IDENTIFICATION OF NEURONS PARTICIPATING IN CELL ASSEMBLIES
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ABSTRACT

Chances to detect assembly activity are expected to increase if
the spiking activities of large numbers of neurons are recorded
simultaneously. Although such massively parallel recordings
are now becoming available, methods able to analyze such
data for spike correlation are still rare, because it is often in-
feasible to extend methods developed for smaller data sets
due to a combinatorial explosion. By evaluating pattern com-
plexity distributions the existence of correlated groups can be
detected, but their member neurons cannot be identified. In
this contribution, we present approaches to actually identify
the individual neurons involved in assemblies. Our results
may complement other methods and also provide the oppor-
tunity for a reduction of data sets to the “relevant” neurons,
thus allowing us to carry out a refined analysis of the detailed
correlation structure due to reduced computation time.

Index Terms— massively parallel spike trains; spike syn-
chrony; higher-order correlation; data mining

1. INTRODUCTION

Synchronized presynaptic spiking activity is known to have
a higher efficacy in generating output spikes than non-co-
ordinated spike timing [1]. Therefore temporal coordination
of spike timing is a commonly accepted signature of neuronal
assembly activity [3, 2, 4, 5]. Consequently, approaches to
detect assembly activity have focused on the detection of cor-
related spiking activity on a millisecond time resolution.
With massively parallel recordings becoming available at
an accelerating rate [6], chances to observe the signature of
assembly activity are improving. However, currently we still
lack the corresponding analysis tools [7]. Most of the existing
methods are based on pairwise analysis, e.g. [8, 9, 10]. Ap-
proaches to analyze correlations between more than two neu-
rons exist, but typically work only for a small number of neu-
rons [11, 18, 12, 13] or consider only pair correlations when
analyzing the ensemble [14, 15, 16, 17] (a set of neurons is
seen as an assembly if most of them are pairwise correlated).
It is usually infeasible to simply extend existing methods
that identify individual spike patterns to massively parallel

data due to a combinatorial explosion. Therefore we tried new
approaches that evaluate the complexity distribution [19, 20]
or the intersection matrix [21], which can handle massively
parallel data and analyze it for higher-order spike patterns.
These methods are able to detect the presence of higher-order
correlation, but do not identify neurons that participate in the
correlation. The goal of the present study is to resolve this
issue: we want to directly identify neurons that take part in an
assembly as expressed by coincident firing. Our aim is not,
however, to determine the order of the correlation in which
they are involved, but to provide an efficient tool to reduce
the data set to the relevant neurons, which will then be exam-
ined in detail in further analysis. We present three different
methods, all of which rely on the idea to detect whether an
individual neuron is involved more often in any kind of coin-
cident event than can be expected by chance.

2. GENERATION OF TEST DATA

In order to demonstrate our approaches we make use of four
data sets of N = 100 parallel spike trains, which contain
different types of correlations or independent processes. The
data sets are generated by a stochastic model, which has its
origins in [22, 23, 20]. The basic assumption is that the ac-
tivation of an assembly is expressed by synchronous spiking
of its member neurons. Due to the typically blind sampling
from the cortical tissue, the chances to observe a number of
neurons from one assembly are rather small. This enters our
modeling by assuming that only a small percentage of neu-
rons are correlated—the rest fires independently.

2.1. Stochastic Model

Simultaneous spike trains are modeled as parallel, binary pro-
cesses realized as stationary Bernoulli processes. The sim-
plest form realizes fully independent processes with prede-
fined firing rates A; per neuron ¢, thus defining the occupa-
tion probability p; = A; - h per time bin of length A for each
process. Such realizations model the basic activity of the
N neurons. Without further insertion of correlated spiking
they serve as control data sets (“rate model”, Setl in Fig. 1)



Assembly activity is modeled by coincident spiking activ-
ity in a subset of m out of the N neurons: a hidden “mother”
process of rate « is realized, from which spikes are copied
into m selected child processes with probability €. e may be 1,
so that all m processes receive a copy of a spike of the hid-
den process. In this case all m neurons exhibit coincidences
of order m (Set2 in Fig. 1). Alternatively, and presumably
more realistic for experimental data, ¢ can be chosen < 1. In
this case the resulting coincidences within the m neurons are
on average composed of € - m < m spikes with a random
composition of spiking neurons per event (Set3 in Fig. 1).

Finally, the correlated and uncorrelated spike trains are
merged. The spike train of a child process is then composed of
“background” firing and of spikes involved in coincidences.
The total firing rate is \; = A;p + a - €, where ), is the
background rate and \; . = « - € the coincidence rate. Triv-
ially, the firing rates of each process can be predefined, and
the background firing rate can be adjusted accordingly.

Multiple assemblies can be generated analogously by
using one hidden process per assembly. The sets of neu-
rons, to which the spikes are copied from each of these
processes, may overlap or not. The total rate of neurons tak-
ing part in more than one assembly is composed of the sum
of the assembly coincidence rates and the background rate:
Ao = Xip + Zj )\i,cj with assembly index j (Set4 in Fig. 1).

3. ANALYSIS OF ASSEMBLY MEMBERSHIP

We explored the performance of three approaches to identify
whether a neuron is part of a correlated group of neurons.

3.1. Spike Shuffling

In all three approaches explored here, we compute a different
test statistic from the data, each of which is based on a dif-
ferent basic idea. Since there are certain obstacles to finding
the distributions of these test statistics under the null hypoth-
esis that the considered neuron is not part of an assembly, we
rely on a spike shuffling procedure instead. First we compute,
for a neuron 7 under consideration, the test statistic from the
data. Then we shuffle the spike times of neuron ¢ in order to
make it independent of all other (observed) neurons, recom-
pute the test statistic, and compare the results. Spike shuf-
fling and recomputing the test statistic is repeated sufficiently
often. Therefore counting the number of times the result of
a shuffling trial meets or exceeds the result obtained on the
actual data and dividing this number by the total number of
trials yields a p-value. This p-value measures the probability
that a result as obtained on the actual data would be obtained
by chance if neuron ¢ was independent of all other neurons.

Note that we shuffle only the spikes of neuron ¢; all other
spikes are left unchanged. As a consequence, the correlation
structure among all other neurons is preserved—only correla-
tions of neuron ¢ with other neurons are destroyed.
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Fig. 1. Sketches of the data sets used to test our methods. In
the realizations, all of the N = 100 neurons in Set2, Set3,
and Set4 have a total firing rate of \; = 20Hz, 7 € [1... NJ;
coincidence firing rates are A, = bHz. Setl: rate model of in-
dependent firing, composed of two groups of neurons of dif-
ferent firing rates (\; = 50Hz, i € [1...m], m = 10 (box),
and \; = 20Hz, i € [m + 1...N]). Set2 and Set3 contain
one assembly of m = 10 neurons generated with parame-
ters e = 1, = 5Hz] and [¢ = 0.4, = 12.5Hz], respec-
tively. Set4 contains two assemblies (¢ = 1) with m; = 7
and my = 8 neurons within m = 10 neurons, 5 participate in
both assemblies. Background firing rates have been chosen in
such a way that the total rate of A\; = 20Hz is preserved.

3.2. Background Rate Estimation (BRE)

With the model outlined above, the probability that a neu-
ron ¢ fires in a given time bin may be decomposed into two
constituents: the background firing probability, denoted by
0; = Xip - h (where h is the length of a time bin), and the
coincidence probability, denoted by &; = A; . - h, which cap-
tures the joint influence of all assemblies neuron ¢ participates
in. Since we assume that the hidden processes that generate
the background and the coincident spikes are independent, the
effective firing probability is n; = 0; + & — 6;&;.

We want to determine whether neuron 7 participates in an
assembly or not, that is, whether &; > 0 (alternative hypothe-
sis) or &; = 0 (null hypothesis). Due to the above equation we
have &; = T:gi L. Note that n; can easily be estimated from
the data, namely as 7j; = k;/k, where k; is the number of time
bins in which neuron ¢ fires and k is the total number of time
bins. As a consequence we can easily derive a statistical test
if we can estimate the background firing probability 6;.

To derive the estimator for 6;, we consider a set of IV in-
dependent neurons without assemblies (i.e. Vj;1 < j < N :
&; = 0). The probability py that no neuron fires in a time bin

is pg = H;.V:l(l — 0;) and the probability p; that only neu-
ron i fires is p;o = 0; H;.V:L#i(l—ﬁj). It follows IZ;'(;’ = 1%1_
and therefore 0; = p,fj’fpn. Obviously, pg and p;g can easily

be estimated, namely as po = ko/k and p; = k;o/k, respec-




tively, where kg is the number of time bins in which no neuron
fires and k;o the number of bins in which only neuron 7 fires.

The crucial insight is now that the probabilities pg and p;q
remain unaffected if neurons participate in assemblies, be-
cause both refer to time bins with at most one spike. However,
coincident firing, by its very definition, means that more than
one neuron fires in the same time bin. As a consequence, 6;
can be estimated, even in the presence of coincident firing, as
0; = kio /(kio + ko). The actual test whether neuron ¢ partici-
pates in an assembly checks whether éi is sufficiently large so
that the null hypothesis £; = 0 can be rejected. A natural test
statistic, estimating the fraction of coincidence spikes, is
fli — bi
A p-value can then easily be derived by using the spike shuf-
fling procedure described in Section 3.1.

As a generalization of this approach one may consider to
estimate the background firing rate of neuron ¢ not only from
the time bins in which at most neuron ¢ fires, but also from
those time bins, in which a maximum of r, » > 0, other neu-
rons fire (r = 0 yields the case discussed above). This pro-
vides an indication whether neuron ¢ participates in assem-
blies with more than r + 1 neurons. However, one should be
aware that for » > 0 a possible participation in assemblies of
smaller size (at most 4 1 neurons) can obscure the participa-
tion in larger assemblies (more than r + 1 neurons), because
in this case we are not estimating the true background fir-
ing probability, but the firing probability resulting from back-
ground firing and participation in small assemblies.
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3.3. Conditional Pattern Complexities (CPC)

The approach presented in Section 3.2 only considers whether
some other neuron j, j # i, fires or not, but neglects how
many and which other neurons fire and how often they fire
together with neuron 7. The approaches studied in this and
the next section try to exploit such additional information.
The most natural approach is to take into account how
many other neurons fire, on average, together with neuron <.
If neuron ¢ participates in one or more (large) assemblies,
there should be several time bins in which it fires together
with several other neurons. Hence the average complexity of
patterns involving neuron ¢ should be larger than expected by
chance. Formally, we use x; = k% Zle (i€ )| —1)

and z; = %Zle(\m —7(i € I;)), where I is the index set
of the neurons that fire in the /-th time bin and 7(¢) is 1 if
is true and O otherwise. Obviously, x; is the average pattern
complexity in those time bins in which neuron i fires (with
spikes of neuron 7 removed). On the other hand, z; is simply
the overall average pattern complexity (again with spikes of
neuron ¢ removed). With this, a natural test statistic is

goPC _ Ti —Ti
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A p-value can again be derived by using the spike shuffling
procedure described in Section 3.1.

3.4. Conditional Spike Frequencies (CSF)

In a second approach we take into account how often other
neurons fire together with neuron i. The idea is that if neu-
ron ¢ participates in one or more assemblies, it should fire
more often together with certain other neurons (those also in
the assemblies) than can be expected by chance. In order to
take care of different firing rates, we use the number of ex-
cess spikes to form a test statistic: we compute for each neu-
ron j, j # i, the difference between the number of spikes
observed together with a spike of neuron ¢ and the expected
number of such spikes, estimated as k;7);. Since only excess
spikes tell us about possible correlations, negative differences
are ignored. Formally, the test statistic is

1 n R N
(57 = = 7wk > k) (k= i),
=1

where k;; is the number of time bins in which both neuron ¢
and neuron j fire and (as above) 7(¢p) is 1 if ¢ is true and 0
otherwise. A p-value is derived by the same shuffling proce-
dure described above (see Section 3.1).

3.5. Results

Due to limitations of space, we can present detailed results
only for one of the three approaches. We chose CPC (Sec-
tion 3.3) because of two reasons: in the first place, BRE (Sec-
tion 3.2) proved to be a fairly weak method in our experi-
ments, at least for 7 = 0. The reason is mainly the small
number of time bins in which only the considered neuron 4
fires (small k;y), which leads to an unreliable estimate and
thus a high variance. Performance improves for » = 1 and
becomes reasonably good for » = 2, but still falls short of the
performance of the other two methods. Therefore we chose
to discard BRE, even though we believe that the estimator of
the background firing rate used in it is a relevant insight. Sec-
ondly, even though the performance of CSF (Section 3.4) was
actually the best in our experiments, the approach requires
an estimate of the expected number of spikes for the other
neurons. This can turn out to be a severe hindrance for an-
alyzing real spike trains, for which firing rates may be non-
stationarity, and made us favor the CPC approach.

CPC results for the four data sets are depicted in Fig. 2.
Each diagram shows the value of the test statistic and a box
plot indicating the distribution of the spike shuffling results
for each of the 100 neurons. For Setl the test did not pro-
duce a significant result for any of the neurons, since they are
independent. For the other three data sets (Set2—Set4) it is de-
tected that the first 10 neurons have excess coincidences, thus
exactly identifying the neurons involved in assemblies. For
Set2, significance is highest, which corresponds to the fact
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Fig. 2. Analysis results for Setl to Set4 using CPC. In each
panel, box plots show the distribution (thick box: 5% to 95%,
thin box: 1% to 99%, gray whiskers: minimum to maximum)
of the shuffling results (s = 10° trials) for each neuron i (ids
ordered, along the z-axis). Outside the whiskers, results are
significant on a 1/s level. The test statistic value tS¥¢ ob-
tained on the actual data is shown as a bowtie.

that all correlated neurons participated with probability € = 1
in the coincident events. Significance is slightly reduced for
Set3, which is due to the decreased participation probability
(e = 0.4) in the coincidences. For Set4 also all neurons taking
part in assemblies are reliably detected. Significance is higher
for the neurons participating in both assemblies as compared
to the ones participating in one of the assemblies only.

4. DISCUSSION

We presented three simple test statistics to identify neurons
that are involved in assemblies. All of them test for a given
neuron whether it is more often involved in a coincidence
spike event than can be expected by chance. To do so, BRE
relies on a background rate estimator (which we believe to be
relevant in its own right), CPC analyses the coincidence com-
plexities of the parallel spike trains, and CSF aggregates pair-
wise frequency comparisons. To assess their performance, we
applied these statistics, using a spike shuffling approach, to
massively parallel spike trains generated by stochastic models
that allow for defining different spike correlation structures.

Our approaches are a perfect addition to methods that pro-
vide information of presence of higher-order correlation in
data, but do not identify the individual neurons involved. Re-
ducing data sets to the relevant neurons only helps to consid-
erably reduce computation time in further analysis steps that
aim at identifying the detailed higher-order correlation struc-
tures e.g. considering information geometrical measures (e.g.
[24, 25]) or approaches based on accretion [26].
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