
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Felix Petersen 1 Christian Borgelt 2 Hilde Kuehne 3 4 Oliver Deussen 1

Abstract

Sorting and ranking supervision is a method for

training neural networks end-to-end based on or-

dering constraints. That is, the ground truth order

of sets of samples is known, while their absolute

values remain unsupervised. For that, we propose

differentiable sorting networks by relaxing their

pairwise conditional swap operations. To address

the problems of vanishing gradients and extensive

blurring that arise with larger numbers of layers,

we propose mapping activations to regions with

moderate gradients. We consider odd-even as well

as bitonic sorting networks, which outperform ex-

isting relaxations of the sorting operation. We

show that bitonic sorting networks can achieve

stable training on large input sets of up to 1024

elements.

1. Introduction

Sorting and ranking as the ability to score elements by their

relevance is an essential task in numerous applications. It

can be used for choosing the best results to display by a

search engine or organize data in memory. Starting in the

1950s, sorting networks have been presented to address the

sorting task (Knuth, 1998). Sorting networks are sorting

algorithms with a fixed execution structure, which makes

them suitable for hardware implementations, e.g., as part of

circuit designs. They are oblivious to the input, i.e., their

execution structure is independent of the data to be sorted.

As such hardware implementations are significantly faster

than conventional multi-purpose hardware, they are of inter-

est for sorting in high performance computing applications

(Govindaraju et al., 2006). This motivated the optimization

of sorting networks toward faster networks with fewer lay-

ers, which is a still-standing problem (Bidlo & Dobeš, 2019).

Note that, although the name is similar, sorting networks

are not neural networks that perform sorting.

1University of Konstanz, Germany 2University of Salzburg,
Austria 3University of Frankfurt, Germany 4MIT-IBM Watson AI
Lab. Correspondence to: Felix Petersen <felix.petersen@uni.kn>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Recently, the idea of end-to-end training of neural networks

with sorting and ranking supervision by a continuous re-

laxation of the sorting and ranking functions has been pre-

sented by Grover et al. (2019). Sorting supervision means

the ground truth order of some samples is known while their

absolute values remain unsupervised. As the error has to

be propagated in a meaningful way back to the neural net-

work, it is necessary to use a continuous and continuously

differentiable sorting function. Several such differentiable

relaxations of the sorting and ranking functions have been

introduced, e.g., by Adams & Zemel (2011), Grover et al.

(2019), Cuturi et al. (2019), and Blondel et al. (2020). For

example, they enable training a CNN based on ordering

and ranking information instead of absolute ground truth

values. As sorting a sequence of values requires finding the

respective ranking order, we use the terms “sorting” and

“ranking” interchangeably.

In this work, we propose to combine traditional sorting

networks and differentiable sorting functions by presenting

smooth differentiable sorting networks.

Sorting networks are conventionally non-differentiable as

they use min and max operators for conditionally swapping

elements. Thus, we relax these operators by building on the

softmin and softmax operators. However, due to the nature

of the sorting network, values with large as well as very

small differences are compared in each layer. Comparing

values with large differences causes vanishing gradients,

while comparing values with very small differences can

modify, i.e., blur, values as they are only partially swapped.

This is because softmin and softmax are based on the lo-

gistic function which is saturated for large inputs but also

returns a value close to the mean for inputs that are close

to each other. Based on these observations, we propose an

activation replacement trick, which avoids vanishing gradi-

ents as well as blurring. That is, we modify the distribution

of the differences between compared values to avoid small

differences close to 0 as well as large differences.

To validate the proposed idea and to show its generalization,

we evaluate two sorting network architectures, the odd-even

as well as the bitonic sorting network. The idea of odd-even

sort is to iteratively compare adjacent elements and swap

pairs that are in the wrong order. The method alternately

compares all elements at odd and even indices with their

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

C
N

N

P⊤

1
P⊤

2
P⊤

3
P⊤

4
P⊤

5
P⊤

6
P⊤

7
= PPP⊤

· · · · · ·

PPP =





















.4 .0 .1 .0 .0 .4 .0

.5 .0 .1 .0 .0 .4 .0

.1 .0 .4 .0 .3 .1 .1

.0 .0 .3 .0 .3 .1 .2

.0 .1 .1 .1 .2 .0 .5

.0 .5 .0 .4 .0 .0 .1

.0 .4 .0 .5 .0 .0 .1





















QQQ =





















0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 1 0 0 0





















Figure 1: Overview of the system for training with sorting supervision. Left: input images are fed separately / independently

into a Convolutional Neural Network (CNN) that maps them to scalar values. Center: the odd-even sorting network sorts the

scalars by parallel conditional swap operations. Right: the sorting network produces a differentiable permutation matrix PPP
which can then be compared to the ground truth permutation matrix QQQ using binary cross-entropy to produce the training

loss. By propagating this error backward through the sorting network, we can train the CNN.

successors. To make sure that the smallest (or greatest) ele-

ment will be propagated to its final position for any possible

input of length n, we need n exchange layers. An odd-even

network is displayed in Figure 1 (center). Odd-even net-

works can be seen as the most generic architectures, and are

mainly suitable for small input sets as their number of layers

directly depends on the number of elements to be sorted.

Bitonic sorting networks (Batcher, 1968) use bitonic se-

quences to sort based on the Divide-and-Conquer principle

and allow sorting in only O(log2 n) parallel time. Bitonic

sequences are twice monotonic sequences, i.e., they consist

of a monotonically increasing and monotonically decreas-

ing sequence. Bitonic sorting networks recursively combine

pairs of monotonic sequences into bitonic sequences and

then merge them into single monotonic sequences. Start-

ing at single elements, they eventually end up with one

sorted monotonic sequence. With the bitonic architecture,

we can sort large numbers of input values as we only need
log

2
n·((log

2
n)+1)

2 layers to sort n inputs. As a consequence,

the proposed architecture provides good accuracy even for

large input sets and allows scaling up sorting and ranking

supervision to large input sets of up to 1024 elements.

Following Grover et al. (2019) and Cuturi et al. (2019), we

benchmark our continuous relaxation of the sorting func-

tion on the four-digit MNIST (LeCun et al., 2010) sorting

supervision benchmark. To evaluate the performance in the

context of a real-world application, we apply our continu-

ous relaxation to the multi-digit images of the Street View

House Number (SVHN) data set. We compare the perfor-

mance of both sorting network architectures and evaluate

their characteristics under different conditions. We show

that both differentiable sorting network architectures outper-

form existing continuous relaxations of the sorting function

on the four-digit MNIST sorting benchmark and also per-

form well on the more realistic SVHN benchmark. Further,

we show that our model scales and achieves performance

gains on larger sets of ordered elements and confirm this up

to n = 1024 elements.

An overview of the overall architecture is shown in Figure 1.

In addition, we apply our method to top-k classification.

2. Related work

Sorting Networks The goal of research on sorting net-

works is to find optimal sorting networks, i.e., networks that

can sort an input of n elements in as few layers of parallel

swap operations as possible. Initial attempts to sorting net-

works required O(n) layers, each of which requires O(n)
operations (examples are bubble and insertion sort (Knuth,

1998)). With parallel hardware, these sorting algorithms

can be executed in O(n) time. Further research lead to the

discovery of the bitonic sorting network (aka. bitonic sorter)

which requires only O(log2 n) layers (Knuth, 1998; Batcher,

1968). Using genetic and evolutionary algorithms, slightly

better optimal sorting networks were found for specific n
(Bidlo & Dobeš, 2019; Baddar & Batcher, 2012). However,

these networks do not exhibit a simple, regular structure.

Ajtai, Komlós, and Szemerédi (Ajtai et al., 1983) presented

the AKS sorting network which can sort in O(log n) paral-

lel time, i.e., using only O(n log n) operations. However,

the complexity constants for the AKS algorithm are to date

unknown and optimistic approximations assume that it is

faster than bitonic sort if and only if n ≫ 1080. Today,

sorting networks are still in use, e.g., for fast sorting imple-

mentations on GPU accelerated hardware as described by

Govindaraju et al. (2006) and in hybrid systems as described

by Gowanlock & Karsin (2019). Based on the bitonic sort-

ing network, Lim & Wright (2016) propose a coordinate

descent algorithm to solve hard permutation problems.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Figure 2: Bitonic sorting networks for 4 and 16 lanes, consisting of bitonic merge blocks (colored). Arrows pointing toward

the maximum.

Neural Networks that Sort In the past, neural networks

that sort have been proposed, e.g., by Ceterchi & Tomescu

(2008), who proposed simulating sorting networks with

spiking neural P systems. Spiking neural P systems are

predecessors of current spiking networks, a form of com-

putational models inspired by biological neurons. This was

later adapted by Metta & Kelemenova (2015) for a spiking

neural P system with anti-spikes and rules on synapses.

Graves et al. (2014) raised the idea of integrating sorting

capabilities into neural networks in the context of Neural

Turing Machines (NTM). The NTM architecture contains

two basic components: a neural network controller based

on an LSTM and a memory bank with an attention mecha-

nism, both of which are differentiable. The authors use this

architecture to sort sequences of binary vectors according to

given priorities. Vinyals et al. (2016) address the problem of

the order of input and output elements in LSTM sequence-

to-sequence models by content-based attention. To show

the effect of the proposed model, they apply it to the task of

sorting numbers and formulate the task of sorting as an in-

stance of the set2seq problem. Mena et al. (2018) introduce

the Gumbel-Sinkhorn, a Sinkhorn-operator–based analog

of the Gumbel-Softmax distribution for permutations. They

evaluate the proposed approach, i.a., on the task of sorting

up to 120 numbers. Note that these architectures learn to

sort, while sorting networks and differentiable sorting func-

tions sort provably correct. These methods allow sorting

input values, as an alternative to classical sorting algorithms,

but not training with sorting supervision because they are

not differentiable.

Differentiable Sorting Closest to our work are differen-

tiable sorting algorithms, which can be used to train neural

networks based on sorting and ranking supervision.

Adams & Zemel (2011) propose relaxing permutation ma-

trices to doubly-stochastic matrices based on marginals of

distributions over permutation matrices. They apply their

method to the LETOR learning-to-rank benchmark (Liu,

2011).

Grover et al. (2019) propose NeuralSort, a continuous re-

laxation of permutation matrices to the set of unimodal

row-stochastic matrices via the Plackett-Luce family of dis-

tributions over permutations. For evaluation, they propose

the benchmark of predicting the scalar value displayed on

concatenated four-digit MNIST numbers. As supervision,

they use the ranking of between 3 and 15 of those numbers.

Additionally, they apply NeuralSort to differentiable quan-

tile regression and k-nearest neighbors image classification.

Following this work, Cuturi et al. (2019) presented a method

for smoothed ranking and sorting operators using opti-

mal transport (OT). They use the idea that sorting can be

achieved by minimizing the matching cost between ele-

ments and an auxiliary target of increasing values. That

is, the smallest element is matched to the first value, the

second smallest to the second value, etc. They make this

differentiable by regularizing the OT problem with an en-

tropic penalty and solving it by applying Sinkhorn iterations.

Additionally, they devise a differentiable top-k operator for

top-k supervised image classification. Based on this idea,

Xie et al. (2020) have used OT and the differentiable top-k
operator for k-nearest neighbors image classification and

differentiable beam search.

Recently, Blondel et al. (2020) presented the idea of con-

structing differentiable sorting and ranking operators as

projections onto the permutahedron, the convex hull of per-

mutation matrices. They solve this by reducing it to isotonic

optimization and make it differentiable by considering the

Jacobians of the isotonic optimization and the projection.

They apply their method to top-k supervised image classifi-

cation, label ranking via a differentiable Spearman’s rank

correlation coefficient, and robust regression via differen-

tiable least trimmed squares.

3. Sorting Networks

In this section, we introduce two common sorting networks:

the simple odd-even sorting network as well as the more

complex, but also more efficient, bitonic sorting network.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

3.1. Odd-Even Sorting Network

One of the simplest sorting networks is the fully connected

odd-even sorting network. Here, neighboring elements are

swapped if they are in the wrong order. As the name implies,

this is done in a fashion alternating between comparing odd

and even indexed elements with their successors. In detail,

for sorting an input sequence a1a2...an, each layer updates

the elements such that a′i = min(ai, ai+1) and a′i+1 =
max(ai, ai+1) for all odd or even indices i, respectively.

Using n of such layers, a sequence of n elements is sorted

as displayed in Figure 1 (center).

3.2. Bitonic Sorting Network

Second, we review the bitonic sorting network for sorting

n = 2k elements where k ∈ N+. If desired, the sorting

network can be extended to n ∈ N+ (Knuth, 1998).

The bitonic sorting networks builds on bitonic sequences: a

sequence (ai)1≤i<n is called bitonic if (after an appropriate

circular shift) a1 ≤ ... ≤ aj ≥ ... ≥ an for some j.

Following the Divide-and-Conquer principle, in analogy

to merge sort, bitonic sort recursively splits the task of

sorting a sequence into the tasks of sorting two subsequences

of equal length, which are then combined into a bitonic

sequence. Like merge sort, bitonic sort starts by merging

individual elements, to obtain sorted lists of length 2 (first

gray block in Figure 2). Pairs of these are then combined

into bitonic sequences and then merged into monotonic

sequences (second gray block in Figure 2). This proceeds,

doubling the length of the sorted sequences with each (gray)

block until the entire sequence is sorted. The difference to

merge sort lies in the bitonic merge operation, which merges

two sequences sorted in opposite order (i.e., a single bitonic

sequence) into a single sorted (monotonic) sequence.

In Supplementary Material A, we give more details on the

bitonic sorting network and sketch a proof why they work.

4. Differentiable Sorting Networks

To relax sorting networks, we need to relax the min and max
operators, which are used as a basis for the swap operations

in sorting networks. For that, we use softmin and softmax,

which are convex combinations via the logistic sigmoid

function σ(x) = 1
1+e−x

. For two elements ai, aj , we define

in accordance to softmin and softmax:

softmin(ai, aj) := αij · ai + (1− αij) · aj (1)

softmax(ai, aj) := (1− αij) · ai + αij · aj (2)

where

αij := σ((aj − ai) · s). (3)

Here, s denotes a steepness hyperparameter such that for

s → ∞ the smooth operators converge to the discrete op-

x

σ(x)

−2 −1 0 1 2

x
−2 −1 0 1 2

p(x)

p(ϕ(x))

Figure 3: The Activation Replacement Trick. Top: on

the logistic sigmoid function, the input values x (orange)

are mapped to ϕ(x) (green) and are thus closer to −1 and

+1. Bottom: probability density functions of Gaussian dis-

tributed input values x (orange) and the distribution of re-

placed input values ϕ(x) (green).

erators. As we show in the next section, it is necessary to

extend this formulation by the activation replacement trick ϕ
to avoid vanishing gradients and extensive blurring.

4.1. Activation Replacement Trick ϕ

Assuming that the inputs to a sorting network are normally

distributed, there are many cases in which the differences of

two values |aj − ai| are very small as well as many cases in

which the differences are very large. For the relaxation of

sorting networks, this poses two problems:

If |aj−ai| is close to 0, while we obtain large gradients, this

also blurs the two values to a great extent, modifying them

considerably. Thus, it is desirable to avoid |aj − ai| ≈ 0.

On the other hand, if |aj − ai| is large, vanishing gradients

occur, which hinders training.

To counter these two problems at the same time, we propose

the activation replacement trick. We transform the differ-

ences between two values to be potentially swapped (e.g.,

x = (aj − ai)) from a unimodal Gaussian distribution into

a bimodal distribution, which has a low probability density

around 0. To this end, we apply the transformation

ϕ : x 7→ |x|1−λ · sgn(x) (4)

to the differences x, where λ ∈ [0, 1]. ϕ pushes all input

values (depending on the sign) toward −1 and +1, respec-

tively. Thus, by applying ϕ before σ, we move the input

values outside [−1,+1] to positions at which they have a

larger gradient, thus mitigating the problem of vanishing

gradients. Simultaneously, we achieve a probability density

of 0 at |aj − ai| = 0 (i.e., here p(ϕ(0)) = 0) as all values

close to zero are mapped toward −1 and +1, respectively.

This is displayed in Figure 3.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

As we multiply by the steepness parameter s (Equation 3),

we map the input to the sigmoid function toward −s and +s,

respectively. Thus, when replacing σ(x · s) by σ(ϕ(x) · s),
we push the output values toward 1

1+e−1·s or 1
1+e1·s

. This

increases the gradient
∂σ(ϕ(x))

∂x
for large abs(x) which

are those values causing the vanishing gradients, address-

ing the problem of vanishing gradients. Further, for all

x ∈ (−1,+1) this pushes the output values away from 1/2,
addressing the problem of blurring of values.

Therefore, we extend our formulation of the relaxations of

the min and max operators by defining

αij := σ(ϕ(aj − ai) · s). (5)

Empirically, the activation replacement trick accelerates the

training through our sorting network. We observe that, while

sorting networks up to 21 layers (i.e., bitonic networks with

n ≤ 64) can operate with moderate steepness (i.e., s ≤ 15)

and without the activation replacement trick (i.e., λ = 0),

for more layers, the activation replacement trick becomes

necessary for good performance. Notably, the activation

replacement trick also improves the performance for sorting

networks with fewer layers. Further, the activation replace-

ment trick allows training with smaller steepness s, which

makes training more stable specifically for long sequences

as it avoids exploding gradients.

Note that, in case of bitonic, in the first layer of the last

merge block, n/2 elements in non-descending order are

element-wise compared to n/2 elements in non-ascending

order. Thus, in this layer, we compare the minimum of the

first sequence to the maximum of the second sequence and

vice versa. At the same time, we also compare the median

of both sequences as well as values close to the median to

each other. While we consider very large differences as well

as very small differences in the same layer, the activation

replacement trick achieves an equalization of the mixing

behavior, reducing blurring and vanishing gradients.

4.2. Differentiable Permutation Matrices

For sorting and ranking supervision, i.e., training a neural

network to predict scalars, where only the order of these

scalars is known, we use the ground truth permutation matrix

as supervision. Thus, to train an underlying neural network

end-to-end through the differentiable sorting network, we

need to return the underlying permutation matrix rather

than the actual sorted scalar values. For that, we compute

the permutation matrices for the swap operations for each

layer as shown in Figure 1. Here, for all swap operations

between any elements ai and aj that are to be ordered in

non-descending order, the layer-wise permutation matrix is

Pl,ii = Pl,jj = αij = σ(ϕ(aj − ai) · s), (6)

Pl,ij = Pl,ji = 1− αij = 1− σ(ϕ(aj − ai) · s) (7)

where all other entries of Pl are set to 0. By multiplication,

we compute the complete relaxed permutation matrix PPP as

PPP = Pn · ... · P2 · P1 =

(n
∏

l=1

P⊤
l

)⊤

. (8)

A column in the relaxed permutation matrix can be seen as a

distribution over possible ranks for the corresponding input

value. Given a ground truth permutation matrix QQQ, we can

define our column-wise cross entropy loss as

L :=

n
∑

c=1

(

1

n
CE (PPP c,QQQc)

)

(9)

where PPP c and QQQc denote the cth columns of PPP and QQQ, re-

spectively. Note that, as the cross entropy loss is, by defi-

nition, computed element-wise, the column-wise cross en-

tropy is equivalent to the row-wise cross entropy.

5. Experiments1

5.1. Sorting and Ranking Supervision

We evaluate the proposed differentiable sorting networks

on the four-digit MNIST sorting benchmark (Grover et al.,

2019; Cuturi et al., 2019) as well as on the real-world SVHN

data set.

MNIST For the four-digit MNIST sorting benchmark,

MNIST digits are concatenated to four-digit numbers, e.g.,

. A CNN then predicts a scalar value corresponding

to the value displayed in the four-digit image. For training,

n of those four-digit images are separately processed by

the CNN and then sorted by the relaxed sorting network

as shown in Figure 1. Based on the permutation matrix

produced by the sorting network and the ground truth rank-

ing, the training objective is computed (Equation 9) and the

CNN is updated. At test time, we forward single images of

four-digit numbers from the test data set. For evaluation, the

discrete rankings of the predicted values are compared to

the rankings of their ground truth. Note that the n used for

testing and evaluation can be independent of the n used for

training because the n images are processed independently.

SVHN Since the multi-digit MNIST data set is an artifi-

cial data set, we also evaluate our technique on the SVHN

data set (Netzer et al., 2011). This data set comprises house

numbers collected from Google Street View and provides

a larger variety wrt. different fonts and formats than the

MNIST data set. We use the published “Format 1” and

preprocess it as described by Goodfellow et al. (2013), crop-

ping the centered multi-digit numbers with a boundary of

1Our implementation is openly available at github.com/Felix-
Petersen/diffsort.

https://github.com/Felix-Petersen/diffsort
https://github.com/Felix-Petersen/diffsort

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Table 1: Results for the comparison to state-of-the-art (Grover et al., 2019; Cuturi et al., 2019) using the same network archi-

tectures averaged over 5 runs. The first three rows are duplicated from Cuturi et al. (2019). Metrics are (EM | EW | EM5).

Method n = 333 n = 555 n = 777 n = 999 n = 151515

Stoch. NeuralSort 92.0 | 94.6 | 79.0 | 90.7 | 79.0 63.6 | 87.3 | 45.2 | 82.9 | 12.2 | 73.4 |
Det. NeuralSort 91.9 | 94.5 | 77.7 | 90.1 | 77.7 61.0 | 86.2 | 43.4 | 82.4 | 9.7 | 71.6 |
Optimal Transport 92.8 | 95.0 | 81.1 | 91.7 | 81.1 65.6 | 88.2 | 49.7 | 84.7 | 12.6 | 74.2 |

Fast Sort & Rank 90.6 | 93.5 | 73.5 71.5 | 87.2 | 71.5 49.7 | 81.3 | 70.5 29.0 | 75.2 | 69.2 2.8 | 60.9 | 67.4

Odd-Even 95.295.295.2 | 96.796.796.7 | 86.186.186.1 86.386.386.3 | 93.893.893.8 | 86.386.386.3 75.475.475.4 | 91.291.291.2 | 86.486.486.4 64.364.364.3 | 89.089.089.0 | 86.786.786.7 35.435.435.4 | 83.783.783.7 | 87.687.687.6

n = 222 n = 444 n = 888 n = 161616 n = 323232

Odd-Even 98.1 | 98.1 | 84.3 90.5 | 94.9 | 85.5 63.6 | 87.9 | 83.6 31.7 | 82.8 | 87.3 1.7 | 69.1 | 86.7
Bitonic 98.1 | 98.1 | 84.0 91.4 | 95.3 | 86.7 70.6 | 90.3 | 86.9 30.5 | 81.7 | 86.6 2.7 | 67.3 | 85.4

Table 2: Results for training on the SVHN data set averaged over 5 runs. Metrics are (EM | EW | EM5).

Method n = 222 n = 444 n = 888 n = 161616 n = 323232

Det. NeuralSort 90.1 | 90.1 | 39.9 61.4 | 78.1 | 45.4 15.7 | 62.3 | 48.5 0.1 | 45.7 | 51.0 0.0 | 29.9 | 52.7
Optimal Transport 85.5 | 85.5 | 25.9 57.6 | 75.6 | 41.6 19.9 | 64.5 | 51.7 0.3 | 47.7 | 53.8 0.0 | 29.4 | 53.3
Fast Sort & Rank 93.4 | 93.4 | 57.6 58.0 | 75.8 | 41.5 8.6 | 52.7 | 34.4 0.3 | 36.5 | 41.6 0.0 | 14.0 | 27.5

Odd-Even 93.4 | 93.4 | 58.0 74.874.874.8 | 85.585.585.5 | 62.662.662.6 35.2 | 73.5 | 63.9 1.8 | 54.4 | 62.3 0.0 | 36.6 | 62.6
Bitonic 93.893.893.8 | 93.893.893.8 | 58.658.658.6 74.4 | 85.3 | 62.1 38.338.338.3 | 75.175.175.1 | 66.866.866.8 3.93.93.9 | 59.659.659.6 | 66.866.866.8 0.0 | 42.442.442.4 | 67.767.767.7

30%, resizing it to a resolution of 64×64, and then selecting

54 × 54 pixels at a random location. As SVHN contains

1 − 5 digit numbers, we can avoid the concatenation and

use the original images directly. Example images are

. Otherwise, the

experimental setup is as for the four-digit MNIST data set.

Network Architecture For the MNIST sorting task, we

use the same convolutional neural network (CNN) architec-

ture as Grover et al. (2019) and Cuturi et al. (2019) to allow

for comparability. This architecture consists of two convolu-

tional layers with a kernel size of 5× 5, 32 and 64 channels

respectively, each followed by a ReLU and MaxPool layer;

this is (after flattening) followed by a fully connected layer

with a size of 64, a ReLU layer, and a fully connected output

layer mapping to a scalar.

For the SVHN task, we use a network with four convolu-

tional layers with a kernel size of 5×5 and (32, 64, 128, 256)

filters, each followed by a ReLU and a max-pooling layer

with stride 2× 2; followed by a fully connected layer with

size 64, a ReLU, and a layer with output size 1.

Evaluation Metrics For evaluation, discrete rankings

based on the scalar predictions are computed and compared

to the discrete ground truth rankings. As in previous works,

we use the evaluation metrics of exact match (EM) of the pre-

dicted ranking, and fraction of element-wise correct ranks

(EW) in the predicted ranking. For EM and EW, we follow

Grover et al. (2019) and Cuturi et al. (2019), and use the

same n for training and evaluation. However, this can be a

problem in the context of large input sets as these evalua-

tion metrics become unreliable as n increases. For example,

the difficulty of exact matches rises with the factorial of

n, which is why they become too sparse to allow for valid

conclusions for large n. To allow for a comparison of the

performance independent of the number of elements n used

for training, we also evaluate the models based on the EM

accuracy for n = 5 (EM5). That is, the network can be

trained with an arbitrary n, but the evaluation is done for

n = 5. A table with respective standard deviations can be

found in Supplementary Material C.

Training Settings We use the Adam optimizer (Kingma

& Ba, 2015) with a learning rate of 10−3.5, and up to 106

steps of training. Furthermore, we set λ = 0.25 and use a

steepness of two times the number of layers (s = 2n for

odd-even and s = (log2 n)(1 + log2 n) for bitonic.) We

use a constant batch size of 100 as in previous works unless

denoted otherwise. Note that, although λ is chosen as a

constant value for all n, a higher accuracy is possible when

optimizing λ for each n separately.

5.1.1. Results

Comparison to State-of-the-Art (MNIST) We first

compare our approach to the methods proposed by Grover

et al. (2019) and Cuturi et al. (2019). Here, we follow the

setting that the n used for evaluation is the same as the

n used for training. The evaluation is shown in Table 1.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Table 3: Results for large n measured using the EM5 metric with fixed number of samples as well as a fixed batch size.

Independent of the batch size, the model always performs better for larger n. Trained for 104 steps & averaged over 10 runs.

λ 0.25 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

n 32 32 64 128 256 512 1024 32 64 128 256 512 1024

batch size 128 128 64 32 16 8 4 4 4 4 4 4 4

s = 30 78.2078.2078.20 79.89 81.25 82.5082.5082.50 82.0582.0582.05 82.50 82.8082.8082.80 71.08 75.8875.8875.88 79.43 81.4681.4681.46 82.98 82.8082.8082.80

s = 32.5 76.98 79.62 81.6681.6681.66 80.15 81.87 82.64 81.63 72.3172.3172.31 75.59 79.7179.7179.71 81.36 82.9982.9982.99 81.63

s = 35 77.45 80.93 81.26 80.72 81.42 81.51 81.15 71.15 75.73 78.81 79.32 82.30 81.15

s = 37.5 76.40 80.02 80.05 81.50 80.05 82.6782.6782.67 80.07 70.69 75.80 79.11 80.64 82.70 80.07

s = 40 77.69 80.9780.9780.97 80.23 81.55 79.75 81.89 81.15 70.20 74.67 78.14 80.06 81.39 81.15

mean 77.35 80.29 80.89 81.28 81.03 82.24 81.36 71.09 75.53 79.04 80.57 82.47 81.36

best s 78.2078.2078.20 80.9780.9780.97 81.6681.6681.66 82.5082.5082.50 82.0582.0582.05 82.6782.6782.67 82.8082.8082.80 72.3172.3172.31 75.8875.8875.88 79.7179.7179.71 81.4681.4681.46 82.9982.9982.99 82.8082.8082.80

worst s 76.40 79.62 80.05 80.15 79.75 81.51 80.07 70.20 74.67 78.14 79.32 81.39 80.07

We report results for exact match, correct ranks, and EM5,

respectively. For the odd-even architecture, we compare

results for the original n ∈ {3, 5, 7, 9, 15}. Our approach

outperforms current methods on all metrics and input set

sizes. In addition, we extend the original benchmark set

sizes by n ∈ {2, 4, 8, 16, 32}, allowing for the canonical

version of the bitonic sorting network which requires input

size of powers of 2. We apply n ∈ {2, 4, 8, 16, 32} to the

odd-even as well as the bitonic sorting network. In this

direct comparison, we can see that the bitonic and the odd-

even architectures perform similar. Notably, the EM and EW

accuracies do not always correlate as can be seen for n = 32.

Here, the EM accuracy is greater for the bitonic network and

the EW accuracy is greater for the odd-even network. We

attribute this to the odd-even network’s gradients causing

swaps of neighbors while the bitonic network’s gradients

provide a holistic approach favoring exact matches.

SVHN The results in Table 2 show that the real-world

SVHN task is significantly harder than the MNIST task. On

this data set, differentiable sorting networks are also better

than current methods on all metrics and input set sizes.

Here, the performances of odd-even and bitonic are similar.

Notably, the EM5 accuracy is largest for the bitonic sorting

network at n = 32, which demonstrates that the method

benefits from longer input sets. Further, for n ∈ {8, 16, 32},

the bitonic sorting network marginally outperforms the odd-

even sorting network on all metrics.

5.2. Large-Scale Sorting and Ranking Supervision

We are interested in the effect of training with larger input

set sizes n. As the bitonic sorting network requires signifi-

cantly fewer layers than odd-even and is (thus) faster, we use

the bitonic sorting network for the scalability experiments.

Here, we evaluate for n = 2k, k ∈ {5, 6, 7, 8, 9, 10} on the

MNIST sorting benchmark, comparing the EM5 accuracy

as shown in Table 3.

For this experiment, we consider steepness values of s ∈
{30, 32.5, 35, 37.5, 40} and report the mean, best, and worst

over all steepness values for each n. We set λ to 0.4 as

this allows for stable training with n > 128. To keep the

evaluation feasible, we reduce the number of steps during

training to 104, compared to the 106 iteration in Table 1.

Again, we use the Adam optimizer with a learning rate of

10−3.5.

In the first two columns of Table 3, we show a head-to-head

comparison with the setting in Table 1 with λ = 0.25 and

λ = 0.4 for n = 32. Trained for 106 steps, the EM5 accu-

racy is 85.4%, while it is 78.2% after 104 steps. Increasing

λ from 0.25 to 0.4 improves the EM5 accuracy from 78.2%
to 80.97%.

This also demonstrates that already at this scale, a larger λ,

i.e., a stronger activation replacement trick, can improve the

overall accuracy of a bitonic sorting network compared to

training with λ = 0.25.

As the size of training tuples n increases, this also increases

the overall number of observed images during training.

Therefore, in the left half of Table 3, we consider the accu-

racy for a constant total of observed images per iteration,

i.e., for n×batch size = 4096 (e.g., for n = 32 this results

in a batch size of 128, while for n = 1024, the batch size is

only 4). In the right half of Table 3, we consider a constant

batch size of 4.

With increasing n, the accuracy of our model increases even

for a constant number of observed images even though it

has to operate on very small batch sizes. This shows that

training with larger ordered sets results in better accuracy.

This suggests that, if possible, larger n should be prioritized

over larger batch sizes and that good results can be achieved

by using the largest possible n for the available data to learn

from all available information.

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Table 4: Runtimes, memory requirements, and number of layers for sorting n elements. Runtimes reported for an Nvidia

GTX 1070. We include NeuralSort (Grover et al., 2019), FastRank (Blondel et al., 2020), and OT Sort (Cuturi et al., 2019).

Differentiable Odd-Even Sort Differentiable Bitonic Sort NeuralSort FastRank OT Sort

n GPU CPU Memory # Layers GPU CPU Memory # Layers GPU CPU CPU CPU

4 69ns 1.9µs 1KB 4 52ns 1.3µs 840B 3 145ns 7.1µs 189µs 1.0ms

16 1.2µs 54µs 42KB 16 759ns 40µs 28KB 10 396ns 11µs 215µs 7.5ms

32 7.4µs 309µs 315KB 32 3.5µs 159µs 152KB 15 969ns 13µs 303µs 17ms

128 493µs 19ms 20.2MB 128 97µs 5ms 4.1MB 28 12µs 177µs 834µs 55ms

1 024 660ms 31 s 4.9GB 1 024 15ms 1.7 s 549MB 55 1.2ms 11ms 4.8ms 754ms

5.3. Ablation Study and Hyperparameter Sensitivity

To assess the impact of the proposed activation replacement

trick (ART), we evaluate both architectures with and with-

out ART at λ = 0.25 in Table 5. The accuracy improves by

using the ART for small as well as for large n. For large

n, the activation replacement trick has a greater impact on

the performance of both architectures. In Figure 4, we eval-

uate the sensitivity of the differentiable odd-even sorting

network to the steepness hyperparameter s. For a broad

range of s, the performance is stable. In Figure 5, we eval-

uate both differentiable sorting networks for varying ART

intensities λ. Here, performance increases with larger λs

(i.e., with a stronger ART). For λ > 0.5, the performance

drops as ϕ converges to a discrete step function for λ → 1.

5.4. Top-k Supervision

In addition to the sorting supervision task, we also bench-

mark our method on top-k supervision following Cuturi et al.

(2019) and Blondel et al. (2020). Here, we train two models

(ResNet18 and a vanilla CNN with 4 convolutional and 2

fully connected layers) on CIFAR-10 as well as CIFAR-100

and compare the results to training with the Softmax Cross-

Entropy loss. Further details on the experimental setting can

be found in Supplementary Material B.4. Following Cuturi

et al. (2019) and Blondel et al. (2020), we focus on k = 1.

We present the results for this in Table 6. Overall, Softmax

Cross-Entropy and our differentiable top-k operator perform

similar even in the 100 class classification problem.

5.5. Runtime and Memory Analysis

Finally, we report the runtime and memory consumption of

differentiable sorting networks in Table 4. For GPU run-

times, we use a native CUDA implementation and measure

the time and memory for sorting n input elements including

forward and backward pass. For CPU runtimes, we use a

PyTorch (Paszke et al., 2019) implementation. For a small

number of input elements, the odd-even and bitonic sorting

networks have around the same time and memory require-

ments, while for larger numbers of input elements, bitonic

is much faster than odd-even.

Table 5: Ablation Study: Evaluation of the ART (λ = 0
vs. λ = 0.25) for n = 4 and n = 32 on the MNIST and the

SVHN data set. The displayed metric is EW.

n = 4 n = 32

Setting / λ 0 0.25 0 0.25

Odd-Even (MNIST) 94.5 94.994.994.9 61.5 69.169.169.1

Bitonic (MNIST) 93.6 95.395.395.3 62.8 67.367.367.3

Odd-Even (SVHN) 77.3 85.585.585.5 28.5 36.636.636.6

Bitonic (SVHN) 78.1 85.385.385.3 35.0 42.442.442.4

Figure 4: Sensitivity of the odd-even sorting network to

varying steepness s for n = 16.

10 15 20 25 30 35 40

Steepness s

0.00

0.25

0.50

0.75

E
W

A
cc

.

Figure 5: Comparing different ART strengths λ for n = 8
(top) and n = 16 (bottom). Training with λ ≤ 0.5 is stable.

0.0 0.2 0.4 0.6 0.8 1.0

ART Intensity λ

0.0

0.2

0.4

0.6

0.8

E
M

A
cc

.

Odd-Even

Bitonic

Table 6: Top-k classification averaged over 10 runs.

Setting Softmax CE Diff. Top-k

CIFAR-10, Vanilla CNN 87.2% 88.0%88.0%88.0%

CIFAR-10, ResNet18 91.0%91.0%91.0% 90.9%

CIFAR-100, Vanilla CNN 58.2%58.2%58.2% 56.3%

CIFAR-100, ResNet18 61.9% 63.3%63.3%63.3%

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

The asymptotic runtime of differentiable odd-even sort is in

O(n3) and for bitonic sort the runtime is in O(n2(log n)2).
Note that, for this, the matrix multiplication in Equation 8 is

a sparse matrix multiplication. We also report runtimes for

other differentiable sorting and ranking methods. For large

n, we empirically confirm that FastRank (Blondel et al.,

2020) is the fastest method, i.a., because it produces only

output ranks / sorted output values and not differentiable

permutation matrices. Note that differentiable sorting net-

works also produce sorted output values. Computing only

sorted output values is significantly faster than computing

the full differentiable permutation matrices, however, for

the effective cross-entropy training objective, differentiable

permutation matrices are necessary.

6. Conclusion

In this work, we presented differentiable sorting networks

for training based on sorting and ranking supervision. To

this end, we approximated the discrete min and max opera-

tors necessary for pairwise swapping in traditional sorting

network architectures with their respective differentiable

softmin and softmax operators. We proposed an activa-

tion replacement trick to avoid the problems of vanishing

gradients and well as blurred values. We showed that it

is possible to robustly sort and rank even long sequences

on large input sets of up to at least 1024 elements. In the

future, we will investigate differentiable sorting networks

for applications such as clustering and learning-to-rank.

Acknowledgment

The second author gratefully acknowledges the financial sup-

port from Land Salzburg within the WISS 2025 project IDA-

Lab (20102-F1901166-KZP and 20204-WISS/225/197-

2019).

References

Adams, R. P. and Zemel, R. S. Ranking via sinkhorn propa-

gation. arXiv preprint arXiv:1106.1925, 2011.

Ajtai, M., Komlós, J., and Szemerédi, E. An 0(n log n)

sorting network. In Proceedings of the Fifteenth Annual

ACM Symposium on Theory of Computing, 1983.

Baddar, S. W. A.-H. and Batcher, K. E. Designing sorting

networks: A new paradigm. Springer Science & Business

Media, 2012.

Batcher, K. E. Sorting networks and their applications. In

Proceedings of the April 30–May 2, 1968, spring joint

computer conference, pp. 307–314, 1968.

Bidlo, M. and Dobeš, M. Evolutionary development of

growing generic sorting networks by means of rewriting

systems. IEEE Transactions on Evolutionary Computa-

tion, 2019.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast

Differentiable Sorting and Ranking. In International

Conference on Machine Learning (ICML), 2020.

Ceterchi, R. and Tomescu, A. I. Spiking neural p systems –

a natural model for sorting networks. In Proc. of the Sixth

Brainstorming Week on Membrane Computing, 2008.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable ranking

and sorting using optimal transport. In Proc. Neural

Information Processing Systems (NIPS), 2019.

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and

Shet, V. Multi-digit number recognition from street view

imagery using deep convolutional neural networks. arXiv

preprint arXiv:1312.6082, 2013.

Govindaraju, N. K., Gray, J., Kumar, R., and Manocha,

D. Gputerasort: high performance graphics co-processor

sorting for large database management. In SIGMOD

Conference, 2006.

Gowanlock, M. and Karsin, B. A hybrid cpu gpu approach

for optimizing sorting throughput. Parallel Computing,

85, 02 2019.

Graves, A., Wayne, G., and Danihelka, I. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochas-

tic Optimization of Sorting Networks via Continuous

Relaxations. In International Conference on Learning

Representations (ICLR), 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-

ing deep network training by reducing internal covariate

shift. In International Conference on Machine Learning

(ICML), 2015.

Kingma, D. and Ba, J. Adam: A method for stochastic

optimization. In International Conference on Learning

Representations (ICLR), 2015.

Knuth, D. E. The Art of Computer Programming, Volume

3: (2nd Ed.) Sorting and Searching. Addison Wesley

Longman Publishing Co., Inc., 1998.

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten

digit database. ATT Labs, 2, 2010. URL http://yann.

lecun.com/exdb/mnist.

Lim, C. H. and Wright, S. A box-constrained approach for

hard permutation problems. In International Conference

on Machine Learning (ICML), 2016.

Liu, T.-Y. Learning to rank for information retrieval. 2011.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Mena, G., Belanger, D., Linderman, S., and Snoek, J. Learn-

ing latent permutations with gumbel-sinkhorn networks.

In International Conference on Learning Representations

(ICLR), 2018.

Metta, V. P. and Kelemenova, A. Sorting using spiking

neural p systems with anti-spikes and rules on synapses.

In International Conference on Membrane Computing,

2015.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and

Ng, A. Y. Reading digits in natural images with unsu-

pervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2011.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,

Bai, J., and Chintala, S. Pytorch: An imperative style,

high-performance deep learning library. In Proc. Neural

Information Processing Systems (NIPS), pp. 8024–8035.

2019.

Vinyals, O., Bengio, S., and Kudlur, M. Order matters:

Sequence to sequence for sets. In Bengio, Y. and LeCun,

Y. (eds.), International Conference on Learning Repre-

sentations (ICLR), 2016.

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H., Wei,

W., and Pfister, T. Differentiable top-k with optimal trans-

port. In Proc. Neural Information Processing Systems

(NIPS), 2020.

