
Large Scale Mining of Molecular Fragments
with Wildcards

Heiko Hofer1, Christian Borgelt2, and Michael Berthold1

1 Tripos Inc., Data Analysis Research Lab,
601 Gateway Blvd., Suite 720, South San Francisco, CA 94080, USA

heiko.hofer@e-technik.tu-chemnitz.de

berthold@tripos.com

2 School of Computer Science, Otto-von-Guericke-University of Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany

borgelt@iws.cs.uni-magdeburg.de

Abstract. The main task of drug discovery is to find novel bioactive
molecules, i.e., chemical compounds that, for example, protect human
cells against a virus. One way to support solving this task is to analyze a
database of known and tested molecules with the aim to build a classifier
that predicts whether a novel molecule will be active or inactive, so that
future chemical tests can be focused on the most promising candidates.
In [1] an algorithm for constructing such a classifier was proposed that
uses molecular fragments to discriminate between active and inactive
molecules. In this paper we present two extensions of this approach:
A special treatment of rings and a method that finds fragments with
wildcards based on chemical expert knowledge.

1 Introduction

The computer-aided analysis of molecular databases plays an increasingly im-
portant role in drug discovery. One of its major goals is to build classifiers that
predict for a novel molecule whether it will be active or inactive, for example,
w.r.t. the protection of human cells against a virus. Such a classifier can then be
used to focus the expensive and time-consuming real chemical tests on the most
promising candidates.

The classification model we are considering here is a set of discriminative
fragments. Such fragments are parts of molecules that are frequent in the set
of active molecules and rare in the set of inactive ones and thus discriminate
between the two classes. The rationale underlying this approach is that discrim-
inative fragments may be the key substructures that determine the activity of
compounds and therefore can be used to predict the activity of molecules: If a
novel molecule contains at least one discriminative fragment it is classified as
active, otherwise it is classified as inactive.

Recently, several algorithms have been suggested for finding discriminative
fragments efficiently. In [2] an approach was presented that finds linear frag-
ments using a method that is based on the well-known Apriori algorithm for



association rule mining [3]. However, the restriction to linear chains of atoms
is limiting in many real-world applications, since substructures of interest often
contain rings or branching points. The approach presented in [1] does not suffer
from this restriction. It is based on a transfer of the Eclat algorithm for associ-
ation rule mining [6] and thus avoids the expensive reembedding of fragments.
Another approach that can find arbitrary fragments was proposed in [4]. The
main differences between these approaches are the ways in which fragments of
interest are generated, an issue that will become important when we study the
algorithm of [1] in more detail below.

In this paper we present two extensions of the algorithm suggested in [1].
Due to a symmetry problem that makes it impossible to suppress all redundant
search, this algorithm runs into problems if fragments contain a lot of rings. Our
first extension solves this problem by finding rings in a preprocessing step and
then treating them as units in the mining algorithm, thus making the search
much more efficient. The second extension is inspired by the fact that certain
atom types can sometimes be considered as equivalent from a chemical point of
view. To handle such cases, we introduce wildcard atoms into the search.

As a test case for our extended algorithm we use a publicly available database
of the National Cancer Institute, namely the NCI-HIV database (DTP AIDS An-
tiviral Screen) [5], which has also been used in [1] and [2]. This database is the
result of an effort to discover new compounds capable of inhibiting the HI virus
(HIV). The screen utilized a soluble formazan assay to measure protection of
human CEM cells from HIV-1. Compounds able to provide at least 50% protec-
tion to CEM cells were retested. Compounds providing at least 50% protection
on retest were listed as moderately active (CM ). Compounds that reproducibly
provided 100% protection were listed as confirmed active (CA). Compounds not
meeting these criteria were listed as confirmed inactive (CI ). The dataset con-
sists of 41,316 compounds, of which we have used 37,171. For the remaining 4,145
no structural information was available at the time the experiments reported
here were carried out. Each compound has a unique identification number (NSC
number), by which we refer to it. Out of the 37,171 compounds we used, 325
belong to class CA, 896 to class CM, and the remaining 35,950 to class CI. We
neglected the 896 moderately active compounds in our experiments. The size of
this database stresses the need for a truly efficient and scalable algorithm. The
method described in [1], for example, could only be applied to this data set by
using small initial fragments as “seeds” for the underlying search algorithm.

2 Molecular Fragment Mining

As stated above, the goal of molecular fragment mining is to find discriminative
fragments in a database of molecules, which are classified as either active or
inactive. To achieve this goal, the algorithm presented in [1] represents molecules
as attributed graphs and carries out a depth first search on a tree of fragments.
Going down one level in this search tree means extending a fragment by adding
a bond and maybe an atom to it. For each fragment a list of embeddings into



N C
C

C
O

O
N C

C
C

O

OC
S

N C
C

C
O

OC
O

Fig. 1. The amino acids clycin,
cystein and serin.

*

S N O C

S C N C O C O C C C

S C C N C C O C C O C O O C C O C O C C C

S C C C S C C N

S C C C
N

S C C C O S C C C O

S C C C O
O

12 7 5

3 Fig. 2. The tree of fragments
for the amino acids example.

the available molecules is maintained, from which the lists of embeddings of its
extensions can easily be constructed. As a consequence, expensive reembeddings
of fragments are not necessary. The support of a fragment, that is, the number of
molecules it is contained in, is then determined by simply counting the number
of different molecules the embeddings refer to. If the support of a fragment is
high in the set of active molecules and low in the set of inactive molecules it is
reported as a discriminative fragment.

The important ingredients of the algorithm are different search tree pruning
methods, which can be grouped into three categories: size based pruning, sup-
port based pruning, and structural pruning. Among these the latter is the most
important and most complicated one. It is based on a set of rules that defines
a local order of the extensions of a fragment, which is used to avoid redundant
searches. (See [1] for details.)

Since the search tree we traverse in our modified algorithm differs slightly
from the one used in [1], we illustrate it with a simple example. Figure 1 shows the
amino acids clycin, cystein and serin with hydrogens and charges neglected. The
upper part of the tree (or forest if the empty fragment at the root is removed)
that is traversed by our algorithm for these molecules is shown in Figure 2.
The first level contains individual atoms, the second connected pairs and so on.
The dots indicate subtrees that are not depicted in order to keep the figure
understandable. The numbers next to these dots state the number of fragments
in these subtrees, giving an indication of the total size of the tree.



The order, in which the atoms on the first level of the tree are processed,
is determined by their frequency of occurrence in the molecules. The least fre-
quent atom type is considered first. Therefore the algorithm starts on the left
by embedding a sulfur atom into the example molecules. That is, the molecules
are searched for sulfur atoms and their locations are recorded. In our example
there is only one sulfur atom in cystein, which leads to one embedding of this
(one atom) fragment. This fragment is then extended (depth first search) by a
single bond and a carbon atom (-C), which produces the fragment S-C on the
next level. All other extensions of fragments that are generated by going down
one level in the tree are created in an analogous way.

If a fragment allows for more than one extension (as is the case, for instance,
for the fragments O-C and S-C-C-C), we sort them according to the local ordering
rules mentioned above (see [1] for details). The main purpose of this local order
is to prevent certain extensions to be generated, in order to avoid redundant
searches. For instance, the fragment S-C-C-C-O is not extended by adding a
single bond to a nitrogen atom at the second carbon atom, because this extension
has already been considered in the subtree rooted at the left sibling of this
fragment.

Furthermore, in the subtree rooted at the nitrogen atom, extensions by a
bond to a sulfur atom are ruled out, since all fragments containing a sulfur atom
have already been considered in the tree rooted at the sulfur atom. Similarly,
neither sulfur nor nitrogen are considered in the tree rooted at the oxygen atom,
and the rightmost tree contains fragments that consist of carbon atoms only.

Although the example molecules considered here do not contain any rings,
it is clear that we have to handle them in the general case. While the original
algorithm treated extensions to new atoms and extensions closing rings basically
alike, only handling them through an ordering rule to avoid redundant search, our
new algorithm processes them in two separate phases: Even though extensions
closing rings are allowed in any step, once a ring has been closed in a fragment,
the possible future extensions are restricted to closing rings as well. While this
does not lead to performance improvements, it has certain advantages w.r.t. the
order in which fragments are generated.

Up to now we only described how the search tree is organized, i.e., the
manner in which the candidates for discriminative fragments are generated and
the order in which they are considered. However, in an application this search
tree is not traversed completely—that would be much too expensive for a real
world database. Since a discriminative fragment must be frequent in the active
molecules and extending a fragment can only reduce the support (because only
fewer molecules can contain it), subtrees can be pruned as soon as the support
falls below a user-defined threshold (support based pruning). Furthermore, the
depth of the tree may be restricted, thus limiting the size of the fragments to be
generated (size based pruning).

Discriminative fragments should also be rare in the inactive molecules, de-
fined formally by a user-specified upper support threshold. However, this thresh-
old cannot be used to prune the search tree: Even if a fragment does not satisfy
this threshold, its extension may (again extending a fragment can only reduce the



NNNO

O

N

N

O

O

Fragment 1
freq. in CA: 15.08%
freq. in CI: 0.02%

S
N Cl

Fragment 2
freq. in CA: 9.85%
freq. in CI: 0.00%

Fig. 3. Discriminative fragments.

support), and thus it has to be generated. Therefore this threshold is only used
to filter the fragments that are frequent in the active molecules. Only those frag-
ments that satisfy this threshold (in addition to the minimum support threshold
in the active molecules) are reported as discriminative fragments.

In [1] the original form of this algorithm was applied to the NCI-HIV database
with considerable success. Several discriminative fragments could be found, some
of which could be related to known classes of HIV inhibitors. Among the results
are, for example, the two fragments shown in Figure 3. Fragment 1 is known
as AZT, a well-known nucleoside reverse transcriptase inhibitor, which was the
first drug approved for anti-HIV treatment. AZT is covered by 49 of the 325
(15.08%) compounds in CA and by only 8 of the 35,950 (0.02%) compounds in
CI. Fragment 2 is remarkable, because it is not covered by any compound of
the 35,950 inactive compounds, but is covered by 31 molecules in CA (9.85%),
making it a very good classification model. (Fragment 2 was not reported in [1]).

3 Rings

An unpleasant problem of the search algorithm as we presented it up to now is
that the local ordering rules for suppressing redundant searches are not complete.
Two extensions by identical bonds leading to identical atoms cannot be ordered
based on locally available information alone. A simple example demonstrating
this problem and the reasons underlying it can be found in [1]. As a consequence,
a certain amount of redundant search has to be accepted in this case, because
otherwise incorrect support values would be computed and it could no longer be
guaranteed that all discriminative fragments are found.

Unfortunately, the situation leading to these redundant searches occurs al-
most always in molecules with rings, whenever the fragment extension process
enters a ring. Consequently, molecules with a lot of rings, like the steroid shown
in Figure 4—despite all clever search tree pruning—still lead to a prohibitively
high search complexity: The original algorithm considers more than 300,000
fragments for the steroid, a large part of which are redundant.



O

F

Fig. 4. Example of a steroid,
which can lead to problems due
to the large number of rings.

0

20.000

40.000

60.000

80.000

0 5 10 15 20 25

level

nu
m

be
r o

f n
od

es

0

20

40

60

80

0 5 10 15

level

nu
m

be
r o

f n
od

es

Fig. 5. Number of nodes per level for the algorithms with and without ring extensions.

To cope with this problem, we add a preprocessing step to the algorithm, in
which the rings of the molecules are found and marked. One way to do this is to
use the normal algorithm to find a substructure covering a given ring structure
as well as a given molecule, where the search neglects the atom and bond types.
In our current implementation we confined ourselves to rings with five and six
atoms, because these are most interesting to chemists, but it is obvious that the
approach can easily be extended to rings of other sizes.

In the search process itself, whenever an extension adds a bond to a fragment
that is part of a ring, not only this bond, but the whole ring is added (all bonds
and atoms of the ring are added in one step). As a consequence, the depth of the
search tree is reduced (the basic algorithm needs five or six levels to construct a
ring bond by bond) and many of the redundant searches of the basic algorithm
are avoided, which leads to enormous speed-ups. For example, in this way the
number of fragments generated for the steroid shown in Figure 4 reduces to 93.

On the NCI-HIV database our implementation of the basic algorithm (with-
out one step ring extensions) generates 407,364 fragments in CA that have a
support higher than 15%, for which it needs 45 minutes.3 Using ring extensions
reduces the number of fragments to 456 which are generated in 13 seconds.

A more detailed illustration of the gains resulting from one step ring exten-
sions is provided by the diagrams shown in Figure 5. They display the number
of nodes per level in the search tree for the two versions of the algorithm. As
can be seen in the left diagram, the search tree of the basic algorithm has a
width of approximately 80,000 fragments and a depth of 22 levels. In contrast to
this, the width of the search tree using one step ring extensions is approximately
80 fragments, almost a factor of 1000 less.

3 Our experiments were run using a Java implementation on a 1GHz Xeon Dual-
Processor machine with 1GB of main memory using jre1.4.0



Fig. 6. Aromatic and Kekulé
representations of benzene.

N

Fragment 3
basic algorithm
freq. in CA: 22.77%

N

Fragment 4
with ring extensions
freq. in CA: 20.00%

Fig. 7. Frequencies in CA with and without ring extensions.

Furthermore, the shapes of the search trees are remarkable. While with the
basic algorithm the tree width grows roughly exponentially with the depth of
the tree, until a maximum is reached, with the ring extension algorithm the tree
width grows only roughly linearly with the depth. As a side note, these diagrams
also justify the use of a depth first search in our algorithm: The typical and
extremely high width to depth ratio of the tree makes a breadth first search
disadvantageous or, for the basic algorithm, infeasible.

Besides a considerable reduction of the running time, treating rings as units
when extending fragments has other advantages as well. In the first place, it
makes a special treatment of atoms and bonds in rings possible, which is espe-
cially important for aromatic rings. For example, benzene can be represented in
different ways as shown in Figure 6. On the left, all six bonds are represented as
aromatic bonds, while the other two representations—called Kekulé structures—
use alternating single and double bonds. A chemist, however, considers all three
representations as equivalent. With the basic algorithm this is not possible, be-
cause it would require treating single, double, and aromatic bonds alike, which
obivously leads to undesired side effects. By treating rings as units, however,
these special types of rings can be identified in the preprocessing step and then
be transformed into a standard aromatic ring.

Secondly, one step ring extensions make the support values associated with a
fragment more easily interpretable. To see this, consider the two fragments shown
in Figure 7. The left was found with the basic algorithm, the right with the ring
extension algorithm. At first glance it may be surprising that the two fragments
look alike, but are associated with different support values (74 compounds, or
22.77%, for the basic algorithm and 65 compounds, or 20.00%, for the ring
extension algorithm). However, the reason for this is very simple. While with
the basic algorithm the N-C-C chain extending from the aromatic ring may be a
real chain or may be a part of another ring, it must be a real chain with the ring
extension algorithm. The reason is that with the latter it is not possible to step
into a ring bond by bond, because rings are always added in one step. Therefore
the ring extension algorithm does not find this fragment, for instance, in the two
compounds shown in Figure 8. Although it may appear as a disadvantage at
first sight, this behavior is actually highly desirable by chemists and biologists,



O
O

S

N

O

O

NSC #667948

N S
N

O

NSC #698601

Fig. 8. Compounds that contain Fragment 3 but not Fragment 4.

because atoms in rings and atoms in chains are considered to be different and
thus should not be matched by the same fragment. A fragment should either
contain a ring or not, but not parts of it, especially if that part can be confused
with a chain.

4 Fragments with Wildcards

Chemists and biologists often regard fragments as equivalent, even though they
are not identical. Acceptable differences are, for instance, that an aromatic ring
consists only of carbon atoms in one molecule, while in another ring one car-
bon atom is replaced by a nitrogen atom. An example of such a situation from
the NCI-HIV database is shown in Figure 9. A chemist would say that the two
molecules shown on the left have basically the same structure and that the differ-
ence consists only in the oxygen atom attached to the selenium atom. However,
the original algorithm will not find an appropriate fragment because of this mis-
match in atom-type [1].

More generally, under certain conditions certain types of atoms can be con-
sidered as equivalent from a chemical point of view. To model this equivalence
we introduce wildcard atoms into the search, which can match atoms from a
user-specified range of atom types. As input we need chemical expert knowledge
to define equivalence classes of atoms, possibly conditioned on whether the atom
is part of a ring or not (that is, certain atom types may be considered as equiv-
alent in a ring, but as different in a chain). In the example shown in Figure 9 we
may introduce a wildcard atom into the search that can match carbon as well

Se
N

O

N

NSC #639767

Se
N

O

Se
O

NSC #639772

Se
N

O

A

wildcard fragment

Fig. 9. Matching molecules with a fragment with a wildcard atom.



A
N

S
Cl

Wildcard fragment 1

A: O N
freq. in CA: 5.5% 3.7%
freq. in CI: 0.0% 0.0%

N Cl

SB

Wildcard fragment 2

B: O S
freq. in CA: 5.5% 0.01%
freq. in CI: 0.0% 0.00%

Fig. 10. Fragments with wildcards in the NCI-HIV database.

as nitrogen atoms in rings. This enables us to find the fragment on the right,
where the green A denotes the wildcard atom.

Formally, wildcard atoms can be introduced into the search process by adding
to each node a branch for each group of equivalent atoms, provided that there
are at least two molecules that contain different atoms from the group at the
position of the wildcard atom. In the later search process, this branch has to be
treated in a special way, because it can be pruned if—due to further extensions—
the molecules matching the fragment all contain the same atom for the wildcard
atom. In our implementation we restrict the number of wildcard atoms in a
fragment to a user-defined maximum number.

We applied the wildcard atom approach to the NCI-HIV database, restrict-
ing the number of wildcard atoms to one. With this approach the two wildcard
fragments shown in Figure 10 are found (among others). The left fragment has a
wildcard atom indicated by a red A on the right, which may be replaced by either
an oxygen or a nitrogen atom. The (non-wildcard) fragment that results if A is
replaced with an oxygen atom has a support of 5.5% in the active compounds,
whereas it does not occur in the inactive ones. The fragment with A replaced
with nitrogen has a support of 3.7% in the active compounds, and also does not
occur in the inactive ones. Consequently, the wildcard fragment has a support of
9.2% in the active compounds. This demonstrates one of the advantages of wild-
card fragments, that is, they can be found with much higher minimum support
thresholds, which can cut down the output of irrelevant fragments.

However, wildcard fragments can also make it possible to find certain in-
teresting fragments in the first place. This is demonstrated with the wildcard
fragment shown in the right in Figure 10. It contains a wildcard atom denoted
by a red B in the five-membered aromatic ring on the left, which may be re-
placed by either an oxygen or a sulfur atom. The interesting point is that the
(non-wildcard) fragment that results from replacing B with sulfur has a very low
support of 0.01% in the active molecules. This (non-wildcard) fragment would
not be found without wildcard atoms, because it is not possible to run the search
with a sufficiently low minimum support threshold.



5 Conclusions

This paper adressed two limitations of the molecular fragment mining algorithm
introduced in [1]. The first extension of the original algorithm deals with the fre-
quent occurrence of rings and their effect on the width of the generated search
tree. By preprocessing the molecular database we can identify rings before the
actual search starts and then treat them as one entity during the search. This
not only speeds up the computation tremendously, but also finds chemically
more meaningful fragments since chemists tend to think of rings as one molecu-
lar unit. The second extension addresses the need to find fragments that behave
chemically similar but are different from a graph point of view. We have pro-
posed a mechanism that allows the user to specify equivalence classes of atoms.
Fragments can then contain a certain maximum number of such wildcard atoms.
Using this method we not only find chemically meaningful fragments, but we
can also detect fragments that would otherwise fall below the support threshold.

The two extensions presented here make the original algorithm described in
[1] directly applicable to much larger databases and allow the chemist to intro-
duce expert knowledge about similarities on an atomic level, as demonstrated
on the NCI-HIV dataset. As a result, the method presented here has been used
very successfully, among others, at Tripos Receptor Research (Bude, UK) for
the prediction of synthetic success.

References

1. C. Borgelt and M.R. Berthold. Mining Molecular Fragments: Finding Relevant
Substructures of Molecules. Proc. IEEE Int. Conf. on Data Mining (ICDM 2002,
Maebashi, Japan), 51–58. IEEE Press, Piscataway, NJ, USA 2002

2. S. Kramer, L. de Raedt, and C. Helma. Molecular Feature Mining in HIV Data.
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD 2001, San Francisco, CA), 136–143. ACM Press, New York, NY, USA 2001

3. R. Agrawal, T. Imielienski, and A. Swami. Mining Association Rules between Sets
of Items in Large Databases. Proc. Conf. on Management of Data, 207–216. ACM
Press, New York, NY, USA 1993

4. M. Kuramochi and G. Karypis. An Efficient Algorithm for Discovering Frequent
Subgraphs. Technical Report TR 02-026, Dept. of Computer Science/Army HPC
Research Center, University of Minnesota, Minneapolis, USA 2002

5. O. Weislow, R. Kiser, D. Fine, J. Bader, R. Shoemaker, and M. Boyd. New Soluble
Formazan Assay for HIV-1 Cytopathic Effects: Application to High Flux Screening
of Synthetic and Natural Products for AIDS Antiviral Activity. Journal of the
National Cancer Institute, 81:577–586. Oxford University Press, Oxford, United
Kingdom 1989

6. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. Proc. 3rd Int. Conf. on Knowledge Discovery and
Data Mining (KDD’97), 283–296. AAAI Press, Menlo Park, CA, USA 1997


