
Graph Mining: An Overview

Christian Borgelt
European Centre for Soft Computing

Campus Mieres, Edificio Científico-Tecnológico
c/ Gonzalo Gutiérrez Quirós s/n, E-33600 Mieres (Asturias), Spain

Tel.: +34 985 456545, Fax: +34 985 456699
E-Mail: christian.borgelt@softcomputing.es

1 Introduction

In the early years of data mining and knowledge discovery in databases, method develop-
ment focused on rigidly and plainly structured data. Most often efforts were even confined
to data that can be represented as a simple table, which describes a set of sample cases by
attribute-value pairs. Recent years, however, have seen a constantly growing interest in
the analysis of more complex data, with a less rigid and/or more sophisticated structure.

In this development, two foci of attention can be identified: text document analysis and
graph mining. The former tries to extract the rich information available in text documents
like news articles, scientific papers, or blog posts, in order to make this information more
easily accessible, to group related documents and rank them, and even to generate digests
for more effective and efficient browsing [17]. The main problems in this area stem from
the need to deal with natural language, which, due to its amazing variability and flexibility
of expressing similar or even the same meaning in vastly differing ways and with different
words, poses severe obstacles to linking the subjects of different documents automatically.
Nevertheless, statistical approaches, which model texts as a so-called bags of words and
rely mainly on term frequencies and their distribution in a collection of documents, have
led to impressive results. More sophisticated approaches exploit lexical databases like
WordNet [18] to resolve ambiguities and to deal with hyponyms and hypernyms.

The other area, graph mining, enjoys an increasing popularity due to two reasons: in the
first place, a lot of data naturally comes in the form of graphs. Whether we deal with
molecules, protein interaction networks, metabolic networks, the Internet and world wide
web, co-author networks, social networks, etc., the corresponding data clearly describes
a graph with nodes and edges. Secondly, basically all n to m relationships in a relational
database can fairly naturally be represented or interpreted as a graph, thus making graphs
a natural tool to analyze single- as well as multi-relational data. Examples are customer
and product databases (containing information about who bought what), which are easily
cast as a bipartite graph, or collaborative (or social) tagging systems, the data of which
can conveniently be modeled as tripartite graphs of users, resources, and tags.

In this paper I try to give an overview of some of the main tasks and techniques of dif-
ferent subareas of graph mining. However, although I try to cover the core ideas in each
of the subareas, I will provide a somewhat more detailed treatment only for the special
task of frequent subgraph mining, which is my personal area of expertise. Apart from
frequent subgraph mining (Section 6), I review the tasks of identifying global graph pat-
terns (Section 2), classifying graphs (Section 3), predicting the labels of nodes and edges
(Section 4), and predicting new or yet unknown links (Section 5).

2 Global Graph Patterns

Global graph patterns are similar in spirit to the characteristic measures used in descriptive
statistics (like mean, variance, skew, etc.) or to the state variables used in thermodynam-
ics (like pressure, temperature, energy, entropy, etc.). That is, they serve the purpose
of characterizing complex graphs with few quantities, mainly with one of the following
three goals: (1) find properties that distinguish real-world graphs from random graphs,
(2) detect anomalies in a given graph, and (3) generate synthetic, but realistic graphs.

The seminal work in this area is the small-world network model [49], which introduced
formal properties (specifically average path length and clustering coefficient, see below)
to capture the small-world phenomenon that was observed in social networks [38, 45].
These properties made it possible to contrast real-world graphs to random graphs built
with the Erdös–Rényi model [16] (edges occur independently with equal probability).
The most common global graph properties in use nowadays are the following [8]:

Power laws. In many real-world graphs, many nodes have few connections, while only
few nodes have a large number of connections. This can be expressed formally with a
power law distribution for the degree x of the nodes: p(x) = ax−b where a > 0, b > 1
(needed so that the density can be normalized), and x ≥ xmin. Graphs exhibiting a power
law degree distribution are often called scale-free, because the power law y(x) = ax−b is
invariant up to a multiplicative factor, that is, y(c1x) = c2y(x). The goal of a power law
analysis is usually to find the value of b in order to characterize the graph with a single
number. Power laws have been found to be empirically valid for the degree distribution
of the Internet graph and the in- and out-degree distribution of the World Wide Web.
However, checking for a power law distribution is often done sloppily, e.g., by looking at
a scatter plot. More rigorous testing methods have only recently been developed.

Diameter / average path length. In real-world graphs, two nodes are usually not far
apart in the sense that one can reach the one from the other on a fairly short path. This
property can be captured by several closely related measures: (1) The effective diameter or
eccentricity is the minimum number of hops (hop: following an edge to an adjacent node)
in which some fraction (e.g. 90%) of all connected pairs of nodes can reach each other.
(2) The characteristic path length is computed by taking the average length of the shortest
paths from a given node to every other node, and then taking the median of these values
over all nodes. (3) The average diameter is defined in basically the same way, only that the
mean is computed instead of the median. If the graph is not connected, the characteristic
path length and average diameter are computed only for the largest component. All of
these measures yield fairly small values for a large variety of real-world graphs.

Community structure. A community is a set of nodes where each node is closer to the
other nodes in the community than to nodes outside it. A community exhibits transitivity
in a graph: if a and b are adjacent and b and c are adjacent, then a and c are likely also
connected. This property is formally measured with the clustering coefficient. For a single
node u with nu neighbors, between which ki edges exist, the clustering coefficient C(u)
is defined as ki/ni if ni > 1 and 0 otherwise. A global clustering coefficient is computed
by simple averaging: C = 1

|U |
∑

u∈U C(u). Alternatively, the clustering coefficient can be
defined by drawing on the insight that transitivity occurs if triangles exist in the graph.
Therefore one may define C = (3 · number of triangles) / number of connected triples,
where a connected triple is any subgraph with three nodes and two edges. In this form
C measures the fraction of connected triples that actually form triangles.

3 Graph Classification

In machine learning, classification is generally the task of predicting the label of an input
object, and therefore graph classification is the task of predicting the label of an input
graph. For example, we may want to predict the function of a protein [6] or whether
a given molecule will be bioactive (that is, for example, will inhibit the growth of can-
cer cells). In statistics, however, classification is the task of placing given objects into
groups—a task commonly called clustering in machine learning—and thus graph classi-
fication may also refer to graph clustering. Here we consider both tasks.

The most straightforward approach to graph classification (in either of the abovemen-
tioned meanings) is to reduce it by feature extraction to the task of classifying or group-
ing vectors of attribute-value pairs. That is, rather than capturing the actual structure of
a graph, it is described by attributes that are derived from its structure and/or from the
labels that may be associated with its nodes or its edges or with both. For example, a
graph may be described by how many triangles it contains, by how many edges between
nodes having a given label exist in it, of how many connected components it consists etc.
Depending on how many different node and/or edge labels as well as specific substruc-
tures are considered, a graph may thus be described a huge number of attributes. This is
also the main drawback of this approach: it is usually difficult to find the right features,
so that a classical attribute-value based classifier can yield good results.

As a consequence, an alternative approach has gained increasing popularity, which fo-
cuses on graph similarity as a central problem for clustering and classification. The core
idea is that classifiers like, for example, support vector machines require only a similarity
measure that satisfies certain properties, and many clustering algorithms are able to work
on a mere distance or similarity matrix as input. In such an approach the similarity of
two graphs is computed with so-called graph kernels, where a kernel is generally a mea-
sure of similarity that is symmetric and positive semi-definite. The basic idea of graph
kernels is to compare substructures that are traversable in polynomial time (like walks,
paths, cyclic patterns, trees, etc.), where this restriction is meant to ensure that the kernel
function can be evaluated in reasonable time. In contrast to this, more rigid approaches
based, for instance, on maximum common subgraphs suffer from being NP-hard.

Since the seminal work [21], many different types of graph kernels have been designed,
including so-called marginalized graph kernels [28, 29], subtree kernels [46], and rational
kernels [10]. Good overviews, providing also a generalized view, can be found in [23, 48].
Here I focus on the concepts underlying random walk kernels [22], which are based on
the following idea: if we consider the possible walks (paths) between two nodes, it is
plausible that the two graphs are similar if, for most pairs of nodes, many walks are
matching, so we simply count the number of matching walks. However, in order to ensure
convergence, it is advisable to discount longer paths (i.e., give them a lower weight).

Technically, not all possible walks (paths) are considered, but a random sample, hence
the name random walk kernel. Technically, the kernel is computed on the product graph
of two given graphs G1 and G2, which consists of pairs of identically labeled nodes and
edges from G1 and G2. The reason is that a random walk on the product graph is equiva-
lent to simultaneous random walks on the input graphs. The kernel is then defined as

k(G1, G2) =
1

|G1||G2|
∑
k

λk

k!
~e>Ak

×~e,

where |Gi| is the number of nodes of graph Gi, ~e encodes a probability distribution on
the nodes, which may be chosen as the uniform distribution, A× is the adjacency matrix
of the product graph, and λk/k! is the discounting factor. The main problem with such an
approach is that the product graph, and thus its adjacency matrix, is huge. However, with
certain technical tricks the computation can be made feasible and efficient [47].

4 Label Prediction

Label prediction is a semi-supervised learning problem, also called within-network clas-
sification, which consists in the task to classify the nodes (and maybe also the edges) of a
partly labeled graph (that is, to assign labels to them). Solutions to this problem have ap-
plications in image processing (i.e. classify the nodes of an image graph), document and
web page classification, classifying protein interaction and gene expression data, part-of-
speech tagging, fraud detection, customer suggestions and many other areas.

Many existing methods for label prediction are proximity-based: missing labels are in-
ferred based on the hypothesis that linked or nearby nodes are likely to have the same
labels [7, 20]. This hypothesis is also known as homophily (i.e., love of the same) and
describes the tendency of individuals to associate and bond with similar others. Thus it is
not surprising that these approaches work fairly well in social networks.

A similar approach is based on random walk kernels, similar to those for graphs [31]: it is
plausible that two nodes are similar if they are connected by many walks. Long walks are
discounted (receive a lower weight) in order to deal with the fact that the number of walks
goes to infinity if the graph has cycles. Formally, walks are computed by taking powers of
adjacency matrix A: [Ak]ij = c means that there are c paths of length k between nodes i
and j. The kernel can then be defined as

k(i, j) =

[∑
k

λk

k!
Ak

]
ij

,

where λk/k! is the discounting factor with which a lower weight is assigned to longer
walks. As an alternative, the kernel may be computed from the Laplacian matrix instead of
the adjacency matrix. In this case it is known as a diffusion kernel and has been shown to
be a valid positive semi-definite kernel. In both cases, however, the kernel is not evaluated
for all paths, but only for a random sample; hence the name random walk kernel.

Unfortunately, the homophily assumption fails for many types of graphs, including trad-
ing networks, molecules, metabolic networks, etc. As an alternative to a homophily-based
approach, such graphs can be handled with approaches based on the similarity of nodes,
which can also be computed with kernel-like approaches, for example, with a marginal-
ized similarity kernel [14]. In this approach random walks from two given nodes are
compared in order to determine their similarity. Similar to the approach to graph kernels,
two nodes are considered to be the more similar, the more matching walks start at them.

In all of these approaches it is important that the node labels should be inferred simul-
taneously instead of individually—a technique known as collective classification. This
can be achieved in different ways, for example by iterative classification, which crisply
assigns labels, or by learning the joint probability distribution of the labels. The latter can
be achieved exactly using Markov Random fields and their extensions, or approximately
e.g. by Gibbs sampling, but also by relaxation labeling or loopy belief propagation.

5 Link Prediction

Link prediction is the problem to predict between which nodes, which are unconnected in
the current state of a graph, a new link (edge) will emerge or will be discovered. Solutions
to this problem have applications in social network analysis (e.g.: which authors are likely
to write a paper together soon?), web page improvement (e.g.: which references between
web pages—for example: in Wikipedia—are missing?), and biological networks (e.g.:
which protein interaction is not yet known, but may be discovered soon?).

The seminal work in this area considered co-author networks and tried to predict from a
snapshot of a co-author graph which people, who did not work together in the past, would
co-author a paper soon after the snapshot was taken [35]. More specifically, it was inves-
tigated how well topological and proximity measures for the nodes of a co-author graph
are suited to predict emerging links between authors. Formally, each measure produces a
ranked list of edges. Given the number n of edges that actually emerged, it is determined
how many of these edges are among the top n edges of the ranked list.

The employed measures draw on ideas that already showed up in previous sections: they
are either based on the direct neighbors and specifically the common neighbors of two
unconnected nodes under consideration, or on the existing paths (walks) between nodes.
Among the former are: (1) the simple number of common neighbors |N(x)∩N(y)|, where
N(·) denotes the set of neighbors of a node; (2) the Jaccard coefficient of the common
neighbors, that is, J(x, y) = |N(x)∩N(y)|/|N(x)∪N(y)|; (3) the Adamic/Adar measure
[1], in which common neighbors z are weighted with 1/ log(|N(z)|), that is, common
neighbors with many neighbors contribute little weight; and (4) preferential attachment,
which encodes the principle that nodes with many neighbors are more likely to get another
neighbor than nodes with few neighbors, formalized as |N(x)||N(y)|. Among the latter
(i.e. measures based on paths between the nodes) are: (1) the (negated) length of the
shortest path; (2) the unweighted Katz measure [30], which sums over all paths between
two nodes, discounting or dampening longer paths with a factor βk where k is the path
length; (3) the weighted Katz measure [30], which instead of simply counting the edges
to determine the path length weights them with the number of existing co-authorships;
(4) the hitting time, which is the expected number of steps of a random walk from one
node to the other; (5) the commute time, which is the symmetrized hitting time; (6) the
rooted PageRank [41], which is the stationary distribution weight of the node y under the
following random walk: with probability α, jump to node x and with probability 1−α, go
to random neighbor of the current node; and (7) the SimRank [27], which is recursively
defined as two nodes being similar to the extent that they are joined to similar neighbors.

Experiments showed that basically all measures improve significantly over a random pre-
diction, in which each non-existent edge has the same probability of emerging. Especially
the Katz measures perform consistently well, but also simple measures like the number
of common neighbors and the Adamic/Adar measure yield surprisingly good results.

The idea has been transferred to biological networks, where the task is to predict links that
exist, but are not yet known [43]. The prediction is evaluated by comparing the predicted
links to links that were discovered (with other, i.e., biological means) later.

Newer approaches to link prediction are based on the algebraic spectrum of a graph, which
generalizes many graph kernels [33]. Note also that label prediction approaches that are
based on proximity or node similarity can easily be transferred to link prediction.

6 Frequent Subgraph Mining

In analogy to the well-known task of frequent item set mining, with which item sets
are found that are contained in a sufficiently large number of transactions of a given
database (as specified by a user-provided minimum support), frequent subgraph mining
tries to find (sub)graphs that are contained in a sufficiently large number of (attributed or
labeled) graphs of a given graph database. Since the advent of this research area around
the turn of the millennium, several clever algorithms for frequent subgraph mining have
been developed. Some of them rely on principles from inductive logic programming
and describe the graph structure by logical expressions [19]. However, the vast majority
transfers techniques developed originally for frequent item set mining. Examples include
MolFea [32], FSG [34], MoSS/MoFa [3], gSpan [50], CloseGraph [51], FFSM [26], and
Gaston [39, 40]. A related, but slightly different approach is used in Subdue [11], which is
geared towards graph compression with common subgraphs rather than frequent subgraph
mining. An overview of several methods and related problems can be found in [12].

6.1 Motivation: Molecular Fragment Mining

Developing a new drug can take ten to twelve years (from the choice of the target to the
introduction into the market) and the duration of the development process even increases
continuously. At the same time the number of substances under development has gone
down drastically. The reasons for these trends are raised safety standards for (new) drugs
and the fact that due to rising research investments pharmaceutical companies must secure
their market position and competitiveness by only a few, highly successful drugs (like
Aspirin). As a consequence the chances for the development of drugs for target groups
with rare diseases or with special diseases that are most frequent in developing countries
(like AIDS) are considerably reduced, since the expected revenue from such drugs is low.
In order to improve this situation, considerable efforts are devoted to significantly reduce
the development time, by which one hopes to mitigate or even reverse this trend.

One way in which one tries to reduce the drug development time is to try to improve the
discovery and optimization of candidate substances (so-called pharmacophores) and in
particular to enhance the evaluation of high-throughput screening experiments. In such
experiments a large number of potentially useful molecules are tested for activity w.r.t.
some chosen target, for example, whether they are able to protect a human cell against
a certain virus. The result is a database of chemical compounds together with activity
information. An example of such a database is the DTP AIDS Antiviral Screen Database
of the National Cancer Institute [15], in which about 40,000 chemical compounds are
recorded together with a measurement of their ability to protect human CEM cells against
an HIV-1 infection. An (adapted) excerpt from this database is shown in Table 1, where CI
means “confirmed inactive”, CM means “moderately active” (provided reproducibly 50%
protection), and CA means “confirmed active” (provided reproducibly 100% protection).
Molecules are described in the SMILES language (Simplified Molecular Input Line Entry
System), which is a fairly popular description languages for molecules.

Molecular fragment mining is a very useful analysis method for such databases, which is
based on frequent subgraph mining. The main goal is to identify molecular substructures
that are frequent in the active, but rare in the inactive molecules, hoping that such frag-
ments provide insights into what causes the activity. As an example, Figure 1 shows four

737, CI,CN(C)C1=[S+][Zn]2(S1)SC(=[S+]2)N(C)C
2018, CI,N#CC(=CC1=CC=CC=C1)C2=CC=CC=C2
19110,CI,OC1=C2N=C(NC3=CC=CC=C3)SC2=NC=N1
20625,CA,NC(=N)NC1=C(SSC2=C(NC(N)=N)C=CC=C2)C=CC=C1.OS(O)(=O)=O
22318,CI,CCCCN(CCCC)C1=[S+][Cu]2(S1)SC(=[S+]2)N(CCCC)CCCC
24479,CI,C[N+](C)(C)C1=CC2=C(NC3=CC=CC=C3S2)N=N1
55917,CI,O=C(N1CCCC[CH]1C2=CC=CN=C2)C3=CC=CC=C3
64054,CA,CC1=C(SC[C-]2N=C3C=CC=CC3=C(C)[N+]2=O)C=CC=C1
64055,CM,CC1=CC=CC(=C1)SC[C-]2N=C3C=CC=CC3=C(C)[N+]2=O
64057,CA,CC1=C2C=CC=CC2=N[C-](CSC3=NC4=CC=CC=C4S3)[N+]1=O
66151,CI,[O-][N+](=O)C1=CC2=C(C=NN=C2C=C1)N3CC3
...

Table 1: A fraction of the NCI DTP AIDS Antiviral Screen Database in a format in which
the molecules are described in SMILES (Simplified Molecular Input Line Entry System).
Each row consists of an identifier, an activity indicator, and a molecule description.

NNNO

O

N

N

O

O

O

NNNO

O

N

N

O

O

O

O

N

N

N

NNNO

O

N

N

O

O

O

P

O

O

O

O

O

NNNO

O

N

N

O

O

OO

O

O

O

NNNO

O

N

N

O

O

Figure 1: Four confirmed active molecules from the NCI DTP AIDS Antiviral Screen
Database (left) and a molecular fragment that is part of all four of them (right).

confirmed active molecules from the DTP AIDS Antiviral Screen Database as well as a
fragment that is common to all of them. This fragment is the characteristic substructure
of a class of substances known as AZT, which are currently used as AIDS medication.

6.2 Notation, Presuppositions, and Problem Definition

Formally, frequent subgraph mining works on a database of labeled graphs (also called
attributed graphs). A labeled graph is a triple G = (V,E, l), where V is the set of
vertices, E ⊆ V × V − {(v, v) | v ∈ V } is the set of edges, and l : V ∪ E → L assigns
labels from some label set L to vertices and edges. The graphs we consider are undirected
and simple (that is, there is at most one edge between two given vertices) and contain no
loops (that is, there are no edges connecting a vertex to itself). However, graphs without
these restrictions (that is, directed graphs, graphs with loops and/or multiple edges) can be
handled as well with properly adapted methods. Note also that several vertices and edges
may carry the same label, which is one core reason for the complexity of the problem.

The support sG(S) of a (sub)graph S w.r.t. a given graph database G is the number of
graphs G ∈ G it is contained in. What is meant by a graph being contained in another
is made formally precise by the notion of a subgraph isomorphism. Given two labeled
graphs G = (VG, EG, lG) and S = (VS, ES, lS), a subgraph isomorphism of S to G is

G

S1

f1 : VS1 → VG

S2

f2 : VS2 → VG

g2 : VS2 → VG

N

N
O

O O

O

O

N

N
O

Figure 2: Examples of
subgraph isomorphisms
with two fragments and
a molecule that contains
them in different ways.

an injective function f : VS → VG satisfying (1) ∀v ∈ VS : lS(v) = lG(f(v)) and (2)
∀(u, v) ∈ ES : (f(u), f(v)) ∈ EG∧lS((u, v)) = lG((f(u), f(v))). That is, the mapping f
preserves the connections between vertices and the labels of both vertices and edges.

Note that there may be several ways to map a labeled graph S to a labeled graph G, so
that connections and labels are preserved. For example, G may possess several subgraphs
that are isomorphic to S. It may even be that S can be mapped in several different ways
to the same subgraph of G. This is the case if there exists a subgraph isomorphism of S to
itself (a graph automorphism) that is not the identity. Examples of subgraph isomorphism
w.r.t. a molecule G and two molecular fragments S1 and S2, all of which are modeled as
labeled graphs, are shown in Figure 2. Fragment S2 is contained in several different ways
in molecule G, two of which are indicated. Here, however, we neglect that there may be
several subgraph isomorphism and consider only whether there exists at least one or not.

Given a database G of labeled graphs and a user-specified minimum support smin ∈ IN,
a (sub)graph S is called frequent in G iff sG(S) ≥ smin. The task of frequent subgraph
mining is to identify all subgraphs that are frequent in a given graph database G. However,
the output is usually restricted to connected subgraphs for two reasons: in the first place,
connected subgraphs suffice for most applications. Secondly, restricting the result to con-
nected subgraphs considerably reduces the search space, which otherwise is so huge that
searching it becomes infeasible even for small graph databases.

6.3 Search Space

In order to search for frequent subgraphs, we consider, in analogy to frequent item set
mining, the semi-lattice of subgraphs of the graphs of a given database. That it is only
semi-lattice is due to the fact that there is no natural largest element, since there is no
largest labeled graph for any given label set L. Therefore we use the database graphs
as maximal elements, which, however, are usually not comparable. A Hasse diagram of
an example semi-lattice, for a simple database of three molecule-like graphs (no chem-
ical meaning attached, to be seen at the bottom) is shown in Figure 3 on the left: two
subgraphs are connected if one possesses an additional edge (and an additional vertex)
compared to the other. The frequent subgraphs are located at the top of this semi-lattice,
thus suggesting a top-down search, just as it is used for frequent item set mining.

Therefore the search for frequent subgraphs consists in growing subgraphs into the graphs
of the given database, step by step adding edges and vertices, until the support falls below
the threshold. Like in frequent item set mining, a core problem of the search is that
the same graph can be reached on different paths, as is easily visible in the subgraph
semi-lattice shown in Figure 3. Hence we face the task to avoid redundant search. The
solution principle is to assign a unique parent to each subgraph, which turns the subgraph
semi-lattice into a subgraph tree. This is illustrated in Figure 3 on the right (the principle
underlying the assignment of unique parents is discussed below, see Section 6.4).

*

F S O C N

F S O S S C C O C N

O S F F S C O S C S C N S C O O C N C N C

O S C

F F

S C N O S C

N

O S C

O

S C N

O

S C N

C O

C N C

O S C N

F

O S C N

O

S C N C

O

*

F S O C N

F S O S S C C O C N

O S F F S C O S C S C N S C O O C N C N C

O S C

F F

S C N O S C

N

O S C

O

S C N

O

S C N

C O

C N C

O S C N

F

O S C N

O

S C N C

O

Figure 3: A semi-lattice of subgraphs for three molecule graphs, to be seen at the bottom
(left) and an assignment of unique parents, which turns the semi-lattice into a tree (right).

With a unique parent for each subgraph, we can carry out the search for frequent sub-
graphs according to the following simple recursive scheme: in a base loop, all possible
vertex labels are traversed (their unique parent is the empty graph). All vertex labels (and
thus all single vertex subgraphs) that are frequent are processed recursively. A given fre-
quent subgraph S is processed recursively by forming all possible extensions R of S by
a single edge (also adding a vertex except when the edge closes a cycle), for which S
is the chosen unique parent. All such extensions R that are frequent (that is, for which
sG(R) ≥ smin) are processed recursively, while infrequent extensions are discarded.

6.4 Canonical Forms of Graphs

In the search for frequent item sets it is trivial to assign unique parents, namely by choos-
ing an (arbitrary, but fixed) order of the items and defining the parent of an item set as the
set that results if its maximum element w.r.t. this chosen order is removed. Unfortunately,
in the search for frequent subgraphs ordering the labels in the set L, though also necessary,
is not enough. The reason is mainly that several vertices (and several edges) may carry
the same label. Hence the labels do not uniquely identify a vertex, thus rendering it im-
possible to describe the graph structure solely with these labels. We rather have to endow
each vertex with a unique identifier (usually a number), so that we can unambiguously
specify the edges of the graph and which of them has to be removed to obtain the parent.

Given an assignment of unique vertex identifiers, we can describe a graph with a code
word, which specifies the vertex and edge labels and the connection structure, and from
which the graph can be reconstructed. Of course, the form of this code word depends on
the employed numbering of the vertices: each numbering leads to a different code word.
In order to single out one of these code words as the so-called canonical code word, we
simply select the lexicographically smallest (or largest) code word.

With canonical code words, we can easily define unique parents: the canonical code word
of a (sub)graph S is obtained from a specific numbering of its vertices and thus also fixes
(maybe with some additional stipulation) an order of its edges. By removing the last edge
in this order, which is not a bridge or which is incident to at least one vertex with degree 1
(which is then also removed), we obtain a connected graph that is exactly one level up in
the semi-lattice of subgraphs and thus may be chosen as the unique parent of S.

Technically, canonical code words for graphs can either be based on a systematic way of
constructing a spanning tree [50, 4] or on (extended) adjacency matrices [36]. Here we

O

N

S

O

O

example
molecule

depth-first

Aj S
0

N
1

C
3

C
7

C
8

O
2

C
4

O

5

O

6

breadth-first

Bj
C

6

O

7

O

8

S
0

N
1

C
2

O
3

C
4

C

5

Order of elements:
S ≺ N ≺ O ≺ C

Order of bonds:
≺

Code words: A: S 10-N 21-O 31-C 43-C 54-O 64=O 73-C 87-C 80-C
B: S 0-N1 0-C2 1-O3 1-C4 2-C5 4-C5 4-C6 6-O7 6=O8

Figure 4: Spanning trees for an example graph, vertex numberings that have been derived
from them with depth-first or breadth-first traversal, and the corresponding code words.

consider only the former: starting at an arbitrary vertex, a spanning tree of a given graph
is formed either by a depth-first or by a breadth-first search. The vertices of the graph
are numbered in the order in which they are visited and are thus endowed with unique
identifiers. A code word is then formed by appending edge descriptions to a single letter
stating the label of the root vertex, thus yielding the following general code words:

depth-first: a (id is b a)
m

breadth-first: a (is b a id)
m (or a (is id b a)

m),

where is and id are the source and destination index of the incident vertices (using the
convention that the incident vertex with the smaller index is the source), b is an edge label,
a is a vertex label, and m is the number of edges. The edge descriptions are generally
listed in the order in which the edges are visited in the spanning tree traversal. However,
for both depth-first and breadth-first this can also be described by a sorting order on the
edge descriptions, specified by a precedence order of their elements for comparisons,
which is given in the above regular expressions by the order in which the elements are
listed. All elements are compared ascendingly, with the exception of the source index in
the depth-first case, which is compared descendingly (indicated by the underscore).

As an illustration, Figure 4 shows an example molecule and two spanning trees, in which
the vertices are numbered in the order in which they are visited by a depth-first (A) or
breadth-first search (B). The resulting code words are shown at the bottom of the figure.
It is not difficult to verify that these code words are actually the lexicographically smallest
code words that can result from different choices of the root vertex and different ways of
forming the spanning trees. (Even though the general traversal order is fixed, there is
no a-priori rule in which order to visit the neighbors of a vertex.) Therefore they are
the canonical code words for these graphs, for these two specific code word construction
methods. As a consequence, we see that the parent of the example molecule w.r.t. a depth-
first code word is the graph in which the edge between sulfur and carbon is missing, while
the parent w.r.t. a breadth-first code word is the graph in which the double bond is missing.

Constructing a canonical code word, or testing whether a given code word is canonical, is
done by recursively enumerating (prefixes of) all possible code words (see [4] for details).
However, the above canonical forms possess the prefix property: any prefix of a canonical
code word is a canonical code word itself. This property simplifies the search: code
words of extensions can be formed by simply appending the description of the added
edge to the canonical code word of the (sub)graph that is extended. If the result is a

canonical code word, the extension was created from the correct parent, otherwise it is
to be discarded. Furthermore, this possibility enables us to determine in many cases with
very simple checks whether the result of an extension is canonical and thus whether it has
been created from the correct parent [4]. Unfortunately, though, these simple rules are
reliable only if they state the the result is not canonical. Otherwise a full canonical form
test is needed in order to be sure that an extension needs to be processed.

6.5 Search Algorithms

The basic search scheme was already outlined in Section 6.3. Nevertheless many different
concrete approaches are possible, for example, depending on the order in which the two
properties are tested that an extended graph must have in order to be processed recursively:
it must have been created from the correct parent (which is determined with the help of
a canonical form test) and it must have at least the minimum support. Which property is
easier or faster to test may determine the order in which they are tested.

In addition, one can consider two possible ways of forming possible extensions of a given
graph. The first method records all occurrences of a subgraph to extend and checks what
extensions are actually possible in the database graphs. In this case the support of each
extension is readily available and thus checked first against the minimum support. Only
for those extensions that satisfy the minimum support requirement a canonical form test
is carried out. Alternatively, the possible extensions may be determined from general in-
formation about the database of graphs, like which edge labels occur together with which
vertex labels. In this case the support is not readily available, as one must check in which
database graphs a created extension occurs. As a consequence, it may be advantageous
to check for canonical form first and to compute the support (by subgraph isomorphism
tests on the database graphs) only for those extensions that are canonical. Generally the
first scheme is advantageous if the database graphs have many different labels, because in
this case using only general database information yields too many extensions. In database
with few or even no labels, however, the second scheme is preferable, because it avoids
the storage and computation overhead of maintaining lists of all occurrences [13].

6.6 Other Techniques

Since they are for general graphs, the methods described above are, of course, also appli-
cable to trees and sequences (modeled as chains). However, for these restricted classes
of graphs there exist specialized canonical forms that allow for perfectly reliable simple
rules, so that a costly backtracking check for canonical form can be avoided [9, 40]. Such
a canonical form is even known for the more general class of outerplanar graphs [25].

In the specific area of molecular fragment mining, special methods have been developed to
deal with rings [24, 5] (which chemists often treat as irreducible building blocks), carbon
chains [37] and wild cards [24]. The goal of these approaches is to make the output of a
frequent subgraph mining algorithm easier to interpret and more useful for a chemist.

An interesting alternative to a canonical form based search is an enumeration scheme that
stores part of the subgraph lattice together with certain transformations in order to avoid
redundant search and to achieve polynomial delay in the enumeration [42].

7 Outlook

Similar to recent developments in other areas of data mining, there is currently a strong
shift of focus towards dynamic aspects of graphs, that is, towards change mining on graph
databases, which are observed over time. This includes, for example, global graph pat-
terns in evolving graphs like the densification power law and shrinking diameters [8] as
well as graph evolution rules [2], but also link prediction (see Section 5).

For applications, it appears to be mandatory to include (more) background knowledge into
the mining process, especially in frequent subgraph mining. Without problem-specific
chemical, biological, social etc. background knowledge, it seems infeasible to restrict
the huge search space to the relevant part and to reduce the output from simply frequent
subgraphs to the actually interesting and useful ones.

References

[1] L.A. Adamic and E. Adar. Friends and Neighbors on the Web. Social Networks
25(3):211–230. Elsevier Science, Amsterdam, Netherlands 2003

[2] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining Graph Evolution
Rules. European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD 2009, Bled, Slovenia), LNAI 5781:115–130. Springer,
Heidelberg, Germany 2009

[3] C. Borgelt and M.R. Berthold. Mining Molecular Fragments: Finding Relevant
Substructures of Molecules. Proc. IEEE Int. Conf. on Data Mining (ICDM 2002,
Maebashi, Japan), 51–58. IEEE Press, Piscataway, NJ, USA 2002

[4] C. Borgelt. On Canonical Forms for Frequent Graph Mining. Proc. 3rd Int. Work-
shop on Mining Graphs, Trees and Sequences (MGTS’05, Porto, Portugal), 1–12.
ECML/PKDD 2005 Organization Committee, Porto, Portugal 2005

[5] C. Borgelt. Combining Ring Extensions and Canonical Form Pruning. Proc. 4th
Int. Workshop on Mining and Learning with Graphs (MLG 2006, Berlin, Germany),
109–116. ECML/PKDD Organization Committee, Berlin, Germany 2006

[6] K. Borgwardt, C. Ong, S. Schönauer, S.V.N. Vishwanathan, A. Smola, and H.-P.
Kriegel. Protein Function Prediction via Graph Kernels. Bioinformatics 21(1):47–
56. Oxford University Press, Oxford, United Kingdom 2005

[7] J. Callut, K. Francoisse, M. Saerens, and P. Dupont. Semi-supervised Classification
from Discriminative Random Walks. European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD 2008, Antwerp, Belgium),
LNAI 5211:162-ÂŰ177. Springer, Heidelberg, Germany 2008

[8] D. Chakrabarti and C. Faloutsos. Graph Mining: Laws, Generators and Algorithms.
ACM Computing Surveys 36(1):article 2. ACM Press, New York, NY, USA 2006

[9] Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok. Frequent Subtree Mining - An
Overview. Fundamenta Informaticae XXI:1001-1038. IOS Press, Amsterdam,
Netherlands 2001

[10] C. Cortes, P. Haffner, and M. Mohri. Rational Kernels: Theory and Algorithms.
Journal of Machine Learning Research 5:1035–1062. Massachusetts Institute of
Technology, Cambridge, MA, USA 2004

[11] D.J. Cook and L.B. Holder. Graph-Based Data Mining. IEEE Trans. on Intelligent
Systems 15(2):32–41. IEEE Press, Piscataway, NJ, USA 2000

[12] D.J. Cook and L.B. Holder. Mining Graph Data. J. Wiley & Sons, Chichester,
United Kingdom 2007

[13] C. Desrosiers, P. Garnier, P. Hansen, and A. Hertz. Improving Frequent Subgraph
Mining in the Presence of Symmetry. Proc. 5th Int. Workshop on Mining and Learn-
ing with Graphs (MLG 2007, Florence, Italy), 25–30. MLG 2007 Organization
Committee, Florence, Italy 2007

[14] C. Desrosiers and G. Karypis. Within-Network Classification Using Local Structure
Similarity. European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD 2009, Bled, Slovenia), LNAI 5781:260–275. Springer,
Heidelberg, Germany 2009

[15] DTP AIDS Antiviral Screen (HIV Data Set) — Subset from 2001. Developmental
Therapeutics Program (DTP), National Cancer Institute, USA 2001
http://dtp.nci.nih.gov/docs/aids/aids_data.html

[16] P. Erdös and A. Rényi. On Random Graphs. Publ. Math. Debrecen 6:290–297.
Institute of Mathematics, University of Debrecen, Hungary, 1959

[17] R. Feldman and J. Sanger. The Text Mining Handbook. Cambridge University Press,
Cambridge, United Kingdom 2006

[18] C. Fellbaum (ed.) WordNet — An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, USA 1998

[19] P.W. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacore Discovery Us-
ing the Inductive Logic Programming System PROGOL. Machine Learning, 30(2-
3):241–270. Kluwer, Amsterdam, Netherlands 1998

[20] B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using Ghost Edges for
Classification in Sparsely Labeled Networks. Proc. 14th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, 256-ÂŰ264. ACM Press, New York,
NY, USA 2008

[21] T. Gärtner. Exponential and Geometric Kernels for Graphs. Proc. NIPS*2002 Work-
shop on Unreal Data: Principles of Modeling Nonvectorial Data. NIPS*2002 orga-
nization committee, Vancouver, Canada 2002

[22] T. Gärtner, P. Flach, and S. Wrobel. On Graph Kernels: Hardness Results and
Efficient Alternatives. Proc. Annual Conf. Computational Learning Theory, 129–
143. Springer, New York, NY, USA 2003

[23] T. Gärtner. Kernels for Structured Data. World Scientific, Hackensack, NJ, USA
2008

[24] H. Hofer, C. Borgelt, and M.R. Berthold. Large Scale Mining of Molecular Frag-
ments with Wildcards. Intelligent Data Analysis, 8:495–504. IOS Press, Amster-
dam, Netherlands 2004

[25] T. Horvath, J. Ramon, and S. Wrobel. Frequent Subgraph Mining in Outerplanar
Graphs. Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, 197–206. ACM Press, New York, NY, USA 2006

[26] J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism. Proc. 3rd IEEE Int. Conf. on Data Mining (ICDM 2003),
549–552. IEEE Press, Piscataway, NJ, USA 2003

[27] G. Jeh and J. Widom. SimRank: A Measure of Structural Context Similarity. Proc.
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2002,
Edmonton, Canada), 538–543. ACM Press, New York, NY, USA 2002

[28] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized Kernels between Labeled
Graphs. Proc. Int. Conf. on Machine Learning, 321–328. Morgan Kaufmann, San
Mateo, CA, USA 2003

[29] H. Kashima, K. Tsuda, and A. Inokuchi. Kernels on Graphs. In: K. Tsuda,
B. Schölkopf, and J. Vert (eds.) Kernels and Bioinformatics, 155–170. MIT Press,
Cambridge, MA, USA 2004

[30] L. Katz. A New Status Index Derived from Sociometric Analysis. Psychometrika
18(1):39–43. Psychometric Society, Greensboro, NC, USA 1953

[31] I.R. Kondor amd J.D. Lafferty. Diffusion Kernels on Graphs and Other Discrete
Structures. Proc. Int. Conf. on Machine Learning, 315–322. Morgan Kaufmann,
San Mateo, CA, USA 2002

[32] S. Kramer, L. de Raedt, and C. Helma. Molecular Feature Mining in HIV Data.
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD
2001, San Francisco, CA), 136–143. ACM Press, New York, NY, USA 2001

[33] J. Kunegis and A. Lommatzsch. Learning Spectral Graph Transformations for Link
Prediction. Proc. 26th Int. Conference on Machine Learning (ICML’09, Montreal,
Canada), 1–8. ACM Press, New York, NY, USA 2009

[34] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. Proc. 1st IEEE
Int. Conf. on Data Mining (ICDM 2001, San Jose, CA), 313–320. IEEE Press,
Piscataway, NJ, USA 2001

[35] Liben-Nowell and J. Kleinberg. The Link Prediction Problem for Social Networks.
Proc. 12th Annual ACM Int. Conf. on Information and Knowledge Management
(CIKM’03), 556–559. ACM Press, New York, NY, USA 2003

[36] B. McKay. Practical Graph Isomorphism. Congressus Numerantium 30:45-âĂŞ87.
Utilitas Mathematica Publishing, Winnipeg, Canada 1981

[37] T. Meinl, C. Borgelt, and M.R. Berthold. Mining Fragments with Fuzzy Chains
in Molecular Databases. Proc. 2nd Int. Workshop on Mining Graphs, Trees, and
Sequences (MGTS 2004 at PKDD 2004, Pisa, Italy), 49–60. ECML/PKDD Organi-
zation Committee, Pisa, Italy 2004

[38] S. Milgram. The Small World Problem. Psychology Today 1:61–67. Sussex Pub-
lishers, New York, NY, USA 1967

[39] S. Nijssen and J.N. Kok. A Quickstart in Frequent Structure Mining Can Make a
Difference. Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD2004, Seattle, WA), 647–652. ACM Press, New York, NY, USA 2004

[40] S. Nijssen and J.N. Kok. The Gaston Tool for Frequent Subgraph Mining. Electronic
Notes in Theoretical Computer Science 127(1):77-87. Elsevier Science, Amsterdam,
Netherlands 2005

[41] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report, Stanford University, Palo Alto, CA,
USA 1999

[42] J. Ramon and S. Nijssen. Polynomial-Delay Enumeration of Monotonic Graph
Classes. Journal of Machine Learning Research 10:907–929. MIT Press, Cam-
bridge, MA, USA 2009

[43] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link Discovery in
Graphs Derived from Biological Databases. Proc. 3rd Int. Workshop on Data Inte-
gration in the Life Sciences (DILS’06, Hinxton, United Kingdom), LNBI 4705:35–
49. Springer, Heidelberg, Germany 2006

[44] L.T. Thomas, S.R. Valluri, and K. Karlapalem. MARGIN: Maximal Frequent Sub-
graph Mining. Proc. 6th IEEE Int. Conf. on Data Mining (ICDM 2006), 1097–1101.
IEEE Press, Piscataway, NJ, USA 2006

[45] J. Travers and S. Milgram. An experimental study of the Small World Problem.
Sociometry 32(4):425ÂŰ443. American Sociological Association, Washington, DC,
USA 1969

[46] S.V.N. Vishwanathan and A. Smola. Fast Kernels for String and Tree Matching.
Advances in Neural Information Processing Systems 15, 569–576. MIT Press, Cam-
bridge, MA, USA 2003

[47] S.V.N. Vishwanathan, K.M. Borgwardt, and N.N. Schraudolph. Fast Computation
of Graph Kernels. Advances in Neural Information Processing Systems 19, 1449–
1456. MIT Press, Cambridge, MA, USA 2007

[48] S.V.N. Vishwanathan, K.M. Borgwardt, I.R. Kondor, and N.N. Schraudolph. Graph
Kernels. Journal of Machine Learning Research (submitted). Massachusetts Insti-
tute of Technology, Cambridge, MA, USA 2008 (available at arXiv:0807.0093)

[49] D.J. Watts and S.H. Strogatz. Collective Dynamics of ‘Small-World’ Networks.
Nature 393(6684):440-442. Nature Publishing Group, New York, NY, USA 1998

[50] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. Proc. 2nd
IEEE Int. Conf. on Data Mining (ICDM 2003, Maebashi, Japan), 721–724. IEEE
Press, Piscataway, NJ, USA 2002

[51] X. Yan and J. Han. Closegraph: Mining Closed Frequent Graph Patterns. Proc. 9th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003,
Washington, DC), 286–295. ACM Press, New York, NY, USA 2003

