
Resampling for Fuzzy Clustering

Christian Borgelt

European Center for Soft Computing
c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain

christian.borgelt@softcomputing.es

Abstract. Resampling methods are among the best approaches to de-
termine the number of clusters in prototype-based clustering. The core
idea is that with the right choice for the number of clusters basically the
same cluster structures should be obtained from subsamples of the given
data set, while a wrong choice should produce considerably varying clus-
ter structures. In this paper I give a brief overview how such resampling
approaches can be transferred to fuzzy and probabilistic clustering.

1 Introduction

A core problem of prototype-based clustering algorithms—like classical c-means
[12, 17], its fuzzy counterpart (fuzzy c-means) [2, 13], or expectation maximiza-
tion for mixtures of Gaussians [5, 7]—is that they require the number of clusters
to be known in advance. A common approach to tackle this problem is to cluster
the data set several times, each time with a different number of clusters from a
user-specified range, and then to choose the number of clusters yielding the best
evaluation (see, for example, [2, 13, 4] for overviews of evaluation measures).

In this paper I study an alternative approach that has recently attracted a lot
of attention in crisp and probabilistic clustering. The core idea is that if we cluster
subsamples of the given data set with the “right” number of clusters, we should
end up with basically the same cluster structure in each run. With a “wrong”
number of clusters, however, the clustering result should be unstable, showing
considerable variation between different subsamples. Thus, by measuring the
stability of the clustering result w.r.t. subsampling (similarity of results from
different runs), one may be able to determine the “best” number of clusters:
it is the one for which the clustering results are most stable.

Intuitively, one may think of this as follows: if the “true” number of clusters
is c and we try to find c+ 1 clusters, one cluster has to be split. If we try to find
c−1 clusters, some pair of clusters has to be merged. As it depends on particular
properties of the subsample which cluster is split or which clusters are merged,
we should get somewhat differing structures in each run. By measuring how well
the clustering results coincide, we can thus discover such situations and choose
the number of clusters based on this information.

In addition to a general discussion of this highly promising approach, I study
experimentally how the choice of t-norms in the needed relative cluster evaluation
measures (to combine membership degrees) affects the quality and clarity of the
results, that is, how well the “best” number of clusters can be determined.
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Table 1. Contingency table compar-
ing rows of two (crisp) partition ma-
trices (i and k are the cluster indices).

2 Relative Cluster Evaluation Measures

Relative cluster evaluation measures compare two partitions of given data, each
of which can be described by a c × n partition matrix U = (uij)1≤i≤c,1≤j≤n,
where c is the number of clusters and n the number of data points. An element
uij of such a matrix states, in the crisp case, whether the j-th data point belongs
to the i-th cluster (uij = 1) or not (uij = 0). In the fuzzy case, uij is the degree
of membership to which the j-th data point belongs to the i-th cluster (usually
satisfying the constraint ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1).

The main problem of the comparison is how to relate the clusters of one
partition to the clusters of the other. There are basically three solutions: (1) for
each cluster in the one partition we determine the best fitting cluster in the other,
(2) we find the best row permutation, that is, the best one-to-one mapping of the
clusters, or (3) we compare indirectly by first setting up a coincidence matrix for
each partition matrix, which records for each pair of data points whether they
are assigned to the same cluster or not, and then compare these matrices. Here
I confine myself to the second and the third alternative.

2.1 Comparing Partition Matrices

To compare two c × n partition matrices U(1) and U(2) directly, we need a
measure that compares two rows, one from each matrix. Such measures can be
derived from measures comparing binary classifications, like, for example, the
accuracy or the F1-measure [19]. Formally, we set up a 2× 2 contingency table
for each pair of rows, one from each matrix (cf. Table 1). That is, for each pair
(i, k) ∈ {1, . . . , c}2 and each row-column pair (a, b) ∈ {0, 1}2 we compute
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(In the following I generally drop the arguments U(1) and U(2) to make the for-
mulae easier to read.) These numbers may also be computed from fuzzy mem-
bership degrees, where they have a fairly natural interpretation: in the crisp
case, n11 is the number of data points that are assigned to the i-th cluster of the
first partition and to the k-th cluster of the second partition, where the and is
formally expressed by a product. Allowing membership degrees from [0, 1] and
drawing on the theory of fuzzy logic, we see that this is only a special case of
a t-norm that combines the two statements. Hence, in the general case, we may



replace the product by an arbitrary t-norm. Analogously, the expressions 1−uij

(for a = 0 or b = 0) can be seen as resulting from an application of the standard
fuzzy negation, and indeed: they refer to negated statements “The j-th data
point does not belong to the i-th cluster.” In this way we achieve a straightfor-
ward generalization of all following measures to fuzzy clustering results.

From the numbers n(i,k)
ab computed above we may now compute any mea-

sure for evaluating a binary classification, maximizing the result over all row
permutations.1 An example is the (averaged) F1 measure [19]
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where Π(c) is the set of all permutations of the c numbers 1, . . . , c and cluster-
specific precision and recall are
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Another example is (cross-classification) accuracy, averaged over all columns:
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Two partition matrices U(1) and U(2) are the more similar, the higher the values
of the (averaged) F1 measure or the (cross-classification) accuracy. An alternative
is a simple mean squared difference comparison of the partition matrices (which,
at least to my knowledge, has not been used before). That is, we compute
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The smaller this measure, the more similar are the partitions.

2.2 Comparing Coincidence Matrices

As an alternative to comparing partition matrices directly, one may first compute
from each of them an n×n coincidence matrix, also called a cluster connectivity
matrix [16], which states for each pair of data points whether they are assigned
to the same cluster or not. Formally, a coincidence matrix Ψ = (ψjl)1≤j,l≤n can
be computed from a partition matrix U = (uij)1≤i≤c,1≤j≤n by

ψjl =
c∑

i=1

uijuil.

These values may also be computed from fuzzy membership degrees, possibly
replacing the product (which represents a conjunction) by some other t-norm.
1 Note that with the so-called Hungarian method for solving optimum weighted bi-

partite matching problems [18] the time complexity of finding the maximum over all
permutations for given pairwise column comparison values is O(c3) and not O(c!).
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paring (crisp) coincidence matrices
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Such matrices are compared by computing statistics of the number of data
point pairs that are in the same group in both partitions, in the same group in
one, but in different groups in the other, or in different groups in both. Formally,
we compute a 2×2 contingency table (cf. Table 2) containing the numbers (which
are basically counts of the different pairs
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where an index a, b = 1 stands for “same group” and an index a, b = 0 stands for
“different groups”. (The arguments Ψ(1) and Ψ(2) are dropped in the following.)
Again the product may be replaced by any t-norm (note that ψjl ∈ [0, 1], since
fuzzy clustering satisfies ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1). From these numbers a

large variety of measures may be computed, including the Rand statistic
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which is a simple ratio of the number of data point pairs treated the same in
both partitions to all data point pairs, and the Jaccard coefficient
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which ignores negative information, that is, pairs that are assigned to differ-
ent groups in both partitions. Both measures are to be maximized. Another
frequently encountered measure is the Folkes–Mallows index
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which can be interpreted as a cosine similarity measure and thus is also to be
maximized. A final example is the Hubert index
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which may either be interpreted as a product-moment correlation or as the square
root of the (normalized) χ2 measure. It should be clear that this list does not
exhaust all possibilities. Basically all of the abundance of measures, by which
(binary) vectors and matrices can be compared, are applicable.



3 Resampling

Resampling methods can be found with basically two sampling strategies. In the
first place, one may use subsampling [8], that is, the samples are drawn without
replacement from the given data set, so that each data point appears in at most
one data subset. This strategy is usually applied in a cross validation style, that
is, the given data set is split into a certain number of disjoint subsets (with two
subsets being the most common choice). The alternative is bootstrapping [6], in
which samples are drawn with replacement, so that a data point may appear
multiple times in the same data subset. There are good arguments in favor and
against both approaches, but the results often do not differ much.

Resampling is used for cluster validation and model selection as follows:
a cluster model can usually be applied as a classifier, thus enabling us to as-
sign data points, which have not been used to build the cluster model, to the
clusters. In this way we obtain, with the same algorithm, two different groupings
of the same set of data points. For example, one may be obtained by clustering
the data set, the other by applying a cluster model that was built on another
data set. These two groupings can be compared using, for example, one of the
measures discussed in the preceding section. By repeating such comparisons with
several samples drawn from the original data set, one can obtain an assessment
of the variability of the cluster structure (or, more precisely, an assessment of
the variability of the evaluation measure for the similarity of partitions). Such an
approach may be applied to select the most appropriate cluster model—and in
particular, the “best” number of clusters—by executing the above algorithm for
different parameterizations of the clustering algorithm and then to select the one
showing the lowest variability. Specific algorithms following this general scheme
have been proposed in [16, 20, 15], which differ in the exact resampling strategies
and the evaluation measures used. All indicate that this approach is very robust
and a fairly reliable way of choosing the number of crisp clusters.

4 Experiments

I carried out several experiments by applying a resampling approach for fuzzy
clustering based on the above explanations to five data sets. The first three are
artifical two-dimensional data sets of 400 data points each with three, four, and
six clusters, respectively. They are shown in Figure 1. The fourth data set is an
artificial three-dimensional data set of 400 data points with five equally popu-
lated, but ellipsoidal clusters. It is shown on the left in Figure 2. The last data
set is the well-known wine data set from the UCI machine learning repository
[3], a view of which is shown on the right in Figure 2. It comprises three classes of
Italian wines and thus one can expect to find three clusters. I used attributes 7,
10, and 13, which are the most informative w.r.t. the class.

Before clustering all datasets were normalized in all dimensions to mean 0
and standard deviation 1 to rule out scaling effects. The experiments were carried
out with the following resampling scheme: first the whole data set was clustered.



Fig. 1. Artificial data sets with 3 (equally populated), 4 (differently populated),
6 (equally populated) spherical clusters.

Fig. 2. An artificial data set with 5 (equally populated) ellipsoidal clusters and a view
of the wine data set (attributes 7, 10, and 13).

Then 100 random samples (without replacement) were drawn from the data set,
each of which comprised about half of the data points. (The data set was split
into two equal parts, one of which was used). Each sample was clustered with the
same number of clusters as the full data set and then the two cluster structures
(one obtained from the full data set and one from the sample) were compared
on the full data set using the measures described in Section 2. The evaluation
results were averaged over the 100 samples, thus yielding a stability measure.

In the measures I used four different t-norms to combine membership degrees
and the coincidence matrix entries (see Figure 3 for illustrations):

>min(a, b) = min{a, b}, >minnp(a, b) = min{a, b} if a+ b ≥ 1, 0 otherwise,

>prod(a, b) = a · b, >Luka(a, b) = max{0, a+ b− 1},

where >minnp is the so-called nil-potent minimum. Since there are two places
where a t-norm is needed in the measures based on comparing coincidence ma-
trices, I tried all pairs of t-norms to explore their interactions. As it turns out,
they cannot be combined freely: some combinations do not work well.
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Fig. 3. The different t-norms used in the experiments.

data diff accuracy F1

min mnp prd Luk min mnp prd Luk

art. 3 4 4 1 1 1 4 5 4 4
art. 4 3 2 4 0 0 3 3 1 3
art. 6 6 6 6 6 6 6 6 6 6
wine 4 4 0 1 1 4 4 0 4

art. 5 4 4 0 1 1 1 1 0 6
wine 5 4 4 0 0 0 0 0 1

Table 3. Overview of the re-
sults of comparing partition
matrices with different mea-
sures and t-norms on the dif-
ferent data sets. Fuzzy c-means
clustering was used for the first
four rows, Gustafson–Kessel
clustering for the last two.

Since it is not possible to show all individual results in this paper (there
are simply too many different experiments), I try to give an impression of the
performance of the different measures (in combination with different selections
of t-norms) by providing a rough overview and reporting some individual re-
sults. The overview is shown in Tables 3 and 4 and uses grades to assess the
performance of the different measures, with the following meanings:

6: clear global optimum at the correct cluster number,
no local optimum at any other cluster number

5: clear global optimum at the correct cluster number,
but there is a (weak) local optimum at another cluster number

4: only weak global optimum at the correct cluster number,
or a competing local optimum at another cluster number

3: clear local optimum at the correct cluster number,
but global optimum is at another cluster number

2: only weak local optimum at the correct cluster number,
or global optimum is significantly higher than local optimum

1: only a discernable step at the correct cluster number,
but not even a weak local optimum

0: no discernable characteristics at the correct cluster number

With grades 6 and 5, maybe also 4, the measure is usable for fully automatic
selection, with grades 4, 3 and 2 for semi-automatic processing (with user inter-
action). With grades 1 and 0 a measure fails to find the correct cluster number.



Rand min minnp prod Luka

data min mnp prd Luk min mnp prd Luk min mnp prd Luk min mnp prd Luk

art. 3 4 1 1 0 4 1 1 1 4 1 1 0 4 4 4 4
art. 4 4 1 1 0 4 0 1 1 2 1 1 0 3 3 2 2
art. 6 3 6 6 2 3 6 6 6 3 6 1 3 6 6 6 6
wine 4 0 1 0 4 1 1 1 4 0 0 0 4 0 0 0

art. 5 4 0 0 0 4 1 0 0 4 0 0 0 4 4 4 4
wine 4 1 0 0 4 0 0 1 0 1 1 0 0 4 4 0

Jaccard min minnp prod Luka

data min mnp prd Luk min mnp prd Luk min mnp prd Luk min mnp prd Luk

art. 3 0 5 4 5 0 5 6 5 0 5 1 5 5 5 6 5
art. 4 1 3 1 3 1 3 3 3 0 3 0 3 3 3 3 3
art. 6 3 6 6 6 3 6 6 6 3 6 6 6 3 6 6 6
wine 0 4 1 4 0 0 0 5 0 0 0 4 0 0 0 5

art. 5 0 6 0 6 0 6 0 1 0 6 0 1 6 6 1 6
wine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Folkes min minnp prod Luka

data min mnp prd Luk min mnp prd Luk min mnp prd Luk min mnp prd Luk

art. 3 1 4 4 4 1 5 6 5 0 5 1 5 4 5 6 5
art. 4 1 3 1 3 1 3 3 3 0 3 0 3 3 3 3 3
art. 6 3 6 6 6 3 6 6 6 3 6 6 6 3 6 6 6
wine 0 4 0 4 0 0 0 4 0 0 0 4 0 0 0 4

art. 5 0 6 0 6 0 6 0 1 0 6 0 1 6 6 1 6
wine 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Hubert min minnp prod Luka

data min mnp prd Luk min mnp prd Luk min mnp prd Luk min mnp prd Luk

art. 3 4 4 4 4 5 5 6 5 5 4 6 5 5 5 5 5
art. 4 6 4 4 4 3 6 6 6 3 6 6 5 3 3 3 3
art. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
wine 4 0 0 4 4 4 4 4 6 4 4 4 4 4 4 4

art. 5 1 6 1 4 0 6 1 6 0 6 1 6 6 6 6 6
wine 6 4 4 6 6 6 1 6 1 6 1 6 1 1 1 1

Table 4. Overview of the results of comparing coincidence matrices with different
measures and t-norms on the different data sets. In each table the upper header row
shows the t-norm for combining coincidence matrix entries, the lower header row the
t-norm for combining membership degres. Fuzzy c-means clustering was used for the
first four rows, Gustafson–Kessel clustering for the last two rows of each table.



partition matrix coincidence matrix

# diff acc F1 Rand Jacc. Folkes Hubert

2 .0001 .9918 .7606 .7028 .5769 .7317 .3987
3 .0157 .9521 .6799 .6859 .4988 .6650 .3696
4 .0009 .9850 .6851 .7123 .4903 .6579 .4097
5 .0203 .9365 .5885 .6741 .4156 .5870 .3178
6 .0150 .9461 .5691 .6741 .3926 .5636 .3036
7 .0132 .9520 .5542 .6756 .3769 .5473 .2946
8 .0159 .9470 .5213 .6767 .3633 .5329 .2858

Table 5. Fuzzy cluster-
ing results on second artif-
ical data set (4 clusters).
All measures were computed
with the minimum for the t-
norm(s).

partition matrix coincidence matrix

# diff acc F1 Rand Jacc. Folkes Hubert

2 .1135 .4729 .6971 .5968 .2925 .4470 .1299
3 .0337 .6125 .7659 .7745 .2580 .4057 .2667
4 .0066 .7224 .8618 .8709 .3140 .4768 .4033
5 .0022 .7636 .8781 .9076 .3081 .4709 .4203
6 .0109 .7663 .7036 .9299 .2365 .3820 .3449
7 .0122 .7838 .6049 .9477 .2008 .3340 .3068
8 .0103 .8030 .5652 .9602 .1786 .3024 .2820

Table 6. Fuzzy cluster-
ing results on fourth artif-
ical data set (5 clusters).
All measures were computed
with the  Lukasiewicz t-norm
to combine the membership
degrees and the product to
combine the coincidence ma-
trix entries.

These result tables show that one has to be very careful when choosing the
measure and the t-norm(s), since a lot of combinations fail miserably. However,
there are also a lot of combinations that work very nicely. Especially the Hubert
index, which appears to be fairly robust w.r.t. the choice of the t-norms yields
excellent results if either the  Lukasiewicz t-norm or the nil-potent minimum
are chosen to combine the membership degrees. (The t-norm used to combine
the membership degrees is stated in the second header row.) This behavior is
almost independent of the t-norm that is used to combine the coincidence matrix
entries. All other coincidence matrix based measures seem to have problems with
the wine data set (see below for a possible explanation).

Among the partition matrix based measures the newly introduced simple
mean squared difference comparison performs fairly reliably, followed by the
accuracy computed with the minimum as the t-norm. However, none of these
measures quite reaches the performance of the properly parameterized Hubert
index. Therefore the Hubert index seems to be the best choice.

To give an impression of individual results, Tables 5 to 8 show detailed tables
for two artificial data sets and the wine data set. The results in Tables 6 and 8 are
based on Gustafson–Kessel clustering [9], the rest on fuzzy c-means clustering.
The used t-norms are indicated in the table captions. For each column the global
and, if it exists, a relevant local optimum are highlighted.

The results on the wine data set (Table 7) indicate that maybe five clusters
are an alternative to the number of classes (three). However, this may also be
explained by ellipsoidal cluster shapes. The results shown in Table 8 make this
likely, as here no local optima can be observed for five clusters.



partition matrix coincidence matrix

# diff acc F1 Rand Jacc. Folkes Hubert

2 .0102 .7747 .7668 .7007 .5566 .7139 .4009
3 .0013 .8539 .7689 .8176 .5489 .7091 .5770
4 .0244 .8180 .6032 .8232 .4200 .5878 .4761
5 .0056 .8669 .6409 .8753 .4345 .6049 .5313
6 .0125 .8655 .5556 .8921 .3463 .5129 .4525
7 .0115 .8760 .5039 .9124 .3174 .4813 .4337
8 .0133 .8837 .4510 .9244 .2874 .4463 .4060

Table 7. Fuzzy clustering
results on the wine data
set (3 classes), processed
with fuzzy c-means cluster-
ing. All measures were com-
puted with the nil-potent
minimum for the t-norm(s).

partition matrix coincidence matrix

# diff acc F1 Rand Jacc. Folkes Hubert

2 .0054 .7395 .9581 .7321 .5419 .7023 .4589
3 .0037 .7695 .9305 .8109 .4561 .6262 .4997
4 .0260 .7153 .7099 .8430 .2819 .4388 .3477
5 .0231 .7471 .6421 .8794 .2344 .3789 .3123
6 .0254 .7730 .5537 .9046 .2078 .3433 .2921
7 .0279 .7891 .4587 .9225 .1683 .2883 .2477
8 .0285 .8092 .4075 .9328 .1442 .2534 .2187

Table 8. Fuzzy clustering
results on the wine data
set (3 classes), processed
with Gustafson–Kessel
clustering. All measures
were computed with the
nil-potent minimum for the
t-norm(s).

5 Conclusions

In this paper I transferred resampling ideas that have been used in classical crisp
clustering to fuzzy clustering and introduced the mean squared difference as a
simple, but effective measure for comparing fuzzy and probabilistic partition
matrices. In addition, I explored the influence of different t-norms, which can
be used to combine membership degrees and coincidence matrix entries. As the
experiments show, the resampling approach is applicable to fuzzy clustering,
but one has to be careful which relative cluster evaluation measure to choose
and how to parameterize it: not all measures that work with crisp clustering
also work with fuzzy clustering. The best results are obtained with the Hubert
index, parameterized with either the nil-potent minimum or the  Lukasiewicz t-
norm to combine the membership degrees. A close competitor, which has the
advantage of being simple and straightforward, is a direct comparison of the
partition matrices based on the mean squared difference.
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