
Improving
Naive Bayes Classifiers

Using Neuro-Fuzzy Learning1

A. Nürnberger, C. Borgelt, and A. Klose
Dept. of Knowledge Processing

and Language Engineering
Otto-von-Guericke-University of Magdeburg

Germany
andreas.nuernberger@cs.uni-magdeburg.de

Abstract

Naive Bayes classifiers are a well-known and pow-
erful type of classifiers that can easily be induced
from a dataset of sample cases. However, the
strong conditional independence and distribution
assumptions underlying them can sometimes lead
to poor classification performance. Another promi-
nent type of classifiers are neuro-fuzzy classifica-
tion systems, which derive (fuzzy) classifiers from
data using neural-network inspired learning meth-
ods. Since there are certain structural similarities
between a neuro-fuzzy classifier and a naive Bayes
classifier, the idea suggests itself to map the latter
to the former in order to improve its capabilities.

1. Introduction

Naive Bayes classifiers are well-known and powerful
classifiers that can easily be induced from a dataset
of sample cases. However, the strong conditional
independence and distribution assumptions under-
lying them can lead to poor classification perfor-
mance, because the used type of probability distri-
bution, e.g., normal distributions, may not be able
to describe the data appropriately or (some of) the
conditional independence assumptions do not hold.

Another prominent type of classifiers are neuro-
fuzzy systems, which derive (fuzzy) classifiers from
data using neural network inspired learning meth-
ods. Since there are some structural similarities
between a neuro-fuzzy classifier and a naive Bayes
classifier, the idea suggests itself to map the latter
to the former in order to improve its capabilities.

For testing and analyzing of the presented approach
we used an implementation of the NEFCLASS
(NEuro Fuzzy CLASSification) model [11], since
it was designed as an interactive classification tool.
One of our goals is to develop algorithms that can
learn automatically, but also allow a user to influ-
ence the learning and classification process, e.g. by

1Acknowledgment: The research presented in this paper
is partly funded by DFG contract KR 521/3-2.

initializing the system, and by modifying or extract-
ing knowledge.

The paper is organized as follows: In section 2.
we review naive Bayes classifiers and in section 3.
we give a brief introduction to neuro-fuzzy classi-
fication systems. Section 4. describes how a naive
Bayes classifier can be represented by a neuro-fuzzy
classifier and how it can be improved by neuro-fuzzy
learning. Section 5. discusses some implementation
aspects. Experimental evaluation and conclusions
are given in sections 6. and 7., respectively.

2. Naive Bayes Classifiers

Naive Bayes classifiers [4, 3, 7, 8] are an old and
well-known type of classifiers, i.e., of programs that
assign a class from a predefined set to an object or
case under consideration based on the values of at-
tributes used to describe this object or case. They
do so using a probabilistic approach, i.e., they try
to compute conditional class probabilities and then
predict the most probable class. To be more precise,
let C denote a class attribute with a finite domain
of m classes, i.e., dom(C) = {c1, . . . , cm}, and let
A1, . . . , An be a set of (other) attributes used to
describe a case or an object of the domain under
consideration. These other attributes may be sym-
bolic, i.e., dom(Aj) = {a(j)

1 , . . . , a
(j)
mj}, or numeric,

i.e., dom(Aj) = IR. For simplicity, we always use
the notation a

(j)
ij

for a value of an attribute Aj , in-
dependent of whether it is a symbolic or a numeric
one.2 With this notation, a case or an object can be
described by an instantiation ω = (a(1)

i1
, . . . , a

(n)
in

) of
the attributes A1, . . . , An and thus the universe of
discourse is Ω = dom(A1)× . . .× dom(An).

For a given instantiation ω, a naive Bayes classifier
tries to compute the conditional probability

P (C = ci | ω)

= P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

for all ci and then predicts the class ci for which
this probability is highest. Of course, it is usually
impossible to store all of these conditional prob-
abilities explicitly, so that a simple lookup would
be all that is needed to find the most probable
class. If there are numeric attributes, this is ob-
vious (we need some parameterized function then).
But even if all attributes are symbolic, such an ap-
proach most often is infeasible: We have to store a
class (or a class probability distribution) for each
point of the Cartesian product of the attribute

2To be able to use this notation for numeric attributes,
we simply have to choose an appropriate uncountably infinite
index set Ij , from which the index ij is to be taken.

domains, whose size grows exponentially with the
number of attributes. To circumvent this problem,
naive Bayes classifiers exploit—as their name al-
ready indicates—Bayes rule and a set of conditional
independence assumptions. With Bayes rule

P (Y | X) =
P (X | Y) · P (Y)

P (X)
,

where X and Y are events, the conditional proba-
bilities are inverted. That is, naive Bayes classifiers
consider3

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

| C = ci)P (C = ci)

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

Of course, for this inversion to be always possi-
ble, the probability density function f(A1 = a

(1)
i1

,

. . . , An = a
(n)
in

) must be strictly positive.

There are two observations to be made about the
inversion carried out above. In the first place, we
can neglect the denominator of the fraction on the
right, since for a given case or object to be classified,
it is fixed and therefore does not have any influence
on the class ranking (which is all we are interested
in). In addition, its influence can always be restored
by normalizing the distribution on the classes, i.e.,
we can exploit

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
m∑

j=1

f(A1 =a
(1)
i1

, . . . , An =a
(n)
in

|C =cj)P (C = cj).

It follows that we only need to consider

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
P (C = ci)

S
f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

|C =ci),

where S is a normalization constant.

Secondly, we can see that just inverting the prob-
abilities does not buy us anything, since the prob-
ability space is just as large as it was before the
inversion. However, here the second ingredient of
naive Bayes classifiers, which is responsible for the
“naive” in their name, comes in, namely the condi-
tional independence assumptions. To exploit them,
we first apply the chain rule of probability:

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

3For simplicity, we always use a probability density func-
tion f , although this is strictly correct only, if there is at
least one numeric attribute. If all attributes are symbolic,
this should be a probability P . The only exception is the
class attribute, since it necessarily has a finite domain.

=
P (C = c1)

S

·
n∏

j=1

f
(
Aj = a

(j)
ij

∣∣∣ ∧
j−1
k=1Ak = a

(k)
ik

, C = ci

)
Now we make the crucial assumption that (given
the value of the class attribute), any attribute Aj is
independent of any other. That is, we assume that
knowing the class is enough to determine the prob-
ability (density) for a value a

(j)
ij

, i.e., that we need
not know the values of any other attributes. Of
course, this is a pretty strong assumption, which
is very likely to fail. It is truly “naive” to make
it nevertheless. However, it considerably simplifies
the formula stated above, since with it we can can-
cel all attributes Aj appearing in the conditions:

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
P (C = ci)

S

n∏
j=1

f(Aj = a
(j)
ij

| C = ci)
(1)

This is the fundamental formula underlying naive
Bayes classifiers. For a symbolic attribute Aj the
conditional probabilities P (Aj = a

(j)
ij

| C = ci) can
be stored as a simple conditional probability table.
This is feasible now, since there is only one con-
dition and hence only m · mj probabilities have to
be stored.4 For numeric attributes it is usually as-
sumed that the probability density is a Gaussian
function (a normal distribution) and hence only the
expected values µj(ci) and the variances σ2

j (ci) need
to be stored in this case. Alternatively, numeric
attributes may be discretized [2] and then treated
like symbolic attributes. In this paper, however, we
make the normal distribution assumption.

Naive Bayes classifiers can easily be induced from
a dataset of preclassified sample cases. All we
have to do is to estimate the conditional probabili-
ties/probability densities f(Aj = a

(j)
ij

| C = ci) us-
ing, for instance, maximum likelihood estimation.
For symbolic attributes, this yields

P̂ (Aj = a
(j)
ij

| C = ci) =
#(Aj = a

(j)
ij

, C = ci)

#(C = ci)
,

where #(C = ci) is the number of sample cases that
belong to the class ci and #(Aj = a

(j)
ij

, C = ci) is
the number of sample cases belonging to class ci

and having the value a
(j)
ij

for the attribute Aj . To

4Actually only m · (mj − 1) probabilities are really neces-
sary. Since the probabilities have to add up to one, one value
can be discarded from each conditional distribution. How-
ever, in implementations it is usually much easier to store all
probabilities.

ensure that the probability is strictly positive (see
above), it is assumed that there is at least one ex-
ample for each class in the dataset. Otherwise the
class is simply removed from the domain of the class
attribute. If an attribute value does not occur given
some class, its probability is either set to 1

2N , where
N is the number of sample cases, or a uniform prior
distribution of 1

N is always added to the estimated
distribution, which is then renormalized (Laplace
correction). For a numeric attribute Aj the stan-
dard maximum likelihood estimation functions

µ̂j(ci) =
1

#(C = ci)

#(C=ci)∑
k=1

a
(j)
ij(k)

for the expected value, where a
(j)
ij(k) is the value of

the attribute Aj in the k-th sample case belonging
to class ci, and

σ̂2
j (ci) =

1
#(C = ci)

#(C=ci)∑
k=1

(
a
(j)
ij(k) − µ̂j(ci)

)2

for the variance can be used.

3. Neuro-Fuzzy Classification

Fuzzy rules are well-suited to represent classifica-
tion knowledge. It is mainly the abstraction from
numbers to linguistic variables that makes them
very easy to read and to interpret. In addition,
fuzzy rules are applied in a very intuitive and com-
prehensible fashion to classify new data.

A fuzzy classification system [5] consists of a rule
base, which contains a set of fuzzy classification
rules (like the one shown below), and an inference
engine, which evaluates the rule base for the datum
to be classified. The basic idea of fuzzy classifica-
tion systems is to describe the areas of the input
space, to which different class labels are assigned,
by vague cluster prototypes. These prototypes are
defined by a number of fuzzy sets which character-
ize them in the different dimensions of the domain
under consideration. That is, a specific cluster β la-
beled with class c is defined by a fuzzy classification
rule r of the form:5

if A1 is µ1 and A2 is µ2 and . . . and An is µn

then pattern (A1, A2, . . . , An) belongs to class c,

where the µj are fuzzy sets describing the cluster β
w.r.t. attribute Aj . In addition, some approaches

5Note that in this section the letter µ denotes a fuzzy set
and not, as in the previous section, an expected value. We
regret this equivocation, but prefer it to introducing confu-
sion by deviating from the standard notation of statistics or
fuzzy set theory.

introduce so-called rule weights wr, which are in-
tended to indicate the “importance” or “reliability”
of a rule.

The degree of fulfillment of a rule is calculated from
the membership degrees of the antecedents with a
t-norm, usually >min or >prod. For example, if the
t-norm >prod is used, the degree of fulfillment or
activation or(ω) of rule r at ω ∈ Ω is defined as:

or(ω) = or

(
A1 = a

(1)
i1

, . . . , An = a
(n)
in

)
=

n∏
j=1

µj

(
Aj = a

(j)
ij

) (2)

To compute the output of a fuzzy classification sys-
tem, first the degree of fulfillment of each rule in
the rule base is calculated. Then, for each class,
the sum, the maximum or the average of the (pos-
sibly weighted) rule activations is computed. (In
the following we use the sum.) The output class
is determined by a winner-takes-all principle, i.e.,
the class with the highest accumulated (weighted)
activation is predicted.

One way to obtain fuzzy classifiers from data are
neuro-fuzzy systems, that use learning algorithms
derived from neural network theory to generate
fuzzy rules [1, 10, 12]. To test and to analyze our
approach we used an implementation of the NEF-
CLASS model [11].

Rule induction in systems like NEFCLASS, that
start with a fixed number pj of manually defined
or equally spaced fuzzy sets as a partitioning of the
domain of attribute Aj , is pretty straightforward:
First the rule antecedents are constructed. To this
end the sample cases are inspected in turn. For
each case the fuzzy sets are evaluated and for each
dimension that fuzzy set is selected, which yields
the highest membership degree. Then a rule is con-
structed for each distinct selection of fuzzy sets,
which forms the antecedent of the rule. The conse-
quent of a rule is determined from the classes of all
sample cases covered by the rule. In NEFCLASS
the activations of the rule are summed per class
over the (covered) sample cases and then the class
with the highest activation sum is chosen as the
consequent. In the learning phase the fuzzy par-
titioning of the input dimensions is adapted (i.e.,
the parameters of the fuzzy sets are changed) in or-
der to optimize the location and extension of the
clusters.

Commonly observed problems of neuro-fuzzy clas-
sifiers are either a huge number of rules (that are
hard to read and to interpret) or a sparse covering of
the input space (sometimes resulting in insufficient

generalization). Both make pruning an important
step in rule induction, which was a field of interest
of our previous research [6].

4. Representing
Naive Bayes Classifiers
by Neuro-Fuzzy Systems

A naive Bayes classifier can be mapped to a neuro-
fuzzy classification system, if the t-norm >prod is
used and some restrictions are placed on the fuzzy
sets and the rule weights. In particular, we have
to take care of the fact that probability distribu-
tions/density functions are normalized to 1, i.e.,∑

x P (x) = 1 or
∫

x
f(x) = 1.

To simplify the following explanation, let us first
assume that there is—in analogy to a naive Bayes
classifier—only one cluster βi per class ci, described
by a (fuzzy) rule ri. With this restriction, the mem-
bership functions µri,j can be used to define the
probability density functions f for each attribute
Aj given the class:

µri,j(xj = a
(j)
ij

) := f(Aj = a
(j)
ij

| C = ci) (3)

Furthermore, the rule weight wri
must represent the

prior probability of the class ci:

wri := P (C = ci). (4)

With equations (1), (2) and wri
→ wri

· S−1, we
obtain

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

= ori
(x1 = a

(1)
i1

, . . . , xn = a
(n)
in

) · wri
.

In this way the output of the (fuzzy) rule ri repre-
sents the probability that a given case belongs to
class ci in direct analogy to a naive Bayes classifier.

However, in general the membership functions de-
fined by equation (3) will not meet the usual re-
quirements for fuzzy sets, i.e., ∃x : µ(x) = 1 and
∀x : µ(x) ∈ [0, 1] (a probability density function
can assume values greater than one). Therefore we
scale each membership function µri,j of the rule ri

so that its maximum value becomes 1 and introduce
a rule weight

w(volume)
ri

:=
n∏

j=1

w
(volume)
ri,j

, (5)

where w
(volume)
ri,j

is defined as

w
(volume)
ri,j

:=
1

supa∈dom Aj
f(Aj = a|C = ci)

=
∫

a∈dom(Aj)

µri,j(Aj = a)

to take care of this scaling. Then we redefine the
rule weight to incorporate this factor

wri
→ wri

· 1

w
(volume)
ri

.

Here w
(volume)
ri,j

is the area of the appropriately

scaled fuzzy set, and therefore w
(volume)
ri is the (hy-

per)volume of the cluster described by the corre-
sponding rule. In other words, with the factor
w

(volume)
ri,j

we normalize the joint fuzzy set to in-
tegral 1 to make it interpretable as a probability
density function.

Let us now assume that a class is described by more
than one rule. With this we go beyond the limita-
tions of naive Bayes classifiers and gain flexibility to
describe the conditional distributions. Intuitively,
we split each class into a set of subclasses or clus-
ters, each of which is described by a separate (fuzzy)
rule. Nevertheless, it must be admitted that in or-
der to ensure interpretability, neuro-fuzzy systems
also introduce restrictions that are not present in
naive Bayes classifiers. Whereas in a naive Bayes
classifier there are always as many (independent)
distribution functions per dimension of the input
space as there are classes, in a neuro-fuzzy system
the number of fuzzy sets per dimension is fixed by
the chosen fuzzy partition. If there is only one rule
per class, this is no real restriction, since in most
classification problems the number of classes is very
small. With more than one rule per class, however,
this limits the degrees of freedom. It should not
be seen as a drawback, though, because too many
degrees of freedom tend to lead to overfitting and
thus poor generalization capabilities.

With more than one rule per class, the requirements
the fuzzy sets have to meet are, of course, the same
as above. Only the derivation of the rule weights is
little more complex, since we have to consider the
prior probability for each class ci and the condi-
tional probability that a sample case for this class
belongs to the cluster βik, i.e., the k-th cluster de-
scribing class ci which is represented by rule rik. For
simplicity we use two rule weights: w

(class)
rik , which

states the prior probability of class ci, and w
(cluster)
rik ,

which states the conditional probability of cluster
βik given that the case belongs to class ci. The
weights w

(class)
rik are defined as the wri

in (4) and
the weights w

(cluster)
rik are defined as

w(cluster)
rik

:= P (B = βik | C = ci). (6)

If we want to use fuzzy sets to represent the proba-
bility density functions linguistically to ensure the
interpretability of the learned (fuzzy) rules, we have

to use the scaling factors defined in equation (5). In
our approach, however, this is primarily motivated
by the fact that we want to use the NEFCLASS
program to do the learning, and NEFCLASS is pro-
grammed to handle fuzzy sets. So we finally obtain
the rule weight w∗

rik
:

w∗
rik

:=
w

(class)
rik · w(cluster)

rik

w
(volume)
rik

(7)

=
P (C = ci) · P (B = βik | C = ci)

volume(rik)
.

As shown, a naive Bayes classifier can be mapped to
a neuro-fuzzy classifier. In addition, it is possible
to use more than one cluster (i.e., more than one
rule) per class to describe more complex distribu-
tions and so we may obtain a more powerful classi-
fier. With this mapping neuro-fuzzy learning tech-
niques can be used to learn and to optimize a naive
Bayes classifier. Obviously, the learned probability
distribution functions need not match the standard
maximum likelihood estimation results, since the
goal of the applied learning algorithms is to min-
imize the number of misclassifications and not to
find the maximum likelihood estimate.

5. Implementation Aspects

To learn naive Bayes classifiers with neuro-fuzzy
learning techniques any standard environment for
neuro-fuzzy classification can be used, provided it
supports the use of rule weights. As mentioned
above, we used an implementation of NEFCLASS.
However, it has to be ensured that the learning
method does not modify the rule weights but com-
putes them according to the formulae given below.
The rule weights w∗

rik
defined in equation (7) have

to be computed during the initialization process and
after each learning step.

The rule weight w
(class)
rik := P (C = c) is computed

just once during initialization by simply counting
the number of cases di belonging to class ci in the
training set:

w(class)
rik

:=
#cases belonging to ci

#cases
.

The rule weight wrik
:= P (R = rik | C = ci) has

to be computed during initialization and after each
step of the learning algorithm (or at least in regular
intervals during learning), since the number of cases
covered by each rule changes during the learning
process. As this is an iterative procedure, we write
the weights as functions of timesteps t. Let D =
(d1, . . . , dN) be the database of sample cases, orik

(d)
the activation of rule rik for sample case d ∈ D,

w∗
rik

(t) the rule weight in timestep t, and Rci
the

set of rules predicting class ci. Then the weight
w

(cluster)
rik (t + 1) for the considered rule is calculated

by the following two equations:

ρd,rik
(t) :=

orik
(d)w∗

rik
(t)∑

r∈Rci
or(d)w∗

r(t)

ρd,rik
is the fraction of case d that needs to be

counted for rule rik. If d is covered by only one
rule, ρd,rik

obviously equals 1. If d lies in the in-
tersection of several rules, only a fraction according
to the prior probabilities is counted in the second
equation:

w(cluster)
rik

(t + 1) :=
∑

d∈D ρd,rik
(t)∑

r∈Rci

∑
d∈D ρd,r(t)

As the initial value for w
(cluster)
rik we use

w(cluster)
rik

(0) =
1

|Rci |
.

The rule weights w
(volume)
rik that describe the volume

of a cluster (see equation (5)) are calculated from
the area under the membership functions. We ob-
tain

w(volume)
rik

:=
n∏

j=1

∫
Aj

µrik,j(xj)dxj .

w
(volume)
rik needs to be recalculated every time the

membership functions change.

6. Empirical Results

To demonstrate the effectiveness of our approach
we present the results of the application to a
dataset from the UCI machine learning repository
[9], namely the Wisconsin breast cancer data. This
dataset has 9 input features. There are 683 patterns
(plus 16 patterns with missing values), that are as-
signed to 2 classes benign and malign. Tab. 1 shows
the results of the classification. The naive Bayes
classifier made 28 errors on the dataset. When only
the two most significant features are used, the num-
ber of errors increases to 30.

We applied the modified NEFCLASS to the data
with different partitions (i.e., fuzzy sets per input
feature) and with different numbers of rules. When
using only 2 inputs, NEFCLASS made 22 errors
in each configuration. The configurations of NEF-
CLASS using one rule per class (i.e., c and g) are
most similar to naive Bayes classification. How-
ever, NEFCLASS performs better with 17 (instead
of 28) and 22 (instead of 30) errors. A look at the

Naive Bayes classifier
inputs # partitions # rules # errors

a 9 n/a n/a 28
b 2 n/a n/a 30

modified NEFCLASS
inputs # partitions # rules # errors

c 9 2 2 17
d 9 2 4 16
e 9 3 4 16
f 9 3 8 12
g 2 2 2 22
h 2 3 4 22
i 2 3 8 22

Table 1: Results: a) and b) naive Bayes classifier;
c) . . . i) modified NEFCLASS.

projections of the data shows, that they do not fit
a Gaussian distribution very well. Therefore, the
use of more rules gives NEFCLASS the possibility
to represent more complex distributions and reduce
the number of errors (configurations d, e and f).
An interesting development could be observed in
configuration f, which was initialized with 12 rules.
The prior probability and hence the influence of 4
of those 12 rules decreased to zero during learning.
After learning there were 2 rules for class malign
and 6 for class benign.

7. Conclusions

The results of this paper are twofold. On the one
hand the representation of naive Bayes classifiers in
a neuro-fuzzy system improves classification results
by direct optimization, and—with more than one
rule per class—allows us to represent more com-
plex, non-Gaussian distributions. After learning,
the classification knowledge is represented in read-
able fuzzy rules. On the other hand, NEFCLASS
as a neuro-fuzzy classification system gets a prob-
abilistic basis, which offers a new mathematically
founded interpretation, in particular of the rule
weights, that were hardly justifiable before.

The original NEFCLASS software for UNIX (writ-
ten in C++, with a user interface in TCL/TK)
that was used to obtain the results described above
can be freely obtained from the World Wide Web
(http://fuzzy.cs.uni-magdeburg.de).

References

[1] H.R. Berenji and P. Khedkar. Learning and
tuning fuzzy logic controllers through rein-

forcements. IEEE Trans. Neural Networks,
3:724–740. IEEE Press, Piscataway, NJ, USA
1992

[2] J. Dougherty, R. Kohavi, and M. Sahami. Su-
pervised and Unsupervised Discretization of
Continuous Features. Proc. 12th Int. Conf. on
Machine Learning (ICML’95, Lake Tahoe, CA,
USA), 194–202. Morgan Kaufman, San Mateo,
CA, USA 1995

[3] R.O. Duda and P.E. Hart. Pattern Classifica-
tion and Scene Analysis. J. Wiley & Sons, New
York, NY, USA 1973

[4] I.J. Good. The Estimation of Probabilities:
An Essay on Modern Bayesian Methods. MIT
Press, Cambridge, MA, USA 1965

[5] F. Höppner, F. Klawonn, R. Kruse, and
T. Runkler. Fuzzy Cluster Analysis. Kluwer,
Amsterdam, Netherlands 1998

[6] A. Klose, A. Nürnberger, and D. Nauck. Im-
proved NEFCLASS pruning techniques applied
to a real world domain. Proc. Neuronale Netze
in der Anwendung (NN’99). University of
Magdeburg, Magdeburg, Germany 1999

[7] P. Langley, W. Iba, and K. Thompson. An
Analysis of Bayesian Classifiers. Proc. 10th
Nat. Conf. on Artificial Intelligence (AAAI’92,
San Jose, CA, USA), 223–228. AAAI Press
and MIT Press, Menlo Park and Cambridge,
CA, USA 1992

[8] P. Langley and S. Sage. Induction of Selec-
tive Bayesian Classifiers. Proc. 10th Conf. on
Uncertainty in Artificial Intelligence (UAI’94,
Seattle, WA, USA), 399–406. Morgan Kauf-
man, San Mateo, CA, USA 1994

[9] C.J. Merz and P.M. Murphy. UCI repository of
machine learning databases. University of Cal-
ifornia, Irvine, Dept. of Information and Com-
puter Sciences, 1998. http://www.ics.uci.edu/
∼mlearn/MLRepository.html

[10] D. Nauck, F. Klawonn, and R. Kruse. Foun-
dations of Neuro-Fuzzy Systems. J. Wiley &
Sons, Chichester, England 1997

[11] D. Nauck and R. Kruse. NEFCLASS — A
Neuro-fuzzy Approach for the Classification of
Data. Proc. ACM Symposium on Applied Com-
puting, 461–465. ACM Press, New York, NY,
USA 1995

[12] N. Tschichold-Gürman. Generation and Im-
provement of Fuzzy Classifiers with Incremen-
tal Learning using Fuzzy Rulenet. Proc. ACM
Symposium on Applied Computing, 466–470.
ACM Press, New York, NY, USA 1995

