
Finding Frequent Patterns
in Parallel Point Processes

Christian Borgelt and David Picado-Muiño

European Centre for Soft Computing
Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain

{christian.borgelt|david.picado}@softcomputing.es

Abstract. We consider the task of finding frequent patterns in parallel
point processes—also known as finding frequent parallel episodes in event
sequences. This task can be seen as a generalization of frequent item set
mining: the co-occurrence of items (or events) in transactions is replaced
by their (imprecise) co-occurrence on a continuous (time) scale, meaning
that they occur in a limited (time) span from each other. We define the
support of an item set in this setting based on a maximum independent
set approach allowing for efficient computation. Furthermore, we show
how the enumeration and test of candidate sets can be made efficient by
properly reducing the event sequences and exploiting perfect extension
pruning. Finally, we study how the resulting frequent item sets/event
sets can be filtered for closed and maximal sets.

1 Introduction

We present methodology and algorithms to identify frequent patterns in parallel
point processes, a task that is also known as finding frequent parallel episodes in
event sequences (see [7]). This task can be seen as a generalization of frequent
item set mining (FIM)—see e.g. [2]. While in FIM items co-occur if they are con-
tained in the same transaction, in our setting a continuous (time) scale underlies
the data and items (or events) co-occur if they occur in a (user-defined) limited
(time) span from each other. The main problem of this task is that, due to the
absence of (natural) transactions, counting the number of co-occurrences (and
thus determining what is known as the support of an item set in FIM) is not a
trivial problem. In this paper we rely on a maximum independent set approach,
which has the advantage that it renders support anti-monotone. This property
is decisive for an efficient search for frequent patterns, because it entails the
so-called apriori property, which allows to prune the search effectively. Although
NP-complete in the general case, the maximum independent set problem can be
solved efficiently in our case due to the restriction of the problem instances by
the underlying one-dimensional domain (i.e., the continuous time scale).

The application domain that motivates our investigation is the analysis of
parallel spike trains in neurobiology: sequences of points in time, one per neuron,
representing the times at which an electrical impulse (action potential or spike)

2

is emitted. Our objective is to identify neuronal assemblies, intuitively under-
stood as groups of neurons that tend to exhibit synchronous spiking. Such cell
assemblies were proposed in [5] as a model for encoding and processing infor-
mation in biological neural networks. In particular, as a (possibly) first step in
the identification of neuronal assemblies, we look for frequent neuronal patterns
(i.e., groups of neurons that exhibit frequent synchronous spiking).

The remainder of this paper is structured as follows: Section 2 covers basic
terminology and notation. In Section 3 we compare two characterizations of syn-
chrony: bin-based and continuous, exposing the challenges presented by them.
In Section 4 we present our maximum independent set approach to support
counting as well as an efficient algorithm. In Section 5 we employ an enumera-
tion scheme (directly inspired by common FIM approaches) to find all frequent
patterns in a set of parallel point processes. In particular, we introduce core
techniques that are needed to make the search efficient. In Section 6 we present
experimental results, demonstrating the efficiency of our algorithm scheme. Fi-
nally, in Section 7 we draw conclusions from our discussion.

2 Event Sequences and Parallel Episodes

We (partially) adopt notation and terminology from [7]. Our data are (finite)
sequences of events of the form S = {〈e1, t1〉, . . . , 〈ek, tk〉}, for k ∈ N, where ei in
the event 〈ei, ti〉 is the event type (taken from a domain set E) and ti ∈ R is the
time of occurrence of ei, for all i ∈ {1, ..., k}. We assume that S is ordered with re-
spect to time, that is, ∀i ∈ {1, ..., k−1} : ti ≤ ti+1. Such data may be represented

as parallel point processes L = {(a1, [t(1)1 , . . . , t
(1)
k1

]), . . . , (am, [t
(m)
1 , . . . , t

(m)
km

])} by
grouping events with the same type ai ∈ E and listing the times of their oc-
currences (also sorted with respect to time) for each of them.1 We employ both
representations, based on convenience. In our motivating application (i.e., spike
train analysis), the event types are given by the neurons and the corresponding
point processes list the times at which spikes were recorded for these neurons.

Episodes (in S) are defined as sets of event types in E embedded with a
partial order, usually required to occur in S within a certain time span. Parallel
episodes have no constraints on the relative order of their elements. An instance
(or occurrence) of a parallel episode (or a set of synchronous events) A ⊆ E
in S with respect to a (user-specified) time span w ∈ R+ can be defined as a
subsequence R ⊆ S, which contains exactly one event per event type a ∈ A and
in which any two events are separated by a time distance at most w.

Event synchrony is formally characterized by means of the operator σC :

σC(R, w) =

{
1 if max{|ti − tj | | 〈ei, ti〉, 〈ej , tj〉 ∈ R} ≤ w,
0 otherwise.

In words, σC(R, w) = 1 if all events in R lie within a distance at most w from
each other; otherwise σC(R) = 0. The set of all instances of parallel episodes

1 We use square brackets (i.e., [. . .]) to denote lists.

3

(or all sets of synchronous events) of a set A ⊆ E of event types is denoted by
E(A,w), which we formally define as

E(A,w) =
{
R ⊆ S | A = {e | 〈e, t〉 ∈ R} ∧ |R| = |A| ∧ σC(R, w) = 1

}
.

That is, E(A,w) contains all event subsets of S with exactly one event for each
event type in A that lie within a maximum distance of w from each other.

3 Event Synchrony

Although the above definitions are clear enough, the intuitive notion of the (to-
tal) amount of synchrony of a set A of event types suggested by it poses problems:
simply counting the occurrences of parallel episodes of A—that is, defining the
support of A (i.e. the total synchrony of A) as s(E(A,w)) = |E(A,w)|—has
undesirable properties. The most prominent of these is that the support/total
synchrony of a set B ⊃ A may be larger than that of A (namely if an in-
stance of a parallel episode for A can be combined with multiple instances of a
parallel episode for B \ A), thus rendering the corresponding support measure
not anti-monotone. That is, such a support measure does not satisfy ∀B ⊃ A :
s(E(B,w)) ≤ s(E(A,w)). However, this property is decisive for an efficient search
for frequent parallel episodes, because it entails the so-called apriori property :
given a user-specified minimum support threshold smin, we have ∀B ⊃ A :
s(E(A,w)) ≤ smin ⇒ s(E(B,w)) ≤ smin (that is, no superset of an infrequent set
is frequent). This property allows to prune the search effectively: as soon as an
infrequent set is encountered, no supersets need to be considered anymore.

In order to overcome this problem, many approaches to find frequent par-
allel episodes resort to time binning (including [7] and virtually all approaches
employed in neurobiology): the time interval covered by the events under con-
sideration is divided into (usually disjoint) time bins of equal length (i.e., the
originally continuous time scale is discretized). In this way transactions of clas-
sical frequent item set mining (FIM) [2] are formed: events that occur in the
same time bin are collected in a transaction and are thus seen as synchronous,
while events that occur in different time bins are seen as not synchronous. Tech-
nically, time binning can be characterized by the synchrony operator σB, defined
as follows for R ⊆ S and w now representing the bin width:

σB(R, w) =

{
1 if ∃k ∈ Z : ∀〈e, t〉 ∈ R : t ∈ (w(k − 1), wk],
0 otherwise

(implicitly assuming that binning is anchored at 0). Clearly, this solves the prob-
lem pointed out above: counting the bins in which all event types of a given set A
occur (or, equivalently, counting the number of sets of synchronous events of A—
at most one per time bin) yields an anti-monotone support measure. However,
this bin-based model of synchrony has several disadvantages:

– Boundary problem. Two events separated by a time distance (much)
smaller than the bin length may end up in different bins and thus be re-
garded as non-synchronous. Such behavior is certainly undesirable.

4

– Bivalence problem. Two events can be either (fully) synchronous or non-
synchronous. Small variations in the time distance between two spikes (pos-
sibly moving one of them over a bin boundary) cause a jump from (full)
synchrony to non-synchrony and vice versa. This may be counter-intuitive.

– Clipping. In neurobiology the term clipping refers to the fact that in a bin-
based model it is usually considered only whether a neuron emits a spike in
a time bin, not how many spikes it emits in it. The same can be observed
for general event types in many settings employing time binning.

Some of these disadvantages can be mitigated by using overlapping time bins,
but this causes other problems, especially certain anomalies in the counting
of parallel episodes if they span intervals of (widely) different lengths: parallel
episodes with a short span may be counted more often than parallel episodes
with a long span, because they can occur in more (overlapping) time bins.

Due to these problems we prefer a synchrony model that does not discretize
time into bins, but rather keeps the (time) scale continuous: a continuous syn-
chrony model, as it was formalized in Section 2. This model captures the intended
characterization of synchrony in the bin-based approach, solves the boundary
problem and overcomes the effects of clipping, while it keeps the synchrony no-
tion bivalent (for a related continuous model with a graded notion of synchrony
see [8]). In order to overcome the anti-monotonicity problem pointed out above,
we define the support of a set A ⊆ E of event types as follows (see also [6] for a
similar characterization):

s(E(A,w)) = max
{
|H| | H ⊆ E(A,w)∧ 6 ∃R1,R2 ∈ H : R1 6= R2∧R1∩R2 6= ∅

}
.

That is, we define the support (or total synchrony) of a pattern A ⊆ E as the size
of a maximum independent set of instances of parallel episodes of A (where by
independent set we mean a collection of instances that do not share any events,
that is, the instances do not overlap). Such an approach has the advantage that
the resulting support measure is guaranteed to be anti-monotone, as can be
shown generally for maximum independent subset (or, in a graph interpretation,
node set) approaches—see, e.g., [3] or [10].

4 Support Computation

A core problem of the support measure defined in the preceding section is that
the maximum independent set problem is, in the general case, NP-complete and
thus not efficiently solvable (unless P = NP). However, we are in a special
case here, because the domain of the elements of the sets is one-dimensional
and the elements of the considered sets are no more than a (user-specified)
maximum distance w apart from each other. The resulting constraints of the
possible problem instances allow for an efficient solution, as shown in [9].

Intuitively, the constraints allow to show that a maximum independent set
can be found by a greedy algorithm that always selects the next (with respect to
time) selectable instance of the parallel episode we are considering. The idea of

5

type train = (int, list of real); (∗ pair of identifier and list of points/times ∗)
(∗ points/times are assumed to be sorted ∗)

function support (L: set of train, w: real) : int;
begin (∗ L: trains to process, w: window width ∗)

s := 0; (∗ initialize the support counter ∗)
while ∀(i, l) ∈ L : l 6= [] do begin (∗ while none of the lists is empty ∗)

tmin = min {head(l) | (i, l) ∈ L}; (∗ get smallest and largest head element ∗)
tmax = max{head(l) | (i, l) ∈ L}; (∗ and thus the span of the head elements ∗)
if tmax − tmin > w (∗ if not synchronous, delete smallest heads ∗)
then L := {(i, tail(l)) | (i, l) ∈ L ∧ head(l) = tmin}

∪ {(i, l) | (i, l) ∈ L ∧ head(l) 6= tmin};
else L := {(i, tail(l)) | (i, l) ∈ L}; (∗ if synchronous, delete all heads ∗)

s := s + 1; end (∗ (i.e., delete found synchronous points) ∗)
end (∗ and increment the support counter ∗)
return s; (∗ return the computed support ∗)

end (∗ support() ∗)

Fig. 1. Pseudo-code of the support computation from a set of trains/point processes.

a) b) c)

d) e) f)

Fig. 2. Illustration of the support computation with a sliding window for three parallel
point processes. Blue lines connect selected (i.e. counted) groups of points/times.

the proof is that starting from an arbitrary maximum independent set, the selec-
tion of the sets can be modified (while keeping the number of sets and thus the
maximality property of the selection), so that events occurring at earlier times
are chosen. In the end, the first selected set contains the earliest events of each
type that together form an instance of the parallel episode A under considera-
tion. The second selected set contains the earliest events of each type that form
an instance of the parallel episode A in an event sequence from which the events
of the first instance have been removed, and so on. As a consequence, always
selecting greedily the next instance of the parallel episode in time that does not
contain events from an already selected one yields a maximum independent set.
The details of the proof can be found in [9].

Pseudo-code of the resulting greedy algorithm to compute s(E(A,w)), which
works on a representation of the data as parallel trains (or parallel point pro-
cesses) is shown in Figure 1. An illustration in terms of a sliding window that
stops at certain points, namely always the next point that is not yet part of a
selected set or has already been considered, is shown in Figure 2.

6

function isect (I: list of interval, l: list of real, w: real) : list of interval;
begin (∗ — intersect interval and point list ∗)

J := []; p := −∞; q := −∞; (∗ init. result list and output interval ∗)
while I 6= [] ∧ x 6= [] do begin (∗ while both lists are not empty ∗)

a, b := head(I); t := head(l); (∗ get next interval and next point ∗)
if t < a then l := tail(l); (∗ point before interval: skip point ∗)
elif t > b then I := tail(I); (∗ point after interval: skip interval ∗)
else x := max{a, t− w}; (∗ if current point is in current interval, ∗)

y := min {b, t + w}; (∗ intersect with interval around point ∗)
if x ≤ q then q := y; (∗ merge with output interval if possible ∗)
else if q > −∞ then J.append([p, q]); p := x; q := y; end
l := tail(l); (∗ store pending output interval, ∗)

end (∗ start a new output interval, and ∗)
end (∗ finally skip the processed point t ∗)
if q > −∞ then J.append([p, q]); end (∗ append the last output interval ∗)
return J ; (∗ return the created interval list ∗)

end (∗ isect() ∗)

function recurse (C,L: set of train, I: list of interval, w: real, smin: int);
begin (∗ — recursive part of CoCoNAD ∗)

while L 6= ∅ begin (∗ while there are more extensions ∗)
choose (i, l) ∈ L; L := L− {(i, l)}; (∗ get and remove the next extension ∗)
J := isect(I, l); (∗ intersect interval list with extension ∗)
D := {(i′, [t | t ∈ l′ ∧ ∃j ∈ J : t ∈ j]) | (i′, l′) ∈ C ∪ {(i, l)}};
s := support(D,w); (∗ filter collected trains with intervals, ∗)
if s < smin then continue; (∗ compute support of the train set and ∗)
report {i′ | (i′, l′) ∈ D} with support s; (∗ skip infrequent/report frequent sets ∗)
X := {(i′, [t | t ∈ l′ ∧ ∃j ∈ J : t ∈ j]) | (i′, l′) ∈ L};
recurse(D,X, J, w, smin); (∗ filter extensions with interval list and ∗)

end (∗ find frequent patterns recursively ∗)
end (∗ recurse() ∗)

function coconad (L: set of train, w: real, smin: int);
begin (∗ L: list of trains to process ∗)

recurse([], L, [[−∞,+∞]], w, smin); (∗ w: window width, smin: min. support ∗)
end (∗ coconad() ∗) (∗ initial interval list is whole real line ∗)

Fig. 3. Pseudo-code of the recursive enumeration (support computation see Fig. 1).

5 Finding Frequent Patterns

In order to find all frequent patterns we rely on an enumeration scheme that
is directly inspired by analogous approaches in FIM, especially the well-known
Eclat algorithm [11]. This algorithm uses a divide-and-conquer scheme, which
can also be seen as a depth-first search in a tree that results from selecting edges
of the Hasse diagram of the partially ordered set (2E ,⊆)—see, e.g., [2]. For a
chosen event type a, the problem of finding all frequent patterns is split into two

7

subproblems: (1) find all frequent patterns containing a and (2) find all frequent
patterns not containing a. Each subproblem is then further divided based on
another event type b: find all frequent patterns containing (1.1) both a and b,
(1.2) a but not b, (2.1) b but not a, (2.2) neither a nor b etc. More details of
this approach in the context of FIM can be found in [2]. Pseudo-code of this
scheme for finding frequent patterns is shown in Figure 3, particularly in the
function “recurse”: the recursion captures including another event type (first
subproblem), the loop excluding it afterwards (second subproblem). Note how
the apriori property (see above) is used to prune the search.

A core difference to well-known FIM approaches is that we cannot, for ex-
ample, simply intersect lists of transaction identifiers (as it is done in the Eclat
algorithm, see [11] or [2]), because the continuous domain requires keeping all
trains (i.e. point processes) of the collected event types in order to be able to
compute the support with the function shown in Figure 1. However, simply
collecting and evaluating complete trains leads to considerable overhead that
renders the search unpleasantly slow (see the experimental results in the next
section). In order to speed up the process, we employ a filtering technique based
on a list of (time) intervals in which the points/times of the trains have to lie to
be able to contribute to instances of a parallel episode under consideration (and
its supersets). The core idea is that a point/time in a train that does not have
a partner point/time in all other trains already collected (in order to form an
instance of a parallel episode) can never contribute to the support of a parallel
episode (or any of its supersets) and thus can be removed.

The initial interval list contains only one interval that spans the whole real
line (see the main function “coconad” in Figure 3). With each extension of the
current set of event types (that is, each split event type in the divide-and-conquer
scheme outlined above), the interval list is “intersected” with the train (that is,
its list of points/times). Pseudo-code of this intersection is shown in the function
“isect” in Figure 3: only spikes lying inside an existing interval are considered.
In addition, the intervals are intersected with the intervals [t−w, t+w] around
the point/time t in the train, where w is the (user-specified) window width that
defines the maximum time distance between events that are to be considered
synchronous. The resulting intersections are then merged into a new interval list.

These interval lists are used to filter both the already collected trains before
the support is determined (cf. the computation of the set D in the function
“recurse” in Figure 3) as well as the potential extensions of the current set of
event types (cf. the computation of the set X). Preliminary experiments that we
conducted during the development of the algorithm showed that each of these
filtering steps actually improves performance (considerably).

A common technique to speed up FIM is so-called perfect extension pruning,
where an item i is called a perfect extension of an item set I if I and I ∪ {i}
have the same support. The core idea is that a subproblem split (as described
in the divide-and-conquer scheme above) can be avoided if the chosen split item
is a perfect extension. The reason is that in this case the solution of the first
subproblem (include the split item) can be constructed easily from the solution
of the second (exclude the split item): simply add the perfect extension item

8

to all frequent item sets in the solution of the second subproblem (see [2] for
details). However, for this to be possible, it is necessary that the property of
being a perfect extension carries over to supersets, that is, if an item i is a
perfect extension of an item set I, then it is also a perfect extension of all
item sets J ⊃ I. Unfortunately, this does not hold in the continuous case we
consider here: there can be patterns A,B ⊆ E, with B ⊃ A, and a ∈ E such
that s(E(A,w)) = s(E(A ∪ {a}, w)), but s(E(B,w)) > s(E(B ∪ {a}, w)). As a
consequence, perfect extension pruning cannot be applied directly.

Fortunately, though, we are still able to employ a modified version, which
exploits the fact that we can choose the order of the split event types inde-
pendently in different branches of the search tree. The idea is this: if we find a
perfect extension (based on the support criterion mentioned above), we collect it
and only solve the second subproblem (exclude the split event type). Whenever
we report a pattern A as frequent we check whether this set together with the
set B of collected perfect extensions has the same support. If it does, the prop-
erty of being a perfect extension actually carries over to supersets in this case.
Therefore we can proceed as in FIM: we report all sets A∪C with C ⊆ B, using
the same support s(E(A,w)). If not, we “restart” the search using the collected
perfect extensions as split/extension items again. Note that due to the fact that
we know the support of the set A∪B (computed to check whether A and A∪B
have the same support), we have an additional pruning possibility: as soon as we
reach this support in the restarted recursion, the remaining perfect extensions
can be treated like “true” perfect extensions. (Note that this technique is not
captured in the pseudo-code in Figure 3; for details refer to the source code,
which we made available on the internet—see below).

Finally, we consider filtering for closed and maximal frequent patterns, which
is a common technique in FIM to reduce the output size. For applications in
spike train analysis we are particularly interested in closed frequent patterns,
because they capture all frequency information without loss, but (usually) lead
to (much) smaller output (while maximal frequent patterns, which can reduce
the output even more, lose frequency information and cause certain unpleasant
interpretation problems). Because of this filtering for closed sets of neurons that
frequently fire together as an indication of assembly activity, we call our algo-
rithm CoCoNAD (for COntinuous-time ClOsed Neuron Assembly Detection—
see Figure 3, although the pseudo-code does not capture this filtering).

The main problem of filtering for closed and maximal sets are the “eliminated
event types,” that is, event types which have been used as split event types and
w.r.t. which we are in the second subproblem (exclude item). While event types
that have not been used on the current path in the search tree are processed
in the recursion and hence it can be returned from the recursion whether there
exists a superset containing them that has the same support (closed sets) or
is frequent (maximal sets), eliminated event types need special treatment. We
implemented two approaches: (1) collecting the (filtered trains of the) eliminated
event types and explicitly checking the support of patterns that result from
adding them and (2) using (conditional) repositories of (closed) frequent sets as
suggested for FIM in [4]. (Again these techniques are not captured in Figure 3;

9

details can be found in the source code). The latter has the disadvantage that
it requires extra memory for the (conditional) repositories, but turns out to be
significantly faster than the former (see next section).

6 Results

We implemented our algorithm scheme in both Python and C (see below for the
sources) and tested it on the task of identifying all frequent patterns in data
sets with varying parameters in order to assess its efficiency. Parameters were
chosen with a view on our application domain: data sets with a varying number
of event types (i.e. neurons in our application domain), chosen based on the
number of neurons that can be simultaneously recorded with current technology
(around 100, cf. [1]). Event rates were chosen according to typical firing rates
observed in spike train recordings (around 20–30Hz), which usually comprise
a few seconds. Several minimum support thresholds and window widths were
considered as an illustration. Window widths were selected based on typical time
bin lengths in applications of the bin-based model of synchrony (1 to 7 milli-
seconds). Support thresholds were considered down to two sets of synchronous
events to demonstrate that highly sensitive detections are possible.

The first three diagrams in Figure 4 show execution times of our algorithm
on some of these data sets to give an impression of what impact the parameters

2 3 4 5 6 8 10

–1

0

1

2

lo
g(

tim
e/

s)

minimum support

20Hz
30Hz
40Hz
50Hz
60Hz

event rate

1 2 3 4 5 6 7

–1

0

1

2

lo
g(

tim
e/

s)

window width/ms

20Hz
30Hz
40Hz
50Hz
60Hz

event rate

2 3 4 5 6 8 10

–1

0

1

2

lo
g(

tim
e/

s)

minimum support

60
80
100
120
160
200

event types

2 3 4 5 6 8 10

0

1

2

lo
g(

tim
e/

s)

minimum support

repository
trains
basic

algo. variant

Fig. 4. Execution times in different experimental settings. Default parameters (unless
on horizontal axis or in legend) are 5s recording period, 100 event types, 30Hz event
rate, smin = 2, w = 5ms, closed item sets filtered with (conditional) repositories.

10

have on the execution time.2 The last diagram compares the performances of
the algorithmic variants described in Section 5. In this diagram “basic” refers to
an algorithm without filtering of point processes, that is, as if the pseudo-code
in Figure 3 (cf. function “recurse”) used the assignments D := C ∪ {(i, l)} and
X := L, that is, as if the complete trains were maintained; “trains” means an
algorithm with filtering of point processes, where the trains of eliminated items
are collected and used to check at reporting time for closed patterns; while
“repository” means an algorithm with filtering of point processes, but using
(conditional) repositories of already found closed patterns to filter for additional
closed patterns. Note that filtering the point processes contributes most to make
the search efficient (it reduces the time by about two orders of magnitude).

7 Conclusion

We presented an efficient algorithm scheme aimed at identifying frequent pat-
terns in parallel point processes. This task can be seen as a generalization of
frequent item set mining to a continuous (time) scale, where items or events co-
occur (that is, are synchronous and thus constitute a set of synchronous events)
if they all lie within a certain user-defined (time) span from each other. The
main problem of this task is that, due to the absence of natural transactions (on
which standard frequent item set mining is based), counting the number of sets
of synchronous events (i.e., assessing the support) of a pattern is not a trivial
matter. In this paper the support of a pattern is defined as the maximum num-
ber of non-overlapping sets of synchronous events that can be identified for that
particular set. This has the advantage that it renders support anti-monotone
and thus allows to prune the search for frequent patterns effectively. Computing
the support thus defined becomes an instance of the maximum independent set
problem that, although NP-complete in the general case, can be shown to be
efficiently solvable in our case due to the restriction of the problem instances by
the underlying one-dimensional domain (i.e., the continuous time scale).

In order to make the search for frequent patterns efficient we introduced
several core techniques, such as filtering the point processes to reduce them to
the relevant points and using (conditional) repositories to filter for closed (or
maximal) patterns. These techniques contribute substantially to speeding up
the search, as is demonstrated by the experiments reported in this paper.

Software and Source Code

Python and C implementations of the described algorithm as command line
programs as well as a Python extension module that makes the C implementation
accessible in Python (2.7.x as well as 3.x) can be found at these URLs:

www.borgelt.net/coconad.html www.borgelt.net/pycoco.html

2 All tests were run on a standard PC with an Intel Core 2 Quad 9650@3GHz pro-
cessor, 8GB RAM, Ubuntu Linux 12.10 64bit operating system, using the C imple-
mentation of our algorithm compiled with GCC 4.7.2.

11

Acknowledgments. The work presented in this paper was partially supported
by the Spanish Ministry for Economy and Competitiveness (MINECO Grant
TIN2012-31372).

References

1. R. Bhandari, S. Negi, and F. Solzbacher. Wafer Scale Fabrication of Penetrating
Neural Electrode Arrays. Biomedical Microdevices 12(5):797–807. Springer, New
York, NY, USA 2010

2. C. Borgelt. Frequent Item Set Mining. Wiley Interdisciplinary Reviews (WIREs):
Data Mining and Knowledge Discovery 2:437–456 (doi:10.1002/widm.1074). J. Wi-
ley & Sons, Chichester, United Kingdom 2012

3. M. Fiedler and C. Borgelt. Subgraph Support in a Single Graph. Proc. IEEE Int.
Workshop on Mining Graphs and Complex Data, 399–404. IEEE Press, Piscataway,
NJ, USA 2007

4. G. Grahne and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Item-
sets. Proc. Workshop Frequent Item Set Mining Implementations (FIMI 2003,
Melbourne, FL). CEUR Workshop Proceedings 90, Aachen, Germany 2003

5. D. Hebb. The Organization of Behavior. J. Wiley & Sons, New York, NY, USA
1949

6. S. Laxman, P.S. Sastry, and K. Unnikrishnan. Discovering Frequent Episodes
and Learning Hidden Markov Models: A Formal Connection. IEEE Trans. on
Knowledge and Data Engineering 17(11):1505–1517. IEEE Press, Piscataway, NJ,
USA 2005

7. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery 1(3):259–289. Springer,
New York, NY, USA 1997

8. David Picado-Muiño, Iván Castro-León, and Christian Borgelt. Fuzzy Character-
ization of Spike Synchrony in Parallel Spike Trains. Soft Computing, to appear.
Springer-Verlag, Berlin, Germany 2013

9. D. Picado-Muino and C. Borgelt. Frequent Itemset Mining for Sequential Data:
Synchrony in Neuronal Spike Trains. Intelligent Data Analysis, to appear. IOS
Press, Amsterdam, Netherlands 2013

10. N. Vanetik, E. Gudes, and S.E. Shimony. Computing Frequent Graph Patterns
from Semistructured Data. Proc. IEEE Int. Conf. on Data Mining, 458–465. IEEE
Press, Piscataway, NJ, USA 2002

11. M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. Proc. 3rd Int. Conf. on Knowledge Discovery and
Data Mining (KDD 1997, Newport Beach, CA), 283–296. AAAI Press, Menlo
Park, CA, USA 1997

