the data needed
and to check whether it may be useful to take additional,
related data into account.

In the data preparation step, the gathered data is
cleaned, transformed and maybe properly scaled to pro-
duce the input for the modeling techniques. In this step
fuzzy methods may, for example, be used to detect out-
liers, e.g., by fuzzy clustering the data [3, 10] and then
finding those data points that are far away from the clus-
ter prototypes.

The modeling phase, in which models are constructed
from the data in order, for instance, to predict future
developments or to build classifiers, can, of course, ben-
efit most from fuzzy data analysis approaches. These
approaches can be divided into two classes. The first
class, fuzzy data analysis [12], consists of approaches that
analyze fuzzy data—data derived from imprecise mea-
surement instruments or from the descriptions of human
domain experts. An example from our own research is
the induction of possibilistic graphical models [4] from
data which complements the induction of the well-known
probabilistic graphical models. The second class, fuzzy
data analysis [1], consists of methods that use fuzzy tech-
niques to structure and analyze crisp data, for instance,
fuzzy clustering for data segmentation and rule genera-

tion and neuro-fuzzy systems for rule generation.

In the ewaluation phase, in which the results are
tested and their quality is assessed, the usefulness of
fuzzy modeling methods becomes most obvious. Since
they yield interpretable systems, they can easily be
checked for plausibility against the intuition and expec-
tations of human experts. In addition, the results can
provide new insights into the domain under considera-
tion, in contrast to, e.g., pure neural networks, which
are black boxes.

To illustrate the usefulness of fuzzy data analysis ap-
proaches, in the following sections we discuss two topics
in a little more detail: generating fuzzy rules from data
and learning possibilistic graphical models.

4. Rule Generation and Information Fusion
with Neuro-Fuzzy-Systems

In order to use fuzzy systems in data analysis, it must
be possible to induce fuzzy rules from data. To describe
a fuzzy system completely we need to determine a rule
base (structure) and fuzzy partitions (parameters) for all
variables. The data driven induction of fuzzy systems by
simple heuristics based on local computations is usually
called neuro-fuzzy [13]. If we apply such techniques, we
must be aware of the trade-off between precision and in-
terpretability. A fuzzy solution is not only judged for its
accuracy, but also—if not especially—for its simplicity
and readability. The user of the fuzzy system must be
able to comprehend the rule base.

Important points for the interpretability of a fuzzy
system are that

e there are only few fuzzy rules in the rule base,

e there are only few variables used in each rule,

e the variables are partitioned by few meaningful
fuzzy set,

e no linguistic label is represented by more than one
fuzzy set.

There are several ways to induce the structure of a
fuzzy system. Cluster-oriented and hyperbox-oriented
approaches to fuzzy rule learning create rules and fuzzy
sets at the same time. Structure-oriented approaches
need initial fuzzy partitions to create a rule base [14].
Cluster-oriented rule learning approaches are based
on fuzzy cluster analysis [3, 10], i.e., the learning pro-
cess is unsupervised. Hyperbox-oriented approaches use
a supervised learning algorithm that tries to cover the
training data by overlapping hyperboxes [2]. Fuzzy rules
are created in both approaches by projection of clusters
or hyperboxes. The main problem of both approaches
is that each generated fuzzy rule uses individual mem-
bership functions and thus the rule base is hard to in-
terpret. Cluster-oriented approaches additionally suffer
from a loss of information and can only determine an



appropriate number of rules, if they are iterated with
different fixed rule base sizes.

Structure-oriented approaches avoid all these draw-
backs, because they do not search for (hyperellipsoidal
or hyperrectangular) clusters in the data space. By pro-
viding (initial) fuzzy sets before fuzzy rules are created
the data space is structured by a multidimensional fuzzy
grid. A rule base is created by selecting those grid cells
that contain data. This can be done in a single pass
through the training data. This way of learning fuzzy
rules was suggested in [15]. Extended versions were used
in the neuro-fuzzy classification system NEFCLASS [13].
NEFCLASS uses a performances measure for the de-
tected fuzzy rules. Thus the size of the rule base can
be determined automatically by adding rules ordered by
their performance until all training data is covered. The
performance measure is also used to compute the best
consequent for each rule.

The number of fuzzy rules can also be restricted by
including only the best rules in the rule base. It is also
possible to use pruning methods to reduce the number of
rules and the number of variables used by the rules. In
order to obtain meaningful fuzzy partitions, it is better
to create rule bases by structure-oriented learning than
by cluster-oriented or by hyperbox-oriented rule learn-
ing. The latter two approaches create individual fuzzy
sets for each rule and thus provide less interpretable solu-
tions. Structure-oriented methods allow the user to pro-
vide appropriate fuzzy partitions in advance such that
all rules share the same fuzzy sets. Thus the induced
rule base can be interpreted well.

After the rule base of a fuzzy system has been gen-
erated, we must usually train the membership func-
tion in order to improve the performance. In NEF-
CLASS, for example, the fuzzy sets are tuned by a simple
backpropagation-like procedure. The algorithm does not
use gradient-descent, because the degree of fulfillment of
a fuzzy rule is determined by the minimum and non-
continuous membership functions may be used. Instead
a simple heuristics is used that results in shifting the
fuzzy sets and in enlarging or reducing their support.

The main idea of NEFCLASS is to create comprehen-
sible fuzzy classifiers, by ensuring that fuzzy sets cannot
be modified arbitrarily during learning. Constraints can
be applied in order to make sure that the fuzzy sets still
fit their linguistic labels after learning. For the sake of
interpretability we do not want adjacent fuzzy sets to
exchange positions, we want the fuzzy sets to overlap
appropriately, etc.

The most recent JAVA implementation of the NEF-
CLASS approach to generate fuzzy classifiers from data
has the following features:

e structure-oriented fuzzy rule learning,
e automatic determination of the number of rules,
e treatment of missing values (without imputation),

e the ability to use data with both numeric and sym-
bolic attributes,

e constrained fuzzy set learning, and

e automatic pruning strategies.

The tool is called NEFCLASS-J and can be obtained at
http://fuzzy.cs.uni-magdeburg.de.

If neuro-fuzzy methods are used in information min-
ing, it is useful to consider their capabilities in fusing
information from different sources. Information fusion
refers to the acquisition, processing, and merging of in-
formation originating from multiple sources to provide
a better insight and understanding of the phenomena
under consideration. There are several levels of informa-
tion fusion. Fusion may take place at the level of data
acquisition, data pre-processing, data or knowledge rep-
resentation, or at the model or decision making level.
On lower levels where raw data is involved, the term
(sensor) data fusion is preferred. Some aspects of infor-
mation fusion can be implemented by NEFCLASS. For
a conceptual and comparative study of fusion strategies
in various calculi of uncertainty see [9, 6].

If a fuzzy classifier is created based on a supervised
learning problem L, then the most common way is to
provide a data set, where each pattern is labeled—ideally
with its correct class. That is, we assume that each pat-
tern belongs to one class only. Sometimes it is not pos-
sible to determine this class correctly due to a lack of
information. Instead of a crisp classification it would
also be possible to label each pattern with a vector of
membership degrees. This requires that a vague classifi-
cation is obtained in some way for the training patterns,
e.g. by partially contradicting expert opinions.

Training patterns with fuzzy classifications are one
way to implement information fusion with neuro-fuzzy
systems. If we assume that a group of n experts provide
partially contradicting classifications for a set of training
data we can fuse the expert opinions into fuzzy sets that
describe the classification for each training pattern. Ac-
cording to the context model, we can view the experts
as different observation contexts [11]. The training then
reflects fusion of expert opinions on the data set level.
Due to the capabilities of its learning algorithms NEF-
CLASS can handle such training data in the process of
creating a fuzzy classifier.

Another aspect of information fusion that is imple-
mented by NEFCLASS is to integrate expert knowledge
in form of fuzzy rules and information obtained from
data. If prior knowledge about the classification prob-
lem is available, then the rule base of the fuzzy classifier
can be initialized with suitable fuzzy rules before rule
learning is invoked to complete the rule base. If the al-
gorithm creates a rule from data that contradicts with
an expert rule then we can

e always prefer the expert rule,
e always prefer the learned rule, or



e select the rule with the higher performance value.

In NEFCLASS we determine the performance of all rules
over the training data and in case of contradiction the
better rule prevails. This reflects fusion of expert opin-
ions and observations.

Because NEFCLASS is able to resolve conflicts be-
tween rules based on rule performance, it is also able to
fuse expert opinions on the fuzzy rule level. Rule bases
from different experts can be entered as prior knowledge.
They will be fused into one rule base and contradictions
are resolved automatically by deleting from each pair of
contradicting rules the rule with lower performance.

After all contradictions between expert rules and rules
learned from data were resolved, usually not all rules can
be included into the rule base, because its size is limited
by some criterion. In this case we must decide whether

e to include expert rules in any case, or
e to include rules by descending performances values.

The decision depends on the trust we have in the experts
knowledge and in the training data. A mixed approach
can be used, e.g. include the best expert rules and then
use the best learned rules to complete the rule base.

A similar decision must be made, when the rule base
is pruned after training, i.e. is it acceptable to remove
an expert rule during pruning, or must such rules remain
in the rule base. In NEFCLASS expert rules and rules
induced from data are not treated differently.

5. Dependency Analysis
with Possibilistic Graphical Models

Since reasoning in multi-dimensional domains tends
to be infeasible in the domains as a whole—and the
more so, if uncertainty and imprecision are involved—
decomposition techniques, that reduce the reasoning
process to computations in lower-dimensional subspaces,
have become very popular. In the field of graphical mod-
eling, decomposition is based on dependence and inde-
pendence relations between the attributes or variables
that are used to describe the domain under considera-
tion. The structure of these dependence and indepen-
dence relations are represented as a graph (hence the
name graphical models), in which each node stands for
an attribute and each edge for a direct dependence be-
tween two attributes. The precise set of dependence and
(conditional) independence statements that hold in the
modeled domain can be read from the graph using sim-
ple graph theoretic criteria, for instance, d-separation, if
the graph is a directed one, or simple separation, if the
graph is undirected.

The conditional independence graph (as it is also
called) is, however, only the qualitative or structural
component of a graphical model. To do reasoning, it has

to be enhanced by a quantitative component that pro-
vides confidence information about the different points
of the underlying domain. This information can often
be represented as a distribution function on the under-
lying domain, for example, a probability distribution, a
possibility distribution, a mass distribution etc. W.r.t.
this quantitative component, the conditional indepen-
dence graph describes a factorization of the distribu-
tion function on the domain as a whole into conditional
or marginal distribution functions on lower-dimensional
subspaces.

Graphical models make reasoning much more effi-
cient, because propagating the evidential information
about the values of some attributes to the unobserved
ones and computing the marginal distributions for the
unobserved attributes can be implemented by locally
communicating node and edge processors in the condi-
tional independence graph.

For some time the standard approach to construct a
graphical model has been to let a human domain ex-
pert specify the dependency structure of the considered
domain. This provided the conditional independence
graph. Then the human domain expert had to estimate
the necessary conditional or marginal distribution func-
tions, which then formed the quantitative component of
the graphical model. This approach, however, can be
tedious and time consuming, especially, if the domain
under consideration is large. In addition, it may be im-
possible to carry it out, if no or only vague knowledge is
available about the dependence and independence rela-
tions that hold in the domain to be modeled. Therefore
recent research has concentrated on learning graphical
models from databases of sample cases.

Due to the origin of graphical modeling research in
probabilistic reasoning, the most widely known meth-
ods are, of course, learning algorithms for Bayesian or
Markov networks. However, these approaches—as prob-
abilistic approaches do in general—suffer from certain
deficiencies, if imprecise information, understood as set-
valued data, has to be taken into account. For this rea-
son recently possibilistic graphical models also gained
some attention [4], for which learning algorithms have
been developed in analogy to the probabilistic case.
These methods can be used to do dependency analysis,
even if the data to analyze is highly imprecise and thus
offer interesting perspectives for future research.

We have implemented these methods as a plug-
in for the well-known data mining tool Clementine
(ISL/SPSS). Its probabilistic version is currently used
at DaimlerChrysler for fault analysis.

6. Concluding Remarks

In knowledge discovery and data mining as it is, there
is a tendency to focus on purely data-driven approaches



in a first step. More model-based approaches are only
used in the refinement phases (which in industry are of-
ten not necessary, because the first successful approach
wins—and the winner takes all). However, to arrive at
truly useful results, we must take background knowledge
and, in general, non-numeric information into account
and we must concentrate on comprehensible models.

The complexity of the learning task, obviously, leads
to a problem: When learning from information, one
must choose between (often quantitative) methods that
achieve good performance and (often qualitative) models
that explain what is going on to a user. This is another
good example of Zadeh’s principle of the incompatibil-
ity between precision and meaning. Of course, precision
and high performance are important goals. However, in
the most successful fuzzy applications in industry such
as intelligent control and pattern classification, the intro-
duction of fuzzy sets was motivated by the need for more
human-friendly computerized devices that help a user to
formulate his knowledge and to clarify, to process, to re-
trieve, and to exploit the available information in a most
simple way. In order to achieve this user-friendliness, of-
ten certain (limited) reductions in performance and so-
lution quality are accepted.

So the question is: What is a good solution from the
point of view of a user in the field of information min-
ing? Of course, correctness, completeness, and efficiency
are important, but in order to manage systems that are
more and more complex, there is a constantly growing
demand to keep the solutions conceptually simple and
understandable. This calls for a formal theory of util-
ity in which the simplicity of a system is taken into ac-
count. Unfortunately such a theory is extremely hard
to come by, because for complex domains it is difficult
to measure the degree of simplicity and it is even more
difficult to assess the gain achieved by making a system
simpler. Nevertheless, this is a lasting challenge for the
fuzzy community to meet.
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