
Fuzzy Frequent Item Set Mining based on Recursive Elimination

Xiaomeng Wang, Christian Borgelt and Rudolf Kruse
Department of Knowledge Processing and Language Engineering

School of Computer Science, Otto-von-Guericke-University of Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

Email: {xwang,borgelt,kruse}@iws.cs.uni-magdeburg.de

Abstract

Real life transaction data often miss some occurrences
of items that are actually present. As a consequence some
potentially interesting frequent item sets cannot be discov-
ered, since with exact matching the number of supporting
transactions may be smaller than the user-specified mini-
mum. In order to allow approximate matching during the
mining process, we propose an approach based on trans-
action editing. Our recursive algorithm relies on a step by
step elimination of items from the transaction database to-
gether with a recursive processing of transaction subsets.
This algorithm works without complicated data structures
and allows us to find fuzzy frequent item sets easily.

1. Introduction

In many applications of frequent item set mining the con-
sidered transactions do not contain all items that are actu-
ally present. An example is the analysis of alarm sequences
in telecommunication networks, where each alarm can be
treated as an item. Unfortunately, the alarms often get de-
layed, lost, or repeated due to noise, transmission errors,
failing links etc. If alarms do not get through or are delayed,
they can be missing from the transaction (time window) its
associated items (alarms) occur in. If we used exact match-
ing in this case, the support of some item sets, which could
be frequent if the items did not get lost, may be smaller than
the user-specified minimum. This leads to a possible loss of
potentially interesting frequent item sets.

In order to cope with such missing information, we intro-
duce the notion of a “fuzzy” frequent item set. In contrast
to other work on fuzzy association rules, where a fuzzy ap-
proach is used to deal with quantitative items/attributes, we
use the term “fuzzy” to denote an item set that may not be
found exactly in all supporting transactions, but only ap-
proximately. We propose an algorithm that relies on a step
by step elimination of items together with a recursive pro-

cessing of transaction subsets. Due to its simple data struc-
ture, transaction editing is straightforward, thus allowing ef-
fective fuzzy mining by inserting missing items.

2. Fuzzy frequent item sets

Let us briefly recall the problem of frequent item set min-
ing: let I = {i1, ..., in} be the set of items in a database D
consisting of transactions T = (tid,X) where tid is a trans-
action identifier and X ⊆ I. A transaction T = (tid,X) is
said to contain an item set Y if Y ⊆ X . The support of Y , de-
noted as s(Y ), is the number of transactions in D containing
item set Y . Given a transaction database D and a support
threshold smin, an item set Y is called frequent if and only if
s(Y ) ≥ smin. According to this classical definition, a trans-
action T contributes to the support of an item set Y either
with 1 if T contains the all items in Y , or with 0 if not.

Motivated by the problem stated above, we define a
“fuzzy frequent item set” by allowing approximate match-
ing instead of the exact matching reviewed above. Preced-
ing this, however, we introduce two additional notions.
1. Edit costs: The distance between two item sets can be
defined as the costs of the cheapest sequence of edit oper-
ations needed to transform one item set into the other [8].
Here we consider only insertions, since they are very easy
to implement with our algorithm (see below).1 Different
items can have different insertion costs. For example, in
telecommunication networks different alarms can have a
different probability of getting lost: usually alarms origi-
nating in lower levels of the module hierarchy get lost more
easily than alarms originating in higher levels. Therefore
the former can be associated with lower insertion costs than
the latter. The insertion of a certain item may also be com-
pletely inhibited by assigning a very high insertion cost.
2. Transaction weight: Each transaction T in the original
database is associated with a weight w(T ); the initial weight

1Note that deletions are implicit in the mining process anyway. Only
replacements are an additional case we do not consider here.



of each transaction is 1. After each insertion of an item i into
a transaction, its weight is “penalized” with the cost c(i) as-
sociated with the insertion of this item. Formally, this can
be described by a combination function. The new weight
of a transaction T after editing is w{i}(T ) = f (w(T ),c(i)),
where f is a function that combines the weight w(T ) be-
fore editing and the insertion cost c(i). There is a wide
variety of combination functions that may be used, for in-
stance, any t-norm. For simplicity, we use multiplication,
i.e., w{i}(T ) = w(T ) · c(i), but this is a more or less arbi-
trary choice. Note, however, that in this case lower val-
ues for the cost c(i) mean higher costs as they penalize
the weight more. Note also that the above definition can
easily be extended to the insertion of multiple items as
w{i1,...,im}(T ) = w(t) ·∏m

k=1 c(ik). It should be clear that it
is w /0(T ) = 1 due to the initial weighting w(T ) = 1.

How many insertions into a transaction are allowed can
be limited by a user-specified lower bound wmin for the
transaction weight. If the weight of a transaction falls below
this threshold, it is not considered in further mining steps
and thus no insertions can be done on it anymore.

Definition 1 Given a user-specified lower bound wmin
for the transaction weight, a transaction T = (tid,X) fuzzy
contains an item set Y ⊆ I if wY\(X∩Y )(T ) ≥ wmin. In this
case T contributes to the support of Y with wY\(X∩Y )(T ).

Definition 2 Given a database D = {T1, . . . ,Tr} of trans-
actions Tk = (k,Xi), 1≤ k ≤ r, and a support threshold smin,
an item set Y ⊆ I is a fuzzy frequent item set if ŝ(Y )≥ smin,
where ŝ(Y ) = ∑

r
k=1 wY\(Xk∩Y )(Tk) is the fuzzy support of Y .

The basic idea of our approach is to try to “complete”
transactions by inserting items during the mining process.
Thus we allow for a certain number of mismatches, by
which we account for possibly missing items. That is, a
transaction still contributes to the support of an item set,
though only to a reduced degree, if it contains only part of
the items in the set. As an example consider the transaction
database in Table 1 on the right, in particular, the 2nd trans-
action (ecd), the 5th (cb), the 8th (ecb) and the 9th (cd). If
we want to determine the support of the item set “ec”, the
second and the eighth transaction contribute to the support
with a weight of 1 each. However, the 5th transaction (cb)
and the 9th (cd) can also be made to contain the item set
“ec” if we insert item e into them. Due to this insertion, they
should not contribute with full weight, though, but only to
some degree. Therefore these two transactions are counted
with penalized weights for the support of item set “ec”.

In the following, we first present an algorithm called re-
cursive elimination, which is extended to our fuzzy frequent
item set mining. In order to ease understanding our algo-
rithm, we describe it with exact matching first and transfer
it to the fuzzy case later on. In the description we focus
on implementation aspects, since the fuzzy version strongly
relies on the data structures used in the implementation.

1 a d f
2 c d e
3 b d
4 a b c d
5 b c
6 a b d
7 b d e
8 b c e g
9 c d f
10 a b d

g 1
f 2
e 3
a 4
c 5
b 7
d 8

a d
e c d
b d
a c b d
c b
a b d
e b d
e c b
c d
a b d

Table 1. Transaction database (left), item fre-
quencies (middle), and reduced transaction
database with items in transactions sorted
ascendingly w.r.t. their frequency (right).

3. Recursive elimination

Methods for mining frequent item sets have been studied
extensively. Among the best-known algorithms are Apri-
ori [1, 2], Eclat [11, 4], and FP-growth [7]. Here we con-
sider recursive elimination [5] (Relim for short), which uses
data structures very similar to those of H-Mine [10], even
though it was developed independently and finds the fre-
quent item sets in a different order. Inspired by the FP-
growth algorithm, but working without a prefix tree repre-
sentation, Relim processes the transactions directly, orga-
nizing them merely into singly linked lists.

3.1. Preprocessing and data representation

Recursive elimination preprocesses the transaction
database similar to several other algorithms for frequent
item set mining: in an initial scan it determines the fre-
quencies of the items (support of single element item sets).
All infrequent items—that is, all items that appear in fewer
transactions than a user-specified minimum number—are
discarded from the transactions, since they can obviously
never be part of a frequent item set. In addition, the items
in each transaction are sorted in ascending order w.r.t. their
frequencies in the database. Although the algorithm does
not require this specific order, experiments showed that it
leads to much shorter execution times than a random or-
der. This preprocessing is demonstrated in Table 1, the left
of which shows an example transaction database. The fre-
quencies of the items in this database, sorted ascendingly,
are shown in the table in the middle. If we are given a user
specified minimum support of 3 transactions, items f and
g can be discarded. After doing so and sorting the items
in each transaction ascendingly w.r.t. their frequencies we
obtain the reduced database shown in Table 1 on the right.

Relim uses very simple data structures: each transaction
is represented as an array of item identifiers (integer num-



bers). The initial transaction database is turned into a set of
transaction lists, with one list for each item. These lists are
stored in a simple array, each element of which contains a
support counter and a pointer to the head of the list. The list
elements consist only of a successor pointer and a pointer
to (or rather into, see below) the transaction. The transac-
tions are inserted one by one into this structure by simply
using their leading item as an index. However, the leading
item is removed from the transaction, that is, the pointer in
the transaction list element points to the second item. Note
that this does not lose any information as the first item is
implicitly represented by the list the transaction is in.

As an illustration, Figure 1 shows, at the very top, how
the (reduced) database of Table 1 is represented. E.g., the
first list, corresponding to item e, contains the 2nd, 7th, and
8th transaction, with item e removed. The counter in an ar-
ray element states the number of transactions starting with
the corresponding item (3 for item e). Note that this counter
is not always equal to the length of the associated list, al-
though this is the case for the representation of the initial
database. Differences result from (shrunk) transactions that
contain no other items thus do not appear in the list.

3.2. Recursive processing

Recursive elimination works as follows: The array of
lists that represents a (reduced) transaction database is “dis-
assembled” by traversing it from left to right, processing the
transactions in a list in a recursive call to find all frequent
item sets that contain the item the list corresponds to. After
a list has been processed recursively, its elements are either
reassigned to the remaining lists or discarded (depending on
the transactions they represent), and the next list is worked
on. Since all reassignments are made to lists that lie to the
right of the currently processed one, the list array will fi-
nally be empty (will contain only empty lists).

Before a transaction list is processed, however, its sup-
port counter is checked, and if it exceeds the user-specified
minimum support, a frequent item set is reported, consist-
ing of the item associated with the list and a possible prefix
associated with the whole list array (see below).

One transaction list is processed as follows: for each list
element the leading item of its (shrunk) transaction is re-
trieved and used as an index into the list array; then the ele-
ment is added at the head of the corresponding list. In such
a reassignment, the leading item is removed from the trans-
action, which is implemented as a simple pointer increment.
In addition, a copy of the list element (with the leading
item of the transaction already removed by the pointer in-
crement) is inserted in the same way into an initially empty
second array of transaction lists. (Note that only the list el-
ement is copied, not the transaction. Both list elements, the
reassigned one and the copy, refer to the same transaction.)

initial databasee a c b d
3 4 2 1 0

c d
b d
c b

d
c b d
b d
b d

b
d

d

1h
e a c b d
0 4 4 2 0

d
c b d
b d
b d

b
d
b
d

d
d

prefix e
e a c b d
0 0 2 1 0

b
d

d

2h
e a c b d
0 0 5 4 1

b d
b
d
b
d

d
d
d
d

prefix a
e a c b d
0 0 1 2 1

b d d
d

3h
e a c b d
0 0 0 7 3

d
d
d
d
d

prefix c
e a c b d
0 0 0 3 2

d

4h
e a c b d
0 0 0 0 8

prefix b
e a c b d
0 0 0 0 5

Figure 1. Procedure of the recursive elimina-
tion with the modification of the transaction
lists (left) as well as the construction of the
transaction lists for the recursion (right).

Since the elements of a transaction list all share an item
(given by the list index), this second array collects the sub-
set of transactions that contain a specific item (also called
a projection of a transaction database w.r.t. a specific item)
and represents them as a set of transaction lists. This set
of transaction lists is then processed recursively, noting the
item associated with the list it was generated from as a com-
mon prefix of all frequent item sets found in the recursion.
After the recursion the next transaction list is reassigned,
copied, and processed in a recursive call and so on.

The process is illustrated for the root level of the recur-
sion in Figure 1, which shows the transaction list represen-
tation of the initial database at the very top. In the first step
all item sets containing the item e are found by processing
the leftmost list. The elements of this list are reassigned to
the lists to the right (grey list elements) and copies are in-
serted into a second list array (shown on the right). This
second list array is then processed recursively, before pro-
ceeding to the next list, i.e., the one for item a.



A list element representing a (shrunk) transaction with
only one item is neither reassigned nor copied, because the
transaction is empty after the leading item is removed. For
such elements only the counter in the lists array element is
incremented. Such a situation occurs, for example, when
the list corresponding to the item a is processed. The first
list element refers to a (shrunk) transaction that contains
only item d and thus only the counter for item d (grey) is
incremented. For the same reason only one of the five ele-
ments in the list for item c is reassigned/copied in step 3.

After four steps all transaction lists have been processed
and the lists array has become empty. Note that the list
for the last element (referring to item d) is always empty,
because there are no items left that could be in a transaction
and thus all transactions are represented in the counter.

4. Fuzzy mining

For fuzzy frequent item set mining we extend Relim with
the two notions introduced in Section 2—edit costs and
transaction weights. To store a transaction weight we add
a component to each list element described in Section 3.2.

The list array that represents a (reduced) transaction
database is processed in basically the same way as before.
The most important modification lies in the construction
of the subset of transaction lists that represents the pro-
jected transaction database w.r.t. a specific item. Figure 2
shows how the extended algorithm (called Relx) works for
the root level of the recursion. We consider the same trans-
action database as in Figure 1. In this example we use the
same cost factor c(i) = 0.5 for all items. Hence a trans-
action weight is updated after an insertion according to
w′ = w ·0.5. Furthermore, we assume wmin = 0 and smin = 3.

Before a transaction list is processed, its support counter
in the array element is checked. Note that this support
counter is now even less an indicator of the number of the
elements of the transaction list, as it states the sum of the
weights of list elements, several of which may differ from
the initial weight of 1 (cf. Figure 2). In the first step all
item sets containing the item e are found by processing the
leftmost list. Since the support counter is 3 ≥ smin, e is re-
ported as a frequent item set. Reassigning the elements of
this list to the lists on the right is the same as before (cf. Fig-
ure 1 left), but the copies inserted into a second list array are
different now (compare Figure 1 right and Figure 2 right):
we copy not only the elements of the leftmost list with a
weight of 1 (grey list elements, they all contain item e), but
also the elements of the lists corresponding to items a, c,
and b with a penalized weight of 0.5 (white list elements,
0.5 ≥ wmin). Thus we virtually insert item e into the corre-
sponding transactions. Obviously with such operations we
have more transactions to process in the recursion and hence
a (considerably) longer execution time is to be expected.

initial databasee a c b d ε

3 4 2 1 0 0

c d
b d
c b

d
c b d
b d
b d

b
d

d

1h
e a c b d ε

0 4 4 2 0 0

d
c b d
b d
b d

b
d
b
d

d
d

prefix e
e a c b d ε

0 2 3 3/2 0 0

d
c b d
b d
b d

b
d
b
d

d
d

2h
e a c b d ε

0 0 5 4 1 0

b d
b
d
b
d

d
d
d
d

prefix a
e a c b d ε

0 0 3 3 1 0

b
b
d
b
d

d d
d
d
d

3h
e a c b d ε

0 0 0 7 3 0

d

d
d
d
d

prefix c
e a c b d ε

0 0 0 5 5/2 0

d

d
d
d
d

4h
e a c b d ε

0 0 0 0 8 2

×8

prefix b
e a c b d ε

0 0 0 0 13/2 2

×8

Figure 2. Procedure of the recursive elimina-
tion with the insertion of missing items. Since
insertions of all items are possible, the subset
(right) always has the same structure as the
main set (left). The support values, however,
differ due to the transaction weighting.

Due to the insertion, in the projected transaction database
w.r.t. item e (i.e. the list array resulting from the copy step
mentioned above), the support counter of the list corre-
sponding to item a is 4 · 0.5 = 2 and that of the list corre-
sponding to item c is (2 ·1)+(2 ·0.5) = 3, and so on. Since
s(c)≥ smin, we have that item c is frequent in this projected
transaction database. Combining it with the associated pre-
fix e yields the fuzzy frequent item set ec (up to now we
found two frequent item sets—e and ec). This list array is
then processed recursively before working on the next list,
i.e., the one for item a in the main set (Figure 2 left).

Note that there are now list elements referring to empty
transactions. In contrast to exact mining, mining fuzzy fre-



census number of sets time/s

Relim (original data) 244 0.46
Relim (with deletions) 238 0.46
Relx (no insertion) 244 0.47
Relx (wmin = 0.4) 1340 4.58
Relx (wmin = 0.2) 2510 13.14

T10I4D100K number of sets time/s

Relim 10 0.01
Relx (no insertion) 10 0.03
Relx (wmin = 0.4) 55 0.14
Relx (wmin = 0.2) 68 0.39

Table 2. Results on census and T10I4D100K.

quent item sets requires that we also reassign and copy a
list element representing a (shrunk) transaction with only
one item. Even though the transaction is empty after the
leading item is removed, it has to be maintained as it can be
processed further by inserting items. Therefore such a list
element is reassigned/copied—as an empty transaction—to
the list associated with the only item it contains. An ex-
ample of this can be seen when the list corresponding to
item a is processed (step 2). The first list element refers to
a (shrunk) transaction that contains only item d. Thus the
counter for item d is incremented and an empty element is
kept in the list associated with item d (both reassignment
and copy), since items c and/or b could be inserted later.

In addition, a new element labeled ε is added to the array
of transaction lists. This new list is needed when an empty
transaction has to be reassigned/copied. Since an empty
transaction has no leading item, it cannot be inserted into
one of the lists corresponding to the items of the database. It
cannot be discarded either, because in later processing items
may be inserted into it, and then it has to be considered in
the corresponding recursion. Formally, ε can be seen as an
additional pseudo-item, which is contained in all transac-
tions, but which is not to be reported as part of a frequent
item set. An example of how this new array element is used
can be seen when the list corresponding to item b is pro-
cessed (step 4). In this list there are two empty transactions,
which are reassigned and copied to the additional lists ar-
ray element labeled with ε. Even though these transactions
are now empty, they have to be considered when processing
item d, because this item may be inserted into them.

5. Experimental results

To evaluate our algorithm, we implemented it in C and
ran experiments on a laptop with a 1.8 GHz Intel Pen-
tium Mobile processor and 1 GB main memory using Win-
dows XP Professional SP2. Results obtained with the orig-

inal program (exact frequent item set mining) are labeled
“Relim”, those for fuzzy frequent item set mining “Relx”.
In all experiments we updated the weight of a transaction by
multiplying it with an insertion cost factor (if necessary).

In an initial test, we used the very simple transac-
tion database shown in Table 1, using a minimum support
of 30%, to check the basic functionality of the approach.
When mining this database with exact matching (i.e. with-
out insertions) 11 frequent item sets are found. With fuzzy
matching based on uniform insertion costs of 0.5 for all
items and a threshold of 0.4 for the transaction weight (thus
allowing exactly one insertion), 23 item sets are found. The
item set ec, which we used as an example in Section 2, is
found with fuzzy matching, but not with exact matching.
On the other hand, if the insertion of item e is ruled out by
setting c(e) = 0, the item set ec is not found anymore.

To check the performance on larger data sets, we tested
our programs on the data sets census [3] and T10I4D100K
[12], with a minimum support of 30% for census and 5%
for T10I4D100K. The insertion cost factor was chosen to
be 0.5 for all items in both cases. The number of frequent
item sets discovered and the corresponding execution time
(in seconds) are shown in Table 2. If insertions were inhib-
ited, the number of sets reported by Relx coincides with that
of Relim, proving the sanity of the implementation. How-
ever, as was to be expected, Relx needs more time as it has
to invest additional effort into managing empty transactions
(cf. Section 4; an additional factor is the computation of pe-
nalized weights, which takes place nevertheless).

Results produced by Relx with different thresholds for
the transaction weight (allowing 0 to 2 insertions) show—
not surprisingly—that with decreasing threshold the num-
ber of frequent item sets and the execution time increases.
Frequent item sets that could not be found before are now
discovered. Note, however, that the frequent item sets now
have fractional support due to the transaction weighting.
Note also that the execution times are still bearable, even
though the insertions make it necessary to process a much
higher number of transactions in the recursion.

Finally, we ran the program on data from which items
had been deleted randomly to check the effectiveness of the
proposed algorithm. Here we present only an example of
the results. We randomly deleted 4% of item “hours=full-
time” and 3% of the item “sex=female” from the census
data set to simulate the missing items and then mined with
a minimum support of 30%. We ran Relim on both the un-
modified and the preprocessed data. With the former 244
frequent itemsets were found, while only 238 of them were
detected in the later (cf. Table 2). That is, due to missing oc-
currences of two items, we lost 6 frequent itemsets. When
we used Relx with an insertion cost of 0.5 for both items
and a threshold of transaction weight of 0.4, we could find
the complete item sets that were obtained by Relim from the



unmodified data. In fact, a superset of the original frequent
item sets were reported. However, we have to accept this as
an inherent feature of the insertion concept. Still the results
are encouraging, and prove that our algorithm is capable of
rediscovering frequent itemsets, which are lost with classi-
cal approaches due to missing information in the data.

6. Conclusions

Frequent item set mining on real-world data with missing
information calls for fuzzy mining. Facing this challenge,
we introduced a concept of fuzzy frequent item sets based
on transaction editing. The algorithm we developed for
mining fuzzy frequent item sets is based on deleting items,
editing transactions, recursive processing, and reassigning
transactions. The algorithm is very simple, works without
complicated data structures, and performs reasonably well.

Some other work in this direction like in [6], [9], per-
form approximate matching only by counting the number
of different items in the two item sets to be compared, and
use an Apriori-like algorithm. The algorithm in [9], as re-
ported, performed much slower (about 100 times or even
more) when the authors tried to increase the allowed num-
ber of mismatches from 1 to 2. Compared to this our ap-
proach provides two main advantages: (1) Our approximate
matching is based on a more general scheme—edit oper-
ations. It allows the individual treatment of every single
item, which enables a better involvement of background
knowledge. (2) It avoids scanning the original database
many times (which is the case in Apriori-like algorithms).
Instead it looks for (locally) frequent items in recursively
projected databases and combines them with the associated
prefix (which is the frequent item set found so far) to yield
the frequent item sets. Thus it is more efficient, as can be
seen in Table 2. The execution time in the case of allowing
two insertions is only about thrice that for one insertion.

Up to now, we only investigated how to edit an item set
by insertion. However, there are also other interesting edit-
ing operations. If we take the order of items into account,
operations like exchanging the order of two items are defi-
nitely worth to be studied.

References

[1] R. Agrawal, T. Imielienski, and A. Swami. Min-
ing Association Rules between Sets of Items in Large
Databases. Proc. Conf. on Management of Data, 207–
216. ACM Press, New York, NY, USA 1993

[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A. Verkamo. Fast Discovery of Association
Rules. pages 307–328 in: U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, eds. Advances

in Knowledge Discovery and Data Mining. AAAI
Press / MIT Press, Cambridge, CA, USA 1996

[3] C.L. Blake and C.J. Merz. UCI Repository of Machine
Learning Databases. Dept. of Information and Com-
puter Science, UC Irvine, CA, USA 1998
http://www.ics.uci.edu/˜mlearn/MLRepository.html

[4] C. Borgelt. Efficient Implementations of Apriori and
Eclat. Proc. 1st IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI 2003, Mel-
bourne, FL). CEUR Workshop Proc. 90, Aachen, Ger-
many 2003. http://www.ceur-ws.org/Vol-90/

[5] C. Borgelt. Keeping Things Simple: Finding Frequent
Item Sets by Recursive Elimination. (unpublished)
http://fuzzy.cs.uni-magdeburg.de/˜borgelt/relim.html

[6] Y. Cheng, U. Fayyad, and P.S. Bradley. Efficient Dis-
covery of Error-Tolerant Frequent Itemsets in High
Dimensions. Proc. 7th Int. Conf. on Knowledge Dis-
covery and Data Mining (KDD’01, San Francisco,
CA), 194–203. ACM Press, New York, NY, USA 2001

[7] J. Han, H. Pei, and Y. Yin. Mining Frequent Pat-
terns without Candidate Generation. Proc. Conf. on
the Management of Data (SIGMOD’00, Dallas, TX).
ACM Press, New York, NY, USA 2000

[8] P. Moen. Attribute, Event Sequence, and Event Type
Similarity Notions for Data Mining. Ph.D. Thesis,
Report A-2000-1. Department of Computer Science,
University of Helsinki, Finland 2000

[9] J. Pei, A.K.H. Tung, and J. Han. Fault-Tolerant
Frequent Pattern Mining: Problems and Challenges.
Proc. ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMK’01,
Santa Babara, CA). Santa Babara, CA, May 2001

[10] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang.
H-Mine: Hyper-Structure Mining of Frequent Patterns
in Large Databases. Proc. IEEE Conf. on Data Mining
(ICDM’01, San Jose, CA), 441–448. IEEE Press, Pis-
cataway, NJ, USA 2001

[11] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discov-
ery and Data Mining (KDD’97, Newport Beach, CA),
283–296. AAAI Press, Menlo Park, CA, USA 1997

[12] Synthetic Data Generation Code for Associations and
Sequential Patterns. Intelligent Information Systems,
IBM Almaden Research Center.
http://www.almaden.ibm.com/software/quest/
Resources/index.shtml


