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Abstract—This paper describes a Java-based graphical user
interface to a large number of data analysis programs the firs
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author has written in C over the years. In addition, this toolbox P —— ‘
is equipped with basic visualization capabilities, like satter plots Table: View
and bar charts, but also with specialized visualization modles Scatter Plot view
for decision and regression trees as well as prototype-bade Bar Chart view
classifiers. The architecture is like a toolbox: individual tools Free Inteligent Data Analysis Toolbox
refer to the different data analysis methods. All parts of ths
toolbox (Java as well as C based) are free and open software Fig. 2. The main window of FriDA.
under the Gnu Lesser (Library) Public License.
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Fig. 1. FrIDA — Free Intelligent Data Analysis Toolbox.

Fig. 3. A simple table view.

|I. INTRODUCTION

Since 1996 the first author of this paper has been developing
a large number of data mining and intelligent data analysis This paper is organized as follows: in Section Il we present
programs. However, most of these programs are commadhe@ basic visualization capabilities of FrIDA, which aresiga
line programs in C and thus not particu|ar|y user friend|ﬁCC€SSib|e from the main window. In Section Il we briefly
Even though this did not hinder them to become popular, giscuss the data formats that can be handled by FrIDA and how
expert users may even prefer command line programs doidDA can be configured to use them. Sections IV and V are
to the possibility of using them in scripts, a novice user fdevoted to two special tools. In the former section, pragisty
usually repelled by a command line interface. Starting withased clustering (fuzzy and probabilistic) and FriDAs use
the decision and regression tree programs and continuitig winterface to the underlying program is discussed, as well as
association rule induction as well as fuzzy and probabili§’s visualization module for cluster models. Section V rthe
tic cluster induction, individual system-independentpiiaal turns to the highly popular method of decision trees (th®&rl
user interfaces in Java were then provided. implementation is very popular as an independent program),
In a recent effort, we have tried to combine these individuand Section VI lists other available methods (without a itkla
user interfaces into a single toolbox, in order to make thegiscussion). Section VII summarizes the presentation.
more easily accessible, and also in order to convey to a user,
who may have been using one of the programs already, the 1. DATA VISUALIZATION
large variety of methods that are available. As a conseaquenc ) ) )
the FrIDA program was written, which combines all individua 1€ main window of FriDA (see Figure 2) allows a user

user interfaces that were developed so far in a uniform affy €asily load a data table (the format of which is fairly

consistent architecture. A main focus in the developmerst wieXiPle, see Section 1) and to visualize it. In additiontte
ndatory simple table viewer (see Figure 3), 3-dimensiona

to provide quick and easy ways to view generated modél¥

and prediction results. This is reflected in a large number 8fatter plots and bar charts can be generated. Examples are
“View” buttons spread over the dialog boxes, which allow §Nown in Figures 4 and 6, which depict a scatter plot and a
user to view a table or a generated model with a single clidk@" chart of the well-known Iris data [11]. These visuaiizat

In addition, the main window (see Figure 2) allows for simplg'odules are highly configurable, for example, w.r.t. layemnd

and direct data visualization in scatter plots and bar shart ¢°IOr, as the dialog boxes shown in Figures 5 (attributectele
for the scatter plot) and 7 (layout dialog box for the bar thar

Christian Borgelt and Gil Gonzalez Rodriguez are bothhwite Eu- demonstrate. Of course. in both visualizations the disn]ay
ropean Center for Soft Computing, Edificio Cientifico-Telagico, c/ ’

Gonzalo Gutierrez Quirds s/n, 33600 Mieres, Asturiasaisp(email: structure (cube enclosing the data or the bar .Chart) catyeasi
{christian.borgelt,gil.gonzalé@softcomputing.es). and freely be rotated, moved, and zoomed with the mouse.
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Fig. 4. A 3-dimensional scatter plot. ~ Fig. 5. Attribute selector. Fig. 6. A 3-dimensional bar chart. Fig. 7. Layout dialog box.
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Fig. 8. The data format configuration tab. Fig. 9. The domain determination tab. Fig. 10. A simple domain description editor.

The main window also provides access to all intelligemhultiple occurrences of the same tuple without having to
data analysis tools, which are available from a simple merurovide duplicates. (For the viewers, however, such a weigh
They are organized as individual tool boxes, which combirmlumn is always treated as a normal data column. It is only
interfaces to all programs that are needed for a specificadeththe model generation programs, like, for example, a detisio
For example, the decision and regression tree tools combtnee inducer, that interprete these values as weights aapt ad
interfaces to a program for the data type determinationi- dethe model induction process accordingly.)

sion or regression tree induction, pruning and executidve T The data format can be configured independently for each

clustering tools combine interfaces for data type deteation  to0|nox, using the data format tab, which is always the first

as well as cluster induction and execution. These exampjgsa|| individual toolboxes (see Figure 8). The main window

already indicate that some interfaces (here the automate dis 3so independent and maintains its own settings of the dat

type determination) are available multiple times, so thayt format parameters. It can be set through a data format dialog

are close at hand wherever one may need them. available in the “File” menu of the main window. However, the
I1l. DATA FORMAT possibility of copying these settings between the main wmd

The data format that can be read by FrIDA is defined by fiv"’énd the toolboxes will also be available soon.
sets of characters. It is assumed that the input file is divide Once the data format is fixed, the domains of the individual
into records, and each record into fields, with special separ fields (columns) have to be determined, which is made simple
characters (record separators and field separators) prgvid®y an automatic type determination module, as shown in
for this division. In addition, blank characters may haverpe Figure 9. Since such an automatic type determination can
used to fill fields to specified with, for example, in order tdail (for example, if nominal attributes are coded by intege
align them in an editor. These blank characters will be rezdovnumbers), the domain description may also be altered with a
when the file is read. The fourth set of characters identifigis nSimple editor, see Figure 10. (However, this way of changing
values (fields containing only blanks and null value chamact the types of attributes will be improved in the near future.)
are assumed to be null), the fifth comment records (a recordSince the underlying programs are written in C, this tab also
starting with a common character is ignored). comprises the possibility to locate them on the file system,

In addition, it is possible to generate default field/columm case they have not been placed in the same directory as
names, in case the data file does not contain them, but condilse graphical user interface and are not reachable thrdwggh t
purely of data. Finally, each record may contain in its laSPATH” environment variable. In the standard distributioh
field an occurrence counter, which can be used to hand@dDA such locating is not necessary.
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IV. Fuzzy AND PROBABILISTIC CLUSTERING

FrIDA comprises a very flexible program for prototype-

based clustering, which combines classical (crisgneans
clustering [14], standard fuzzy-means clustering [1], [3],
[15], more sophisticated fuzzy clustering [13], [12], egpe
tation maximization for a mixture of Gaussians [10], [4]rtha

and soft learning vector quantization [17], [18], [22] asliwe

as several extended and generalized methods [6], [7], [8].

An impression of the power of this program is given by the
tabs of the corresponding toolbox that are shown in Figubes 1
to 13, which show the basic parameters that can be used to

configure the cluster prototypes as well as the cluster iauc

and execution. Note, for example, that the cluster proegyp

Fuzzy/probabilistic cluster induction. Fig. 13. Fuzzy/probabilistic cluster execution.

Fig. 14. Fuzzy and probabilistic cluster visualization.

can have adaptable sizes, variances, covariances, anttsveig

(or prior probabilities). The cluster centers may be noineal

" “Decision and Regression Tree Tools <

to unit length, or they may be fixed at the origin, allowing Farmat | D Params | induction | |
only the size and shape to vary. These latter options can be ReEEAD (B [ weighted
advantageous for document clustering [8]. nformatian 9amn fato =
. . . . . mean squared error hd
The cluster induction tab (Figure 12) makes it possible to Minimur vaiue for spiit: |
keep, but not use, a target attribute, so that the clusteeisigt T GG B i Bl
can be used to initialize a radial basis function neural ngtw Measure sensiviny: g
. Prior { equiv. sample size: |0
The cluster execution tab allows a user to execute a cluster o m;;r.u
model like a classifier, assigning membership degrees fir ea Minimum suppore 2
cluster to each data tuple, or assigning each tuple to thie bes Try to form subsets: [
cluster with an indication of the highest membership degree i =
A ) . ecute || Close |
Clustering results may be visualized, wherever a cluster Decision and Regressian Tree Taols
model is used as an input or output, by simply pressing the
accompanying “View” button. An example screen shot (of a Fig. 15. Decision/Regression Tree parameters.

Gustafson-Kessel clustering [13] result for the Iris data][
is shown in Figure 14.The saturation of the color indicates

the degree of membership to the cluster having the highest

V. DECISION AND REGRESSIONTREES

degree of membership and colors code the different cludters
order to make the individual clusters more easily visibhejit
centers can be marked, together with the 1-, 2-, erélipses
of the cluster-specific covariances matrices. (Figure Ibvsh
only the centers—as small squares— and the dllipses.)

IThis screen shot is of a visualization program written in Chiol

is currently ported to Java, to make it platform independétawever, a
specialized version for Windows exists, so that even novait be executed

on the most widely used systems.

No data analysis program is complete without a possibility
to induce and execute decision trees. FrIDA contains a very
flexible version of a decision tree induction program. Its
most distinguishing feature is the large number of attebut
evaluation/selection measures, which allow to configurthab
it behaves similar to ID3 (information gain), C4.5 (infortiza
gain ratio), CART (Gini index), or CHAID¥? measure). Sev-
eral other common features are also supported, see Figure 15
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Fig. 16. Decision/Regression Tree induction. Fig. 17. Decision/Regression Tree pruning. Fig. 18. Decision/Regression Tree execution.
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Figures 16 to 18 show the tabs, with which a decisiodata mining platform, FrIDA comprises modules for
or regression tree can be induced, pruned, or executed on
new data. Pruning may use a second data table (differen
from the one used for induction, reduced-error pruning) or
may be achieved with pessimistic or confidence level pruning ,
Execution allows for computing a tuple-specific confidente o

the classification result, based on the decision or regnessj - .
e Not all of these modules are currently finished, but since the

tree leaf with which the classification was achieved. : . L
- clgss structure used in FrIDA for the toolbox dialogs islfair
However, one of the strongest features of the decision an

. ) X o - “uniform, it is no problem to finish most, if not all of the

regression tree tools is the visualization module. Its laye .
i , . Iboxes until the conference.

highly configurable, as can already be seen from Figures ?é)
and 20, which show a decision tree and a regression tree for
the Iris data, together with some explanations of the dffier
features of the visualization. The tree display shows thsscl In this paper we presented FrIDA, a Free Intelligent Data
distribution (for decision trees) or the value distributifor Analysis Toolbox. The program is still under development, b
regression trees) for the individual nodes, as well as thia dés already very powerful and supports all standard datangini
distribution on the nodes, both relative to the total dataasd and data analysis techniques. Due to the toolbox concept

naive and full Bayes classifiers
radial basis function neural networks
multilayer perceptrons

multivariate polynomial regression

« association rule induction

VIl. SUMMARY

relative to the parent node. underlying it, it is very easily extendable, as new tools can
be integrated basically by extending the tools menu of the
VI. OTHER DATA ANALYSIS METHODS main window.

Apart from the two modules described above, of whic
the clustering module fits best into this conference due i fware
strengths w.r.t. fuzzy clustering and fuzzy learning vecto The toolbox described in this paper as well as all ac-
guantization, while the decision and regression tree n@dwompanying C programs will soon be made available at
is a mandatory ingredient of every intelligent data analysi http://www.borgelt.net/frida.html.
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