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Abstract. In the present study, we investigate the differences in brain
signals of craving smokers, non-craving smokers, and non-smokers. To
this end, we use data from resting-state EEG measurements to train
predictive models to distinguish these three groups. We compare the
results obtained from three simple models – majority class prediction,
random guessing, and naive Bayes – as well as two neural network ap-
proaches. The first of these approaches uses a channel-wise model with
dense layers, the second one uses cross-channel convolution. We there-
fore generate a benchmark on the given data set and show that there is
a significant difference in the EEG signals of smokers and non-smokers.
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1 Introduction

Substance abuse and addiction have many negative effects on the health of the
addicted individual, and society as a whole, with the resulting health care costs
alone being staggeringly high. Understanding how addiction works in the brain
is therefore of utmost importance, as it is the first step in determining the best
ways to treat addiction. Nicotine is legally used worldwide and provides an ex-
cellent opportunity to study addiction in the brain for multiple reasons. First,
nicotine, like other drugs, has chemical effects on the brain, which can be mea-
sured (e.g., [10]). Second, after only few hours of abstinence, smokers start to
crave the next cigarette – a hallmark of addiction, the neural underpinnings
of which are little understood. Third, the legality and prevalence of nicotine
provides an available subject population, without the ethically and legally ques-
tionable issues that can be present when examining addiction in illegal substance
abuse. Fourth, the study of addiction in humans avoids the ethically question-
able administration of drugs to animal models, which may or may not respond
in similar ways to the drugs as humans do.
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In the present study, use neural networks to classify the data from smokers
who have just smoked (non-craving), smokers who have abstained from smoking
for four hours (craving), and non-smokers. The data format used, electroen-
cephalography (EEG), measures the millisecond-by-millisecond changes in elec-
trical potentials on the scalp, providing a measure of the neural activity over
time. We used resting-state data here, in which the participants fixated on a
cross for approximately 10 minutes, to determine if the patterns present in this
basic data could be detected and used to classify our subject groups.

2 Related Work

Previous research on addiction has generally used functional magnetic resonance
imaging (fMRI) to examine differences in resting-state data between craving and
sated smokers [9], or between smokers and non-smokers [17][19], with frontal,
executive-control-related regions such as the insula or dorsolateral prefrontal
cortex (DLPFC) being implicated in differences present. Previous modeling tech-
niques used machine learning to determine smoking status in fMRI data [12].
FMRI is, however, an expensive method to use, with low temporal resolution and
restrictions in subject populations due to its necessary metal-free environment.

Measuring EEG Signals

EEG is a cost-effective and non-invasive technique, which can be used to assess
changes in neural activity over time. The data are measured at various electrodes
(in the current study, 32) relative to a reference electrode, and the electrodes
cover the head in a way (see Figure 1) to optimally pick up neural signals,
presumably generated from local field potentials [11]. Each electrode measures
the signal representing one channel of the dataset.

Event Related Analysis
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Fig. 1. EEG electrode locations.

One more traditional way to analyze EEG
data is to conduct an event-related analysis.
In this form, a subject is given a task, and
every time an event is presented (e.g., a pic-
ture), a code signal is added to the data, which
can be used for time-locked selective averag-
ing. Using this method on a partially over-
lapping population with the present study,
Donohue and colleagues [3] found that when
smokers were craving, they showed generally
more arousal in their neural activity in re-
sponse to all stimuli presented, and, regard-
less of whether the image was nicotine-related or non-nicotine related. It is an
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open question, however, if overall enhanced arousal would be present in resting-
state data, and if the differences observed in the event-related study are great
enough to be captured by a machine learning algorithm.

Resting State Analysis

For many other big-data tasks, the important patterns are known. For example
the p300 [18] shows a specific reaction to stimuli after 300 milliseconds, which
has been widely used since its discovery. One difficulty of using resting-state
signals is that these patterns are unknown in our case. Previous studies using
EEG measures disagree on the frequency bands in which significant differences
occur. For smokers, Brown [2] found reduced alpha and increased rhythmic high
frequency, Rass [13] detected reduced alpha as well, but also reduced delta and
Knott [6] reports reduced delta and increased beta.

EEG Analysis using Neural Networks

The recent developments in feature extraction using neural networks offers a
novel way to examine brain data, to find patterns, which may be highly mean-
ingful and would otherwise remain undiscovered. Schirrmeister [15] applied deep
convolutional neural networks (CNNs) on EEG data. They share connection
weights to find specific local patterns within the given data. With pictures,
CNNs have proven to be very successful for object recognition on the Imagenet
competition [7]. As objects in pictures are represented by groups of nearby pix-
els, convolutions are perfectly tailored for this task. However, it is not clear that
the patterns we are looking for in the EEG are also local.

3 Data Description and Preprocessing

The experimental methods and procedures used in this study were authorized
by the Ethics Committee at the Otto-von-Guericke University of Magdeburg.
From all participants of the study written, informed consent was given prior the
participation. All subjects were financially compensated for their time.

Initially, EEG data from 30 smokers and 9 non-smokers were measured by
32 electrodes positioned on the scalp in the frequently-used 10-20-system as
depicted in Figure 1. Smokers were measured in two sessions: In the non-craving
session they had recently smoked a cigarette, in the craving session they had
not smoked for at least 4 hours. For non-smokers, only one session was obtained.
Each recording session consists of 9.5 minutes resting state with a recording
frequency of 508 Hz. Specifically, one measurement contains 508 Hz×60 seconds×
9.5 minutes ≈ 290.000 dimensions per channel.
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Fig. 2. Data snippet from non-smoker
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Fig. 3. Data snippet from craving smoker

Preprocessing

EEG electrodes not only measure signals arising from the brain, but they also
pick up various forms of noise. As a first preprocessing step, we applied a low-
pass filter at 30 Hz and a high-pass filter at 0.5 Hz. This removed high frequency
noise, including power line interference, some muscle artifacts, slow-drift related
movements, respiration and sweat artifacts. Subsequently, we removed physio-
logical artifacts using Independent Component Analysis (ICA). This algorithm
uses the sensor signals and creates independent components. From these, we
manually selected and removed components containing eye blinks, eye move-
ments and heart beat. The selection of the components was conservative, as the
removal of a noise-like component also removes some brain signals, and it is not
possible to remove only the noisy parts of a component.

We verified visually that the ICA had successfully removed these artifacts,
but it had also created high frequency noise, which is why we filtered again,
keeping only the signal between 0.5 Hz and 30 Hz. To additionally exclude any
remaining physiological noise present in the data, we excluded channels Fp1 and
Fp2 (eye artifacts) and T7 and T8 (muscle artifacts) from subsequent analysis.

We had to exclude three participants: One had fallen asleep during recording,
and two more were rejected, as we could not successfully remove the artifacts
without removing most of the signal as well. For the subsequent analysis, we used
data from a final set of 27 smokers and 9 non-smokers, each with 25 channels.
Sample snippets of approximately two seconds of preprocessed data are shown for
a non-smoker in Figure 2 and for a craving smoker in Figure 3. We chose snippets
that can be distinguished as easy as possible. We performed the preprocessing
using the MNE framework [4].
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Effects Hypothesized to be Inherent

EEG data is well known to have a bad signal-to-noise ratio, even when carefully
preprocessed. We suppose that two effects could be inherent, an effect of addic-
tion and an effect of craving. We investigate both effects by creating models for
classifying two or three classes. Considering craving smokers vs. non-smokers
should measure both effects, which, if these effects sum up, would be indicated
by a high predictability. Non-craving smokers vs. non-smokers only measures
the effect of addiction and craving vs. non-craving takes the effect of craving
into account. The most difficult problem uses data from all three classes and
tries to distinguish them all.

The measurements for craving and non-craving subjects were taken from the
same subjects. This means, for training of the models containing craving and
non-craving measurements, a problem with the assumption of test sets and train-
ing sets being independent and identically distributed (i.i.d) occurs if data from
the same subject are used in both sets simultaneously. For a detailed descrip-
tion, we refer to the work of Le Boudec [8]. Although this seems like a theoretical
problem, it is possible that our models find and learn person-specific patterns
(i.e., identifying a specific subject) [14]. These patterns could confuse the model
when a subject was in both data sets at the same time. This can cause difficulties
for the model, as it gets the opportunity to learn subject-specific patterns in the
EEG signals, which might be used to identify the person. To mitigate this prob-
lem, for all subjects both measurements (craving and non-craving) were used
either for training or for testing. In this case it is still possible that the model
learns person-specific patterns, but these will not directly affect the results.

4 Methodology

The data set contains measurements from 36 participants, which is a lot for
medical studies, as measurements are expensive, but is very small for data anal-
ysis. Therefore the general reliability of the results is low, and results should
be verified with more data, when available. This also motivates the need for a
methodology that adds as little variance as possible.

With data from only 36 participants, a classification is prone to over-fit the
training data and needs a good feature extraction, especially since our input
space has ≈ 290.000 dimensions per channel. We focus here on neural net-
work models, which are known for their ability to automatically detect features
that are relevant for the task at hand. To reduce the problem of few measure-
ments, bootstrapping methods exist, which generate more training examples by
re-sampling the data. All samples generated from one measurement have to be
considered statistically dependent on each other. This means, in order to keep
the independence assumption, they may not be used in both the training and
the testing set at the same time.

In our case we apply bootstrapping by taking time windows of fixed size from
a measurement and use these windows instead of the whole measurement. This
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leads to two advantages: First, it reduces the dimensionality, second it increases
the number of training samples. But it also raises questions: Which length should
the window have and should windows be allowed to overlap?

A larger window length gives the model a longer signal to process and there-
fore more information, which might help to distinguish the classes, but it also
increases the time to process the data. On the other hand a smaller window
length makes it possible to generate more training samples.

Another important topic is the validation method. With few samples it is
common to reuse data several times in independent tests in order to get an
estimate of the quality, for an unknown, unseen data set. A good overview of
cross-validation procedures was written by Arlot [1].

In the Leave-One-Out Cross-Validation (LOO-CV) one measurement is used
for validation, while all others are used for training. For 36 subjects, the number
of different splits with LOO-CV is only 36, which causes limited computational
costs, but also lacks the possibility to perform more independent runs. This
method maximizes the number of training samples but is known to return opti-
mistic results.

The random shuffle split cross-validation copes with these problems: We split
our data into training and test data at a certain arbitrarily chosen ratio. We
choose 7 out of every 9 subjects for the training data and the remaining 2 for
testing, i.e. 28 for training, 8 for testing in total. This means we randomly choose
two non-smokers and six smokers out of the 36 subjects as test set. To minimize
variance during the testing we apply stratification. This guarantees that for any
random split, those ratios hold for all classes. As the numbers of smokers and
non-smokers are multiples of 9 in all classes (27 craving, 27 non-craving and 9
non-smoker), no rounding is needed here. The random choice has the advantage
that it can easily be repeated often to generate more reliable results. In this
example, there are

(
27
6

)
possibilities to choose smokers and another

(
9
2

)
for non-

smokers, which adds up to 10.656.360 possibilities.
With 3 times as many smokers as non-smokers, our classes are unbalanced.

We handle this by balancing the class weights during the training and the vali-
dation process. To score our results, we use the class-balanced accuracy in all our
experiments. Note that this score is equivalent to the class-balanced F1-Score
[16] with micro-averaging.

5 Experimentation and Results

We performed two series of experiments. In the first one we wanted to start
simple. We focused on the problem to distinguish non-smokers (ns) from craving
smokers (c), as we expected it to be the easiest. We looked for possibly small
networks and a set of parameters that generates results better than guessing.
We performed various experiments on network structures, network parameters
as optimizers and number of epochs and we also varied the window length.

The second experimentation series was meant to check the other problems, to
improve the results, to correct possible weaknesses and to try a different network



Neural Networks to distinguish smokers and non-smokers 7

Table 1. Network Structures of Dense Networks

Name Structure

Dense 1 (25 × 5) merge × 64 × 2
Dense 2 (25 × 10) merge × 128 × 64 × 2
Dense 3 (25 × 20) merge × 256 × 128 × 64 × 2

structure. Here, we were aiming for reliable and statistically significant results,
so we needed to repeat the experiments several times.

5.1 First Series of Experiments

We found the following experiment set-up to be working. We used LOO-CV,
non-overlapping windows of length 1000, which corresponds to pieces of approx-
imately two seconds. Thus, we created 290.000/1.000 = 290 training samples per
measurement. Using one measurement per subject, we received 10.440 samples
in 25.000 dimensions.

Our neural networks used mostly dense layers and dropout. We experimented
with three different models, which contain mainly dense layers and dropout.
Our smallest model is Dense 1. It starts with an independent dense layer with
5 neurons for each of the 25 channels. Their outputs are then merged into one
layer of 125 neurons. Next follows a dropout (rate: .2) and another dense layer
with 64 neurons. Finally, we add again dropout (rate: .1) and softmax with one
neuron per class.

All three variants are summarized in Table 1. For networks Dense 2 and
Dense 3 we increased the number of neurons in the layer before the merge and
added further dense layers (each of them accompanied by a dropout of .2) after
the merge.

Results of the First Series

Dense 1 reached 60.9%, Dense 2 59.7% and Dense 3 65,9% as average class-
weighted prediction accuracy. As random guessing would achieve 50%, these
results indicate that it is possible to find the combined effects of smoking and
craving within EEG data.

Our analysis of the first experiment series indicated that our models have a
tendency to predict the craving class. As there are three times as many craving
subjects as non-smokers, this imbalance occurs as well in the test set of the LOO-
CV and could result in overly optimistic results. Hence, in the second experiment
series, we repeat these experiments with random shuffle split cross-validation.
(Note: As we show detailed results for shuffle split, we omit the detailed results
here.)

5.2 Second Series of Experiments

In the second series of experiments we consider all four classification problems
(three 2-class problems and the 3-class problem) in order to investigate the
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effects of smoking and of craving separately and in combination. We use shuffle-
split cross-validation with 100 repetitions in order to get unbiased and reliable
results. To overcome the limited number of possible samples, we now sample
random pieces with replacement permitting overlapping. In this way the num-
ber of possible pieces per measurement increases to 290.000 minus the window
length. We fix the number of samples per epoch to 10.000. We also compare
our results to those of the simple models: predicting the majority class, random
guessing, and naive Bayes. Finally, we perform t-tests to show that our mod-
els perform significantly better than the simple models. As Schirrmeister [15]
recommended, we also try a convolutional network which applies a convolution
over the channels. We start with a convolutional layer with 512 filters, followed
by a max-pooling by Factor 2. Then again a convolution layer with 512 filters,
followed by a max-pooling by Factor 2. It follows a flatten and a dense layer
with 1024 neurons. The final layer uses softmax.

Results of the Second Series
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Fig. 4. Majority class

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 5. Random guessing
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Fig. 6. Naive Bayes

For analyzing the results, we use violin plots of the average class-weighted
prediction accuracy. They visualize the distribution of results and therefore show
more than just mean and standard deviation. Figures 4, 5, 6 show the violin plots
when predicting the majority class, when randomly guessing, and when using a
naive Bayes predictor to distinguish craving and non-smokers. The first shows
zero variance at a mean of 0.5. Random guessing imports some variance at the
same mean value. The Bayes model has the highest variance and even a worse
mean value. It is unable to detect the relevant features.

Craving vs. Non-Smoker

In contrast to the simple models, our neural networks are able to find the com-
bined effects of smoking and craving. Figure 7 shows with 63.7% even better
results than the Convolutional Network in Figure 8. Yet, the earlier 65.9% of
Dense 3 were indeed optimistic.
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Fig. 8. C vs NS: CNN

Craving vs. Non-Craving
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Fig. 9. C vs NC: Dense 3
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Fig. 10. C vs NC: CNN

The effect of craving in EEG data seems to be very small. In Figure 9 we see
the performance of the Dense 3 network. With a median accuracy of 45% it is
worse than random guessing. The convolutional network has a median accuracy
of 52%. A t-test for different means comparing with random guessing returned a
p-value of 0.156. This means our models are unable to predict the craving effect
significantly better than guessing.

Non-craving vs. Non-smoker

The Dense model is able to detect the effect of smoking with a median accuracy
of 61.8% (Figure 11) and outperforms the convolutional network (see Figure 12),
which achieves only 57.8%. This shows that the effect of smoking (without crav-
ing) can be found in EEG signals.
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Fig. 12. NC vs NS: CNN

3-Class-Problem

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 13. 3class: Dense 3
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Fig. 14. 3class: Convolutional Network

For the three class problem, the convolutional network has a median accuracy
of 37.6% and outperforms the dense network (Figure 13), which reaches only
33.1% – the level of random guessing. So compared to craving vs. non-smoker,
the non-craving data reduced the prediction ability of Dense 3. The convolutional
network shows again (Figure 14) predictions that are significantly better than
guessing (p < 0.0001).

Finally, we look at the confusion matrix for the 3-class case. The entries
contain the average normalized values and their variance as numbers and more
reddish color indicates a higher mean. Figures 15 and 16 show that both models
are good at correctly predicting the craving class, while both have a low quality
identifying non-smokers. Also both frequently predict craving, when non-craving
is correct. Therefore, this confirms that the craving effect – if existent – is difficult
to find. The CNN has higher rates for all correct predictions and is clearly the
better model. Nevertheless, it shows more variance in most of the cases.
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6 Conclusion and Future Work

In this work, we created models to distinguish craving smokers, non-craving
smokers and non-smokers. Our models are able to successfully distinguish smok-
ers from non-smokers. Nevertheless, we found no model able to find a significant
effect of craving within the data. Models distinguishing all three classes showed
the same weakness.

We have shown that resting-state EEG measurements contain information
on the smoking status of a person. This is a great result, especially since EEG
data are known to have a low signal-to-noise ratio and thus a good classification
cannot be expected. This promising finding builds the basis of future research
with many implications for the study of addiction in cognitive neuroscience.

For our future work, we plan to investigate recurrent networks like the Long-
Short-Term-Memory (LSTM) [5]. These units have shown good results when
modeling multivariate time series, such as EEG signals. Further, we aim for
visualizing the network’s features in order to gain insights what are the patterns
that differ in the brains of smokers and non-smokers.
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