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Abstract

Synchrony among neuronal impulses (or spikes)
plays, according to some of the most prominent
neural coding hypotheses, a central role in infor-
mation processing in biological neural networks.
When dealing with multiple electrode recordings
(i.e., spike trains) modelers generally characterize
synchrony by means of a maximal time span (since
ezact spike-time coincidences cannot be expected):
two or more spikes are regarded as synchronous if
they lie from each other within a distance at most
this maximal time span. Such time span is de-
termined by the modeler and there is no agree-
ment about how long it should be. In this paper
we present methodology to learn this time span
automatically from spike-train data that involves
the assessment of the amount of synchrony in the
database (relative to that expected if spike trains
in it were uncorrelated) and a learning process that
looks at the time span that maximizes it (over all
those considered).
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1. Introduction

The principles of neural coding and information pro-
cessing in biological neural networks are still not
well understood and are the topic of ongoing re-
search. Several coding schemes have been proposed
in the neuroscience literature (i.e., models about
how information is represented in biological neu-
ral networks). One of the most prominent coding
hypotheses is the so-called temporal coordination
scheme (see, e.g., [1]), first advocated by D.O. Hebb
[8] and driven by more recent physiological and
anatomical evidence, according to which the coordi-
nated emission of spikes (i.e., electrical impulses or
action potentials), in particular synchronous spik-
ing (see, e.g., [2, 6, 9]) by groups of neurons plays a
major role in neuronal information processing. Such
a view is in keeping with the so-called synfire chain
(or synchronous firing chain) model: a feed-forward
neural network in which neuronal impulses prop-
agate back and forth from different synchronous
groups of neurons (which we call neuronal assem-

blies and characterize as groups of neurons that fire
synchronously significantly more often than it would
be expected by chance under the assumption of in-
dependence in their respective neuronal impulses).

In order to understand the principles of coordi-
nated neuronal activity and neural coding it is nec-
essary to observe the activity of multiple neurons
simultaneously. This is nowadays possible due to
improvements in multiple-electrode recording and
spike sorting (see, e.g., [4, 12]), which allows to
monitor the activity of hundreds of neurons. Such
recordings are typically represented by sequences of
points in time (i.e., point processes) and referred to
as parallel spike trains.

Determining what constitutes synchronous spik-
ing in parallel spike trains is not a trivial issue, since
eract spike-time coincidences cannot be expected
(due to the underlying neural processes themselves
or to limitations in the recording technology). Spike
synchrony is typically characterized in the field in
relation to a certain time span, say w: two or more
spikes are considered to be synchronous if they all
lie within a distance at most w from each other. The
distance w is normally determined from the outset
by the modeler, i.e., he/she chooses w according to
what he/she considers the maximal time span for a
set of synchronous spikes. However, since the mech-
anisms of neural processing are still under intense
discussion and thus there is no obvious choice as to
what value w should be given, a method that learns
w automatically from data is clearly desirable. In
this paper we offer methodology to do so.

Learning the right time span w to assess spyke
synchrony is certainly important, particularly when
trying to identify assembly activity (i.e., significant
spike synchrony). A time span w shorter than that
necessary to identify (all or almost all) synchronous
spiking of a neuronal assembly may not be suffi-
cient to identify the assembly itself (i.e., to identify
such group of neurons as significantly synchronous).
On the other hand, a time span w too large (i.e.,
much larger than that necessary to identify all syn-
chronous spiking of the assembly) may dilute the
assembly and make it look like any other group of
uncorrelated neurons.

In order to learn w we employ measures of (rela-
tive) synchrony for sets of parallel spike trains—
relative to the amount of synchrony observed
and/or expected in sets of uncorrelated spike trains.
Such measures we conceive as being computed from



the amounts of synchrony of individual neuronal
patterns (i.e., strictly speaking, of the spike trains
corresponding to individual patterns). Synchrony
of neuronal patterns is assessed by means of our
continuous model of synchrony that is based on
the above characterization of spike synchrony. This
model, which we briefly review in this paper, was
first introduced in [13].

Once we have a measure of synchrony, we learn w
for a particular set of spike trains by measuring its
synchrony with respect to distinct candidate values
for w and choose that value which satisfies certain
criteria (e.g., as we will see later, the one that maxi-
mizes synchrony with respect to any of the measures
that we define).

2. Notation and preliminary definitions

Let N be our set of neurons. We will be working
with parallel spike trains, one for each neuron in IV,
formalized as spike-time sequences (or point pro-
cesses) of the form {t{,...,t% } C (0,T], for a € N
and T € R (the recording time in seconds), where
k., is the number of times neuron a fires in the inter-
val (0,T]. We denote the set of all these sequences
by §. Sets of sequences like S constitute our raw
data.

When formalizing our continuous model of syn-
chrony we will be using multisets (i.e., collections
of elements that can contain multiple copies of
the same element, see e.g. [15]), which are for-
mally defined as pairs (X, h), where X is a set
and h:X — NU{0}. Intuitively, the function h
counts the occurrences of the elements of X in
(X, h). Throughout this paper, whenever conve-
nient, we use set-like notation for multisets: for
example, {x1,x1,x2, T2, x5} instead of (X, h), with
hz1) = 2, h(z2) = 2, h(zg) = 1 and h(xz) = 0 for
any x € X \ {x1, 22, 23}.

3. Assessment of spike and spike-train
synchrony

We assume the characterization of spike synchrony
outlined in Section 1: two or more spikes are con-
sidered to be synchronous if they all lie within a
certain distance, say w, from each other.

Such characterization of spike synchrony is the
one intended (yet not achieved) by the bin-based
model, the almost exclusively applied model of syn-
chrony in the field. The bin-based model relies
on time discretization to assess spike synchrony:
the recording time is partitioned into time intervals
(bins) of equal length (e.g., w). In this model, two or
more spikes are considered to be synchronous if they
lie in the same time bin. Note however that, in such
a characterization, any two spikes that lie in distinct
time bins will not be regarded as synchronous, even
if they are separated by a time distance way smaller
than w (this we call the boundary problem).

We briefly review here a new synchrony model
(first introduced in [13]), which we call continuous
model, that builds on the notion of spike synchrony
that we assume in this paper and that overcomes
the problems derived from time discretization in the
bin-based model (i.e., the boundary problem).

We formally characterize spike synchrony in our
continuous model by means of the operator Sync
which, for G a multiset over (0,7] and w € RT the
time span for spike synchrony, we define as follows:

1 if max{|ti — tj| |ti,tj € G} <w
0 otherwise.

Sync(G) = {

We denote by E4 the collection of those multi-
sets G in S that contain exactly one spike for each
neuron in A C N such that Sync(G) = 1. These
multisets we call synchronous events of A in S or,
in short, A-events.

We move now to the definition of the opera-
tor Supp, aimed at assessing spike-train synchrony
(which we also call support) in our continuous
model. Our characterization of synchrony among
spike trains corresponding to a subset of neurons
A C N (in short, support of A) basically takes into
account the amount of A-events in E#, with the fur-
ther restriction that at most one A-event per spike is
considered in the summation. Notice though that
this further restriction in itself is not sufficient to
define Supp since we could possibly have several
subsets of A-events in E4 that satisfy it. In or-
der to discriminate among all these possible subsets
of A-events we opt for a maximization criterion: we
consider that (or those) which maximize the amount
of synchrony.

Formally, let A C N. We define H as the col-
lection of all subsets H C E4 with at most one
A-event per spike. We define the support operator
Supp as follows:

Supp(A) = ggg{lHl} (1)

As is explained in detail in [13], the assessment of
Supp(A) as defined by Equation (1) can be seen
as an instance of the mazrimum independent subset
problem, which consists of finding an independent
subset of maximal cardinality (i.e., that there is no
other independent subset of higher cardinality): in
our context, a maximal subset H C EA of indepen-
dent A-events, where by independent A-events we
mean A-events that do not share spikes. This prob-
lem is, for the general case, NP-complete. However,
the resulting constraints of our particular problem
instance allow an efficient solution by applying a
greedy algorithm that linearly traverses the data
and always selects the next synchronous group of
spikes that does not share spikes with a previously
selected group.



4. Synchrony in spike-train databases

We are interested in measures of synchrony of S
that are sensitive to the time span w for spike syn-
chrony (i.e., measures of synchrony relative to w).
In particular, we look for measures of synchrony
that build on w and that are thus assessed from the
amounts of synchrony observed for individual sets
of neurons.

We start by identifying all frequent patterns A C
N in S, by which we mean sets of neurons of at least
a certain size zy,;, whose support in S (assessed by
means of our operator Supp) is at least a certain
threshold cpin. Typically we choose zmin, Cmin €qual
to 2, i.e., patterns with at least two neurons and two
occurrences in the database.

We compute synchrony of S by looking at the
frequent patterns found. For each pattern, we take
into account its size (z) and support (c), i.e., its
signature (z,c). We denote by sig(S) the set of
signatures of all frequent patterns found in S.

4.1. Frequent item set mining (FIM)

In order to help making as efficient as possible
the identification of all frequent neuronal patterns
A C N in S we can take advantage of frequent item
set mining methodology and data structures (see,
e.g., [7]). For our support operator Supp the anti-
monotonicity property holds: for A,B C N and
A C B, the amount of synchrony (i.e., support) of A
is greater than or equal to the amount of synchrony
of B. The anti-monotonicity of our support opera-
tor implies the so-called apriori property exploited
by FIM algorithms in order to prune the search for
frequent patterns: that no superset of an infrequent
set of neurons can be frequent, where frequency is
determined with respect to a support threshold oy,
(below which a set is considered infrequent). This
holds for our support operator and, more generally,
in maximum independent subset (or, in a graph in-
terpretation, node set) approaches, as shown in [5]
or [16].

Full details on FIM implementation in our do-
main can be found in [3].

4.2. Data randomization

We look at measures of synchrony for S-like
databases that are relative to the independence as-
sumption among spike trains in §. Such measures
we typically express as a ratio between the (ab-
solute) amount of synchrony found in S and that
expected in independent data. In order to esti-
mate the amount of synchrony in independent data
we employ surrogate generation techniques (i.e.,
data randomization techniques): modifications of
the original data S that are intended to keep all its
essential features except synchrony, the feature we
are testing—see, e.g., [11].

Generally speaking, surrogate generation tech-
niques are particularly suitable when the underly-
ing probabilistic model of the data is not known and
is difficult to assess. When testing for significance
(e.g., when assessing whether the amount of syn-
chrony of our spike-train data set is significant or,
on the contrary, it is the amount one would expect
to find if spike trains were independent), data ran-
domization allows us to represent the null hypoth-
esis (of independence) implicitly: we compare the
results on the original data to those of sufficiently
many surrogate data sets. More specifically, from
all the results in the surrogate data sets we select,
depending on the desired significance level, a critical
value above which we declare the result significant
(e.g., in 1000 surrogate data sets, at a significance
level of 1%, we would pick the 11*" highest value
and would consider the amount of excess synchrony
in our original data set significant if it lies above
such value).

In what follows we will not be that concerned
about significance as we are about assessing the
amount of synchrony expected in independent
spike-train data sets. In order to assess such ex-
pected amount of synchrony we average results over
sufficiently many surrogate data sets (in the ex-
amples shown in our preliminary evaluation of our
learning methodology in this paper, over 100 surro-
gate data sets).

4.3. Measures of synchrony

As was mentioned above, we look for measures of
synchrony that are relative to the expected amount
of synchrony under the assumption of uncorrelated
spike trains. We express such measures as the ra-
tio between the (absolute) amount of synchrony in
our spike-train data and that expected under the
independence assumption.

The measures we look at are sensitive to the time
span w for spike synchrony that is chosen for our
continuous model when looking for frequent pat-
terns in collections of spike trains.

Let m,, be a measure of synchrony, defined with
respect to the time span w for synchronous spiking,
and let S be a collection of spike trains. We will
see values greater than 1 for m,(S) as an indica-
tion of excess synchrony—compared to independent
spiking—and values smaller than 1 as an indication
of a lack of synchrony (we are not particularly con-
cerned in this paper about the significance of such
excess or lack of synchrony).

We assign weights (i.e., magnitudes) to signatures
that will be later employed in the definition of our
synchrony measures. For (z,¢) a signature we de-
note by p((z, ¢)) its weight, with p the weight oper-
ator. The characterization p({z,c)) = zx*c is proba-
bly the most intuitive one when thinking about the
magnitude of a signature (note that such a magni-
tude corresponds to the amount of spikes that are
involved in a pattern that has this signature). How-



Figure 1: Counts over 100 trials. First row: measure m},. Assemblies consisting of a pattern of signature

(6,6) (first diagram), (7,7) (second diagram) and (8,8) (last diagram) injected. Second row: measure m

2

w*

Assemblies consisting of a pattern of signature (6,6) (first diagram), (7,7) (second diagram) and (8,8) (last

diagram) injected.

ever, since our focus is on coincident spikes and pat-
terns of size z = 1 show no coincident spikes with
other neurons, we normally consider the alternatives
pl(z,6)) = (2—1)-(c) and p((2,¢)) = (z—1)- (c— 1)
(the latter is justified by the fact that we do not
count as frequent patterns those with a single coin-
cidence).

We consider here some families of measures, for
distinct values w € RT and for Surr the set of sur-
rogate data sets obtained from original data:

e Summation of weights of all signatures found in
original data divided by the expected summa-
tion of weights under the assumption of inde-
pendence (which we denote by Exp and assess
from Surr):

- Z(z,c)Gsig(S) p(<Z, C>)
B Exp

m,(S)
where Ezp is estimated from Surr as follows:

e 3 )

< |Surr|
(z,e)€sig(S)
S’eSurr
e Maximum signature weight in S divided by the
expected maximum signature weight under the
assumption of independence (denoted by Exp

and assessed from the set Surr):

max(z,c)ésig(S) p((Z, C>)

m(S) = Ezp

where Exp is estimated by averaging over Surr
as follows:

Eap = Z max(z c)esig(S’) p((z,¢))

S’eSurr |SU’I"’I“|

5. Learning spike synchrony

For W C R a set of candidate values for the time
span w that defines spike synchrony and m! the
selected measure of synchrony, for i € {1,2}, we
choose w € W (i.e., the time span to define spike
synchrony learned from data, which we denote by
wr,) such that, for all w € W, the following holds,
for § a collection of spike trains:

My, (S) > my,(S).

In words, we choose the time span w that maxi-
mizes m’,(S).

Note that the (absolute) amount of synchrony
of any spike-train data set, whether measured as
the summation over the weights of all signatures
found in the data set (as in m}) or simply as the
maximum signature weight (as in m?2), should in-
crease for increasing values of w (since a larger w
implies that sets of spikes that are not considered
synchronous with a smaller w become synchronous,
increasing the support and possibly also the size of
the pattern). This, as we just mentioned, holds for
independent data and also for data with assembly
activity (i.e., with significant synchronous spiking).
However, for data with assembly activity a steeper
increase is expected as long as w is below the ac-
tual time span of the synchronous spiking events
that constitute the assembly activity. Such an in-
crease becomes less prominent once w goes above
the actual span of the synchronous spiking events.
As a consequence, a maximum value for our relative
measures of synchrony over W should be attained
for w equal or very close to the actual span of the
assembly activity.



Figure 2: Counts over 100 trials. Two neuronal assemblies. First row: wy learned with respect to the time
span of the first identified assembly (i.e., all its spike coincidences). Second row: wy, learned with respect
to the time span of the second identified assembly. First column: two injected patterns of signature (6, 6).
Second column: two injected patterns of signatures (6,6) and (8,8). Third column: two injected patterns

of signature (8, 8).

5.1. Evaluation

In this section we present results of an initial eval-
uation of the learning process of wy on different
collections of artificially generated spike-train data.
The data sets generated for our evaluation consist
of 100 trials with injected assembly activity (100
spike trains in each trial—i.e., |N| = 100). In order
to generate correlation among spike trains we es-
sentially adopted the basic features of the SIP (Sin-
gle Interaction Process) model—described in [10]—
along with some modifications aimed at generating
non-exact coincidences among spikes: for each data
set we generated trials of independent spike trains
(modeled as Poisson processes with constant rate
20Hz) in order to represent the background activ-
ity of neurons in N, each with a time duration of
3 seconds (i.e., T' = 3). In order to add assembly
activity we considered, for each data set, a particu-
lar choice of signatures of the form (z, ¢)—with z, ¢
in the range {6,7,8} (i.e., z, ¢ sufficiently small to
better assess the effectiveness of our learning pro-
cess). For given (z,¢), a random choice of ¢ points
in the interval (0,T] was considered for each trial.
Each spike generated this way was added to the
background spiking activity by adding some random
time deviation in order to produce non-ezxact spike
coincidences, modeled by means of a uniform ran-
dom variable on the interval [—0.0015,0.0015] (i.e.,
+/- 1.5 millisecond shift, for w = 3 milliseconds).

Our collections of surrogate data sets (Surr) are
obtained from our generated spike-train data sets
by means of spike randomization: from each spike
train in a trial we generate a new randomized spike
train by uniformly distributing its amount of spikes

over the time span (0,7].

Figures 1 and 2 show some results for one and two
non-overlapping injected synchronous patterns re-
spectively. All these results are based on the assess-
ment of synchrony (either by m!, or by m?2) in terms
of our weight operator p({z,¢)) = (z—1)*(c—1), for
(z,¢) a signature (results in terms of other weight
operators—defined previously in this paper—do not
differ substantially from the reported results).

In all diagrams shown in figures 1 and 2, the
y-axis features the time span of an injected assem-
bly (i.e., the minimum time span w—among those
tested, with a 0.2-millisecond resolution—that al-
lows us to identify all spike coincidences of the as-
sembly; we call it assembly or coincidence span).
We stress here that non-exact spike coincidences are
modeled by shifting spikes uniformly over a three-
millisecond time span. Thus, the maximal distance
between any two spikes of an injected coincidence
can well be below 3 milliseconds (the smaller z—
i.e., the number of spikes in the coincidence—the
more likely it is so, as can be expected and clearly
seen from the diagrams). The z-axis corresponds to
the time span wy, (in milliseconds) learned by our
process and the z-axis (the height) to the amount
of trials counted with respect to the assembly span
and the learned wy,.

Diagrams in Figure 1 show the performance of
our learning process in data trials with a single syn-
chronous pattern injected (with signatures (6,6),
(7,7) and (8,8)). Diagrams in the first row show
the assessment of synchrony with the measure m/},
and those in the second row show the assessment

with m?2. Although in these trials the learning pro-



cess based on m), works reasonably well (note that

in most cases the time span wy, learned by the pro-
cess matches the assembly span) it is clearly outper-
formed by that based on m2, for which the learned
time span wy, coincides in nearly all trials with the
assembly span (to be more precise, in all trials ex-
cept for a single one with an injected synchronous
pattern of signature (6, 6)).

In Figure 2, diagrams in the first row feature the
time span wy, learned with respect to the time span
of the injected assembly that is first identified by our
model (i.e., all its spike coincidences) while those in
the second row show the time span wj learned by
our process in relation to the time span of the as-
sembly whose spike coincidences (i.e., all its spike
coincidences) are identified the last. Learning of wy,
in these experiments is based on the measure of syn-
chrony m?. As is possibly clear, the time spans of
the two injected assemblies often differ: as can be
seen in the diagrams of the first and third columns
(i.e., those corresponding to injected assemblies of
the same signature) the time span learned generally
coincides with the time span of the first assembly
with all its spike coincidences identified, as is seen
in the diagrams of the first row. However, as can
be seen in the diagrams of the second row, the span
wy, learned may not be enough to identify all spike
coincidences of the other assembly. This is not so
in trials with two injected assemblies of signatures
(6,6) and (8, 8) (second column). Here the learning
process is dominated by the second assembly—i.e.,
the last one among the two to have all its spike co-
incidences identified (very likely that with the sig-
nature of largest magnitude—(8,8)). In these trials
the learned time span wy, tends to coincide with the
time span of the assembly with (very likely) largest
magnitude, which is sufficient to also identify all
spike coincidences of the other assembly.

6. Conclusion and future work

In this paper we have presented methodology to au-
tomatically learn the time span in order to define
spike synchrony—i.e., that distance within which
two or more spikes will be regarded as synchronous
(since, as was mentioned, exact spike-time coin-
cidences cannot be expected)—from parallel spike
trains. Such methodology involves the assessment
of the amount of synchrony in spike-train databases,
which we approached in this paper by means of
the synchrony operators m}, and m2. Such opera-
tors were defined as relative measures of synchrony:
they express ratios between the (absolute) amount
of synchrony of the target or original database and
the amount of synchrony that would be expected
under the assumption of uncorrelated spike trains
(which is assessed by means of surrogate genera-
tion methods from the original data). The learn-
ing process for the time span to characterize syn-
chrony (which we called wy) picks, over a certain

set, the span that maximizes synchrony in the orig-
inal database.

Our methodology was tested on artificially gen-
erated spike trains and proved to work very well
(particularly with respect to the measure m?2) on
the data sets with injected spike coincidences for
a single neuronal assembly: the learned time span
wy, from these data sets and the assembly span
almost always coincide. Learning wj; from data
sets with two non-overlapping neuronal assemblies
worked reasonably well but presented some prob-
lems: in some cases the time span wy, learned was
not enough to identify all spike coincidences of one
of the assemblies (which in most cases should not
constitute a major problem when looking to identify
significant spike synchrony, as long as enough coinci-
dences are identified to allow the spiking activity of
the assembly to be regarded as significant). In other
cases the span wy, learned was longer than necessary
in order to identify all coincidences (which, again,
should not be a major problem as long as the learned
span is not much longer than necessary, which could
dilute the significance of the synchronous spiking of
the assembly). This said, an incremental approach
which first learns wy, for the identification of one
of the assemblies and then a new wy, to detect the
other should work fine as long as the assemblies do
not overlap (we are currently evaluating this possi-
bility).

Future work

In relation to the contect of this paper, a more
thorough evaluation and refinement of our method-
ology is necessary when dealing with spike-train
datasets with multiple assembly activity. We are
also working on methodology to assess significance
of the amount of synchrony (e.g., of our measures
m}, and m?2 , among others) in spike-train databases,
which would also be used in our learning methodol-

ogy.
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