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Abstract. Finding ensembles in neural spike trains has been a vital task
in neurobiology ever since D.O. Hebb’s work on synaptic plasticity [15].
However, with recent advancements in multi-electrode technology, which
provides means to record 100 and more spike trains simultaneously, clas-
sical ensemble detection methods became infeasible due to a combina-
torial explosion and a lack of reliable statistics. To overcome this prob-
lem we developed an approach that reorders the spike trains (neurons)
based on pairwise distances and Sammon’s mapping to one dimension.
Thus, potential ensemble neurons are placed close to each other. As a
consequence we can reduce the number of statistical tests considerably
over enumeration-based approaches (like e.g. [1]), since linear traversals
of the neurons suffice, and thus can achieve much lower rates of false-
positives. This approach is superior to classical frequent item set mining
algorithms, especially if the data itself is imperfect, e.g. if only a fraction
of the items in a considered set is part of a transaction.

1 Introduction and Motivation

With the help of electrodes it is possible to observe the electrical potential of a
single neuron directly, while multi-electrode arrays (MEAs) allow for several neu-
rons to be observed simultaneously and their electrical potential to be recorded
in parallel. By analyzing the wave form of the electrical potential it is possible to
detect increases in the potential (so-called spikes) as well as to separate signals
from multiple neurons recorded by a single electrode [17]. After this step, which
is called spike sorting, a single spike train consists of a list of the exact times at
which spikes have been recorded. Due to the relatively high time resolution it
is advisable to perform some time binning in order to cope with inherent jitter.
That is, the continuous time indices are discretized by assigning a time index to
each spike. A 10s record binned with 1ms time bins therefore leads to a list of
up to 10000 entries with the time indices of the spiking events.



In this form, a spike train can also be interpreted as a binary vector with
10000 dimensions, where each dimension represents one time index and the vec-
tor elements are either 0 (no spike) or 1 (spike). Figure 1 shows two sets of
spike trains, each generated artificially for 100 neurons and 10,000 time bins
(10 seconds) with a simple Poisson model. The top diagram shows random noise
(independent neurons, no correlations), while the data in the middle diagram
contains an ensemble of 20 neurons. Without any computer aid it is hardly pos-
sible to distinguish these two data sets, let alone decide with a high degree of
certainty which plot belongs to which data set. Only if the correlated neurons
are sorted together (bottom diagram), the assembly becomes discernible.

This paper proposes an algorithm to find an ordering of neurons that reflects
the fact that ensembles can be found as lines within the background noise if
they are properly sorted. Section 5 shows that such an ordering can then be
exploited to perform linear statistical testing to find neuronal ensembles. Thus
it abolishes the need to perform all pairwise tests, while still being able to detect
the inherent dependency structure to a very high degree, often even perfectly.

2 Related Work

Gerstein et al. (1978) proposed the accretion algorithm which tries to find such
ensembles by iterative combination/merging of neural spike trains [9]. Though
not executable at the time it was published for massively parallel spike train
data, today even standard desktop computers allow to perform the necessary
tests in acceptable time. However, there still remains the problem that after
merging relevant spike trains, some subsets of neurons are tested more than
once and thus the likelihood of receiving false positive results becomes fairly
large because of the huge number of tests that are performed.

Attempts have been made to identify the structure of neuronal ensembles
with the help of frequent item set mining (FIM) algorithms [1]. In this ap-
proach, neurons are mapped to items, time bins to transactions. Although FIM
algorithms are able to detect groups of neurons in the background noise, they
generally also report much smaller groups as significant ensembles. In most of
these smaller groups all but one neuron belong to a real ensemble and the re-
maining one randomly produces one or two coincidences, which, however, are
considered significant by standard statistical measures.

In addition, in the domain of spike train analysis we face the problem that it
cannot be reasonably expected that all neurons of an ensemble always participate
in a synchronous spiking event. The synfire model [7] suggests that 50 to 80% of
the ensemble neurons may participate, with a different selection on each instance.
In order to cope with this problem, fault-tolerant (or approximate or fuzzy)
frequent item set mining algorithms may be applied (for example, [23,2,3]).
However, these approaches have the drawback that they enumerate all potential
groups/ensembles and thus suffer severely from the false positives problem.

Considering the neural spike trains as binary vectors and the whole set of
parallel spike trains as a matrix (see Section 3) an interesting approach was
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Fig. 1. Dot-displays of two sets of parallel spike trains generated with a neurobiological
spike train simulator. The top diagram shows independent neurons, while the bottom
diagrams contain a group of 20 correlated neurons. In the middle diagram, these neu-
rons are randomly interspersed with independent neurons, while in the bottom diagram
they are sorted into the bottom rows (see also: [11-13]).



suggested in [10], which uses the Fiedler vector (i.e. the eigenvector correspond-
ing to the smallest non-zero eigenvalue of the symmetric matrix Lg = Dg — 5,
where S = (s;;) is a similarity matrix and Dg = (d;;) is a diagonal matrix with
di; = )_; si5). The entries/coordinates of the Fiedler vector are used to sort the
rows of a given binary matrix such that large tiles (sub-matrices) become visible
that contain a lot of 1s. The core argument underlying the approach is that the
Fiedler vector minimizes the stress function 27 Lz = Zi,j sij - (; — xj)?. With
the constraints z7e = 0 and 272 = 1 this can be easily shown.

In [10] it is claimed that sorting the rows by the corresponding components of
the Fiedler vector results in a good ordering by minimizing the inter-row stress,
mapping similar objects next to each other. Within this optimization one has
to consider s;; to be constant as the similarity of the objects cannot change.
Only the components of the vector are subject to change. A problem with this
calculation, however, is that even for small similarities a small difference between
z; and x; would lower the overall stress. Equally an arbitrarily large similarity
can still be adjusted by choosing fitting values for z; and ;. Although it can be
considered correct that the Fiedler vector minimizes the overall stress over all
suitable vectors, this stress function itself is not necessarily the one that really
needs to be minimized to obtain more than a heuristic ordering of the rows.

Experiments we conducted showed that for neural spike trains the Fiedler
vector based sorting often yields highly unsatisfactory results. Since we actually
want to place similar spike trains close to each other, where high similarity may
also be represented as a small distance and vice versa, Sammon’s Non-Linear
Mapping [20] suggests itself as an alternative.

3 Presuppositions

With the interpretation of spike trains as binary vectors and parallel spike trains
as a binary matrix, we can say that the synchronous spiking activity of neuronal
ensembles leads to sub-matrices (or tiles) in which—under suitable row and
column permutations—every entry is 1. This view presumes that every neuron
that is part of an ensemble participates in every coincident spiking event (that is,
the probability of copying from the coincidence process into the individual spike
trains is 1.0 for all neurons). We start from this simplification, because it helps
us to design the algorithm, even though it holds neither for natural processes
nor will it be it a necessary precondition for the final algorithm. (Although, of
course, best results are achieved if the data is perfect.)

Our task consists in finding a suitable row permutation (re-ordering of the
spike trains) and maybe also a column permutation (re-ordering of the time bins)
without having to test every pair of vectors (spike trains), and subsequently also
every triple, quadruple or even larger groups of vectors by merging all vectors
except one and testing the resulting vector against the remaining one (as the
Accretion algorithm does [9]). Such an approach is disadvantageous, because
group testing and incrementing the size of the groups to be tested leads to an
(over-)exponential increase in the number of tests that have to be performed.



Fig. 2. Distance/similarity matrix of
100 neurons (spike trains) computed
with the Dice measure with an injected
ensemble of size 20 (the darker the gray,
the lower the pairwise distance). The
data set underlying this distance ma-
trix is depicted as a dot display in the
middle diagram of Figure 1: each row
(as well as each column) of this diagram
corresponds to a row of the diagram in
Figure 1 and thus to a neuron.

Hence even a test as simple as the x? test will consume a lot of time—probably
without producing significant results. As the low firing probabilities of neurons
lead to a relatively low density of the vectors and the even lower rate of coinci-
dences lead to circumstances where the x2 test returns excessively many false-
positive results, the algorithmic need for larger groups to be tested increases
even further. To prevent this, performing an exact test would be desirable but
the execution time of tests like Fisher’s exact test renders this infeasible.

4 Sorting with Non-Linear Mappings

To avoid having to test all subsets of neurons/spike trains and thus to allow
the use of an exact test (like Fisher’s), some pre-ordering of the neurons/spike
trains is necessary, which allows us to carry out the tests on a simple linear
traversal through the list of vectors. In this way only neighboring neurons/spike
trains have to be tested against each other, reducing the total number of tests
required.

Figure 2 shows an example of a distance matrix for a set of spike trains
(namely the spike trains shown as a dot display in the middle diagram of Fig-
ure 1). Even the untrained human eye can easily distinguish those elements that
indicate a smaller distance between two spike trains than the majority of all
matrix entries. To make an algorithm able to identify these elements without
the aid of image recognition algorithms, it is desirable to sort all neurons/spike
trains that are close to each other (according to the used distance measure) to
either side (beginning or end) of the sorted set of neurons/spike trains.

Several algorithms for such a (non-)linear mapping are already known, with
the classical algorithm known as “Sammon’s Non-Linear Mapping” suggesting
itself immediately. Usually it is applied to project high-dimensional data onto
a two- or three-dimensional space, but we will apply it here to project onto a
single dimension. Sammon’s algorithm aims at keeping the interpoint distances
between two vectors in the target space close to the distances in the original space



Algorithm 1 Sorting with Sammon’s non-linear mapping (SSNLM)

Require: List of Spike Trains L = {no, ...}, distance measure d, statistic t,
significance level o
Ensure: Set of ensembles A

1:i:=0

2: while (|L| > 1) do

3 n:=|Lj

4: Al = (Z)

5: Let dm be a n X n matrix

6: Let L be a list of all IDs

7. for all (a,b) € L?,a > b do

8: dm|a,b] = dm[b,a] = d(a,b)

9:  end for

10:  Perform Sammon mapping with dm, k = 1, init=PCA, store result in SV
11:  Sort L according to its corresponding entries in SV
12:  if (¢(L[0], L[1]) > t(L[n — 2], L[n — 1])) then

13: reverse L

14: end if

15:  while (¢(L[0], L[1]) < o) do

16: Az = AZ U {nL[o], nL[I]}

17: L:=L-— {TLL[O]}

18:  end while

19: i:=1+1

20: end while )
21: return A= J {4;}
=0

J

by minimizing the total error between these distances with an iterative update
scheme. The resulting values for each spike train (one-dimensional mapping) are
then used as a sorting criterion for the set of spike trains.

5 Algorithm

The algorithm assumes that all data points are given as an unordered list and
returns a list of lists, each of which contains a possible substructure.

The algorithm works as follows (see Algorithm 1): While there are still neu-
rons/spike trains that have not been assigned to an ensemble or have been re-
jected, the algorithm continues to look for ensembles (line 2). The first step is to
calculate the distance matrix with the distance measure given as an argument
(lines 5-9). After the non-linear mapping of this matrix has been performed,
the list of neurons/spike trains is sorted according to the result vector (here:
a list of real values, lines 10-11). As Sammon’s Non-Linear Mapping may map
a substructure to any side of the real-valued spectrum, we test for the end of
the list that shows stronger evidence for rejecting the null hypothesis of inde-
pendence and—if necessary—simply reverse the list (lines 12-14). As long as
any of the consecutive tests produces p-values that are below the chosen level of



significance, the corresponding neurons/spike trains are added to the list of the
current ensemble (lines 15-18). Each time a test has led to a rejection of the null
hypothesis, the first neuron/spike train is also permanently removed from the
list of neurons/spike trains, so that it cannot be assigned to any other ensemble.

6 Distance Measures

Sammon’s algorithm works on a distance matrix, which we have to produce by
computing a distance between pairs of binary vectors (namely the discretized
spike trains). For this we can select from large variety of distance measures
for binary vectors, which emphasize different aspects of dissimilarity (see, for
instance, [4] for an overview). As it is to be expected that some of these measures
are better suited to find a suitable reordering than others, we compared several
of them, in particular those shown in Table 2. All of these measures are defined
in terms of the entries of contingency tables as shown in Table 1, which state
how often two neurons A and B spike both (n11), spike individually without the
other (ng; and n10) and spike neither (ngo), as well as the row and column sums
of these numbers (ng_, n1., n.o and n 1) and the total number of time bins (n_).
Although necessarily incomplete, Table 2 lists the most common measures.

In order to assess how well the distance measures shown in Table 2 are
able to distinguish between vectors that contain independent, random noise and
those that contain possibly correlated data, we evaluated the different distance
measures by an outlier detection method, assuming that all neurons/spike trains
not belonging to an ensemble are outliers. Such a method has been proposed in
[18]. This algorithm, which is inspired by so-called noise clustering [5], introduces
a noise cloud, which has the same distance to each point in the data set. A data
point is assigned to the noise cloud if and only if there is no other point in the
data set that is closer to it than the noise cloud. The algorithm starts with a
noise cloud distance of 0, and therefore at the beginning of the algorithm all
points belong to the noise cloud. Then the distance to the noise cloud is slowly
increased, causing more and more data points to fall out of the noise cloud and
to be assigned to a non-noise cluster.

Plotting the distance of the noise cloud against the number of points be-
longing to the non-noise cluster leads to a curve like those shown in Figure 3.
Analyzing the steps in this curve allows us to make some assumptions about
possible clusters within the data. Spike trains that have a lot of spikes in com-
mon have smaller distances for a properly chosen metric and therefore fall out
of the noise cluster earlier than trains that only have a few spikes in common.
We assume that neurons/spike trains of an ensemble have significantly smaller
distances than neurons/spike trains that do not belong to any ensemble.

The plateaus in each curve of Figure 3 indicate that this method is quite able
to identify neurons belonging to an ensemble simply by comparing the inter-
vector distances. Even if the copy probability (probability for a coincident spike
to be copied to a time bin) drops to values as small as 0.5 the difference between
neurons belonging to an ensemble and those not belonging to one remains visible.



Table 1. A contingency table for two neurons A and B.

neuron B
value 0 (no spike)| 1 (spike) sum
A 0 (no spike) 100 01 no.
1 (spike) n1o ni1 ni.
sum n.o n1 n.

Table 2. Some distance measures used for comparing two item covers.
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However, a problem arising from this approach is that even if all neurons
are detected that most likely belong to a relevant ensemble, the structure itself
remains unknown as neurons are only assigned to the noise or non-noise clusters.
Figure 3 shows this quite well: the last diagram on the top row depicts a case
where two ensembles of 20 neurons each (both with the same parameters), which
were injected into a total set of 100 neurons, cannot be separated.

7 Experiments

We conducted several experiments to test the quality of our algorithm w.r.t.
different parameter sets. These tests include a different number of ensembles
as well as variations of the copy probability from the coincidence process. To
generate the test data, a set of non-overlapping ensembles of neurons is chosen
and parallel spike trains are simulated with the given parameters.

We considered an ensemble to be (completely) found if and only if every
neuron belonging to the ensemble has been successfully identified. We considered
an ensemble to be partially found if only a subset of the ensemble’s neurons was
detected by the algorithm, regardless of how small this subset may be. However,
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Fig. 3. Fraction of neurons not assigned to the noise cloud plotted over the distance
from the noise cloud for different distance measures. The default parameters of the
underlying data sets are: n = 100 neurons, t = 10000 time bins, p = 0.02 probability
of an item occurring in a transaction, m = 1-20 group of neurons potentially spiking
together, ¢ = 0.005 probability of a coincident spiking event for the group(s) of neurons,
r = 1 probability with which a spike is actually copied from the coincident spiking
process. Deviations from these parameters are stated above the diagrams.

in order to prevent very small (and thus inconclusive) subsets to appear in the
result, the minimum ensemble size to be reported was set to three.

The results, for which each configuration was tested several times in order
to ensure reliability, are shown in Table 3. The algorithm never reported any
neurons belonging to an ensemble not present in the list of actual ensembles.
The suppression of false positives in this case most likely originates from the
limitation of an ensemble to have at least three neurons or more to be reported.

In addition to the first test, where different parameters were compared, we
performed a series of tests with (nearly) fixed parameters where only the copy
probability for the coincidences was altered. While the first tests were performed
with a copy probability of 1.0 the following tests were performed with a steadily
decreasing copy probability. Table 4 shows the results of these tests. It is clearly
visible that the detection rate for complete ensembles decreases with decreas-
ing copy probability. This is not surprising, because with copy probabilities as
low as 0.5, only about 50% of the neurons participate in a coincident event and
every neuron belonging to an ensemble participates in only about 50% of all
coincidences. This leaves plenty of space for coincidences simply disappearing in
the background noise. On the other hand the rate of partially detected ensem-
bles stays stable for a larger range of copy probabilities, indicating that only a
few neurons are not recognized by this method as they are not participating in
enough coincidences. Even if the copy probability drops to 0.4 the partial detec-



Table 3. Experimental results for the assembly detection method based on reordering
the items/neurons with the Sammon projection.

Test 1 Test 2 Test 3 |Test 4 |Test
# of runs/experiments 50 50 50 50 500
# of neurons per runs 100 100 100 100 100
# of time bins per spike train | 10000 10000 10000 5000 5000
firing probability 0.02 0.02 0.02 0.03 0.02
coincidence probability 0.0075 | 0.0075 |0.0075 |0.0075 |0.005
copy probability 1.0 1.0 1.0 1.0 1.0
assemblies per run 0-5 0-6 0-5 0-5 0-6
assembly size 20 5-20 10 10 10
significance level for statistic 0.05 0.05 0.05 0.05 0.05
distance measure used dbice dpice djaccard | ADice dyule
total # of assemblies 108 132 128 118 1227
total # of assemblies found 105 97 86 114 1170
total # of partial ens. found 0 5 4 0 57
success rate 97.2% | 73.5% |67.2% |96.6% |95.4%
success rate (incl. partial finds) | 97.2% | 77.3% |70.3% |96.6% |100%

tion rate remains at almost 80%. This means that even with (on average) 60%
of the data missing, still 80% of the ensembles were detected at least partially.

8 Conclusions and Future Work

Based on the results shown in the preceding section we can conclude that a
testing procedure based on sorting the data and performing only certain combi-
nations of pair-wise tests based on the result of a non-linear mapping produces
very good result for the detection of neural ensembles. This holds even if the
quality of the data is not ideal—be it lossy data accumulation or missing spikes
due to the underlying (biological) process. The tests performed show that even
with 60% of the relevant data (i.e. the coincident spikes) lost nearly as much as
80% of the ensembles could be detected at least partially.

Yet, there is still room to improve on the algorithm. At the moment the
decision whether a neuron belongs to a relevant ensemble or not is based on rule-
of-thumb values. No sophisticated methods are used to analyze the noise/non-
noise line of the outlier detection method (see Figure 3). The difference between
the two groups is currently only found by a constant value depending on the
distance function used rather than using the inflection or the saddle point of
the resulting curve. Here a far more analytical approach would be desirable to
automate the detection process. Also overlapping groups cannot be distinguished
at the moment as data points are assigned to at most one substructure.
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Table 4. Experimental results for the assembly detection method based on reordering
the items/neurons with the Sammon projection, different copy probabilities.

Test 6 Test 7 |Test 8 |Test9 |Test 10
# of runs/experiments 250 250 250 50 100
# of neurons per runs 100 100 100 100 100
# of time bins per spike train | 5000 5000 5000 10000 10000
firing probability 0.02 0.02 0.02 0.02 0.02
coincidence probability 0.005 0.005 0.005 0.005 0.005
copy probability 0.85 0.75 0.6 0.6 0.4
assemblies per run 0-6 0-6 0-6 0-6 0-6
assembly size 10 10 10 10 10
significance level for statistic 0.05 0.05 0.05 0.05 0.05
distance measure used dyule dyule dvule dvule dyule
total # of assemblies 648 684 633 129 236
total # of assemblies found 612 633 417 119 30
total # of partial ens. found 35 39 188 4 158
success rate 94.4% |925% |65.9% [92.3% |12.7%
success rate (incl. partial finds) [99.9% |98.3% |95.6% [95.4% |79.7%
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