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Abstract

We present methods to find (significant) frequent
synchronous patterns in event sequences, using a
graded notion of synchrony that captures both the
number of instances of a pattern as well as the pre-
cision of synchrony of its constituting events. Since
transferring earlier work (using a binary notion of
synchrony) poses certain problems, we opt for an
efficient approximation scheme to compute the pat-
tern support. Furthermore, we transfer methods
for filtering for significant and removing induced
patterns, which require adaptations. Finally, we
demonstrate the effectiveness of our approach with
experiments on a large number of data sets with
injected synchronous patterns.

Keywords: Keywords: graded synchrony, syn-
chronous events, frequent pattern, pattern mining

1. Introduction

We present a methodology and algorithms to iden-
tify (significant) frequent synchronous patterns in
event sequences, using the principles of frequent
item set mining (FIM). The objective of FIM is to
find all item sets that are frequent in a database,
where an item set is called frequent if its support
exceeds a (user-specified) minimum support thresh-
old. While in standard FIM the support of an item
set is simply the number of transactions it is con-
tained in, the (usually) continuous time domain un-
derlying event sequence data causes certain prob-
lems.

Earlier work in this area either relied on (naive)
time binning to reduce the problem to the transac-
tional case [13, 15] or defined that a group of items
(event types) co-occur if their occurrence times are
no farther apart than a (user-defined) maximum
(time) distance. As a support measure, the latter
approach uses a maximum independent set of such
pattern instances as the support measure [4, 14].

Although this approach solves most of the prob-
lems of a time binning approach (specifically, the
boundary problem, cf. [12]), it still suffers from some
shortcomings. The shortcoming we focus on in this
paper is that a binary notion of synchrony (that is, a
group of events is either synchronous, namely if the
events all occur within a certain limited time span,
or not, namely if they occur farther apart) may not

be so well suited for some applications. For exam-
ple, we may desire a support measure that takes
the precision of synchrony into account, so that a
pattern that has fewer instances (i.e. occurrences),
but in each of these the items occur very closely
together in time, is rated better than an item set,
which has more instances, but in each of these the
synchrony of the events is rather loose.

This is the case in the application area that mo-
tivated our investigation, namely the analysis of
parallel spike trains in neurobiology: sequences of
points in time, one per neuron, representing the
times at which an electrical impulse (action poten-
tial or spike) is emitted. Our objective is to iden-
tify neuronal assemblies, intuitively understood as
groups of neurons that tend to exhibit synchronous
spiking. Such cell assemblies were proposed in [7]
as a model for encoding and processing information
in biological neural networks. In particular, as a
(possible) first step in the identification of neuronal
assemblies, we look for frequent neuronal patterns
(i.e., groups of neurons that exhibit frequent syn-
chronous spiking). In this setting, the precision of
synchrony is relevant, because synchronous spike in-
put to receiving neurons is known to be more effec-
tive in generating output spikes [1, 9].

Therefore we propose in this paper, drawing on
previous work [12], a graded notion of synchrony
that gives rise to a support measure that captures
both the number of instances as well as the precision
of synchrony. Unfortunately, though, the efficient
support computation algorithm proposed in [4, 14]
for a binary notion of synchrony (that is, a greedy
algorithm that finds a maximum independent set of
the pattern instances) does not guarantee to pro-
duce the optimal result for this graded synchrony.
In order to avoid having to apply a general max-
imum independent set algorithm (which has expo-
nential time complexity, since the maximum inde-
pendent set problem is NP-complete [8] and even
hard to approximate [6]), we opt for an approxi-
mation that allows us to compute the support of a
pattern very efficiently by intersecting interval lists.

Furthermore, we demonstrate how the tools to fil-
ter for statistically significant patterns (namely by
analyzing surrogate data sets and employing pat-
tern spectrum filtering [13, 15]) and to remove in-
duced patterns (with pattern set reduction [15]) can
be transferred from an approach based on binary



synchrony to our approach. Finally, we demonstrate
the effectiveness of our procedure with experiments
on a large number of data sets into which frequent
synchronous patterns were injected.

The remainder of this paper is structured as fol-
lows: Section 2 covers basic terminology and nota-
tion and introduces our graded notion of synchrony.
In Section 3 we show how the resulting support
is approximated and frequent synchronous patterns
are mined. In Sections 4 and 5 we show how pattern
spectrum filtering and pattern set reduction, respec-
tively, can be transferred from the binary case. Sec-
tion 6 reports experimental results on data sets with
injected parallel episodes. Finally, in Section 7 we
draw conclusions from our discussion.

2. Event Sequences & Synchrony

Throughout this paper we adopt notation and ter-
minology from [11]. Our data are sequences of
events S = {〈i1, t1〉, . . . , 〈im, tm〉}, m ∈ N, where ik

in the event 〈ik, tk〉 is the event type or item
(taken from an item base B) and tk ∈ R is the
time of occurrence of ik, k ∈ {1, . . . , m}. Note
that the fact that S is a set implies that there
cannot be two events with the same item occur-
ring at the same time: events with the same
item must differ in their occurrence time and
events occurring at the same time must have dif-
ferent types/items. Note also that such data may
as well be represented as parallel point processes

P = {〈i1, {t
(1)
1 , . . . , t

(1)
m1

}〉, . . . , 〈in, {t
(n)
1 , . . . , t

(n)
mn

}〉}
by grouping events with the same item i ∈ B,
n = |B|, and listing the times of their occurrences
for each of them. Finally, note that in our mo-
tivating application (i.e. spike train analysis), the
items (or event types) are the neurons and the cor-
responding point processes list the times at which
spikes were recorded for these neurons.

We define a synchronous pattern (in S) as a set
of items I ⊆ B that occur several times (approxi-
mately) synchronously in S. Formally, an instance
(or occurrence) of such a synchronous pattern (or
a set of synchronous events for I) in an event se-
quence S with respect to a (user-specified) time
span w ∈ R

+ is defined as a subsequence R ⊆ S,
which contains exactly one event per item i ∈ I

and which can be covered by a (time) window at
most w wide. Hence the set of all instances of a
pattern I ⊆ B, I 6= ∅, in an event sequence S is

ES,w(I) =
{

R ⊆ S | {i | 〈i, t〉 ∈ R} = I

∧ |R| = |I| ∧ σw(R) > 0
}

,

where σw is the synchrony operator which measures
the (degree of) synchrony of the events in R. It may
be chosen as (binary) synchrony [4, 14] defining

σ(b)
w (R) =







1 if max{t | 〈i, t〉 ∈ R}
− min{t | 〈i, t〉 ∈ R} ≤ w,

0 otherwise.

σw(R)

d(R)

d(R) = max〈i,t〉∈R t

− min 〈i,t〉∈R t
1

0
0 w

perfect

synchrony

no

synchrony

Figure 1: Degree of synchrony as a function of the
distance between the latest and the earliest event.

However, here we are interested in a synchrony op-
erator that yields a degree of synchrony between 0
and 1. Naturally, this operator should coincide with

σ
(b)
w for the limiting cases: if all events in R co-

incide (i.e. have the same occurrence time, perfect
synchrony), the degree of synchrony should be 1,
while it should be 0 if the events are spread out
farther than the window width w (no synchrony).
However, if the (time) distance between the earliest
and the latest event in R is between 0 and w, we
want a degree of synchrony between 0 and 1.

Such a synchrony operator was described in [12]
based on the notion of an influence map, which
is placed at each event and describes the vicinity
around an event in which synchrony with other
events is defined. Such an influence map for an
event occurring at time t is defined as a function

ft(x) =

{

1
w

if x ∈ [t − w
2 , t + w

2 ],
0 otherwise.

Note that an influence map is not a distribution
function in the sense of probability theory, even
though it shares its formal properties. In partic-
ular, it is not meant to describe uncertainty about
the occurrence time of an event.

Based on influence maps, we define that there
is synchrony to some degree between events iff the
influence maps of these events overlap. The area of
the overlap measures the degree of synchrony:

σ(g)
w (R) =

∫ ∞

0

min
〈i,t〉∈R

ft(x, w) dx.

Alternatively, we may use the equivalent definition

σ(g)
w (R) = max

{

0, 1 − 1
w

(

max
〈i,t〉∈R

t − min
〈i,t〉∈R

t
)}

.

This synchrony operator is illustrated in Figure 1.
The synchrony operator underlies the definition

of a support operator sS,w(I) that we use to mine
synchronous patterns. Intuitively, the support
should capture (also) the number of occurrences of
a pattern in a given event sequence S. In addition,
in order to be efficient, frequent pattern mining re-
quires support to be anti-monotone: ∀I ⊆ J ⊆ B :
sS,w(I) ≥ sS,w(J). Or in words: if an item is added
to an item set, its support cannot increase. This
implies the so-called apriori property: ∀I, J ⊆ B :
(J ⊇ I ∧ sS,w(I) < smin) ⇒ sS,w(J) < smin. Or in



words: no superset of an infrequent pattern can be
frequent. The apriori property allows to prune the
search for frequent patterns effectively [3].

The most natural support definition would be
sS,w(I) =

∑

R∈ES,w(I) σw(R), (which is equivalent

to sS,w(I) = |ES,w(I)| for binary synchrony). How-
ever, this support measure is not anti-monotone [4].
Therefore we need to restrict the elements of ES,w(I)
over which we sum. Since distinct instances that
share events cause the lack of anti-monotonicity, a
fairly natural approach is that of two overlapping
instances (that is, R1, R2 ⊆ ES,w(I) with R1 6= R2

and R1 ∩ R2 6= ∅) at most one should contribute
to the support. This leads to a maximum (size) in-
dependent set approach (MIS) for binary synchrony
and a maximum (weight or degree of synchrony) in-
dependent set approach for graded support [4, 12].

Given a support measure and a (user-specified)
minimum support smin, we finally define the task of
frequent synchronous pattern mining as the task to
identify all item sets I ⊆ B with sS,w(I) ≥ smin.

3. Support Computation & Pattern Mining

Our support operator, as defined in the preceding
section, requires to compute a maximum (weight)
independent set of ES,w(I). Unfortunately, finding
a maximum independent set is NP-complete in the
general case [8] and even hard to approximate [6].
Intuitively, this means that (unless P = NP) there is
no algorithm that does fundamentally better than
trying all possibilities and thus needs exponential
time (in the size of ES,w(I)). For binary synchrony,
however, problem instances are strongly constrained
by the underlying one-dimensional time domain. As
a consequence, there exists an efficient greedy algo-
rithm that yields an optimal result [4, 14]: If S is
an event sequence over an item base B, I ⊆ B an
item set and w a (maximal) window width, then
a maximum independent subset of ES,w(I) can be
found with a greedy algorithm, which always selects
as the next instance the one consisting of the ear-
liest event for each of the items in I that form an
instance of I and are not contained in any already
selected instance. A proof of the correctness of this
procedure can be found in [14], pseudo-code in [4].

Unfortunately, applying the same greedy algo-
rithm as for binary synchrony does not guarantee
to find the optimal solution for support based on
graded synchrony. Whether an alternative efficient
algorithm exists for graded synchrony (since the
problem instances are constrained as well, although
less severely as with binary synchrony) we do not
know. Hence, unless we want to execute a general
MIS algorithm with exponential time complexity
(as in [12]), we have to accept an approximation.

As such an approximation (Figure 2) we choose
the integral over the maximum (union) of the min-
imum (intersection) of influence regions: the mini-
mum represents the synchrony operator, the maxi-

t (time)
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Figure 2: Support computation for three items a,
b, c. Each event has its influence map (represented
as a rectangle). If two influence maps overlap, the
resulting influence map is the maximum (union) of
these influence maps. The intersection of influence
maps is the minimum which defines the synchrony
operator. In the diagram, item b has two events
the influence regions of which overlap. The support
results from the integral over the intersections.

mum aggregates over different instances. Formally:

sS,w(I) =

∫ ∞

−∞

max
R∈ES,w(I)

(

min
〈i,t〉∈R

ft(x)
)

dx.

Exploiting the properties of maxima and minima,
this definition can conveniently be rewritten as

sS,w(I) =

∫ ∞

−∞

min
i∈I

(

max
〈j,t〉∈S;j=i

ft(x)
)

dx.

This form of the support measure has (at least)
two advantages: in the first place, it is clearly anti-
monotone (this is obvious from the minimum over
i ∈ I). The second is that it allows to compute sup-
port by a simple intersection of interval lists, since
all occurring functions only take two values, namely
0 and 1

w
, and thus it suffices to record where they

are greater than 0. Hence, as a preprocessing step,
we compute for each item i ∈ B the list of intervals
in which max〈j,t〉∈S;j=i ft(x) > 0. These intervals
can then be intersected to account for the minimum.
Finally, the area under the functions is obtained by
summing the interval lengths and dividing by w.

Note that this computation can be seen as a natu-
ral generalization of the transaction list intersection
carried out by the Eclat algorithm [16] to a continu-
ous domain. As a consequence, Eclat’s item set enu-
meration scheme, which is based on a divide-and-
conquer approach [3], can be transferred with only
few adaptations to obtain an efficient algorithm for
mining frequent synchronous patterns. The divide-
and-conquer scheme can be roughly characterized
as follows: for a chosen item i, the problem to find
all frequent patterns is split into two subproblems:
(1) find all frequent patterns containing item i and
(2) find all frequent patterns not containing i. Each
subproblem is then further divided based on an-
other item j: find all frequent patterns containing



(1.1) both i and j, (1.2) i but not j, (2.1) j but
not i, (2.2) neither i nor j etc.

In order to reduce the output we restrict it to
closed frequent patterns. A pattern is called closed
if no super-pattern has the same support. Closed
patterns have the advantage that they preserve
knowledge of what patterns are frequent and allow
us to compute the support of any non-closed fre-
quent pattern easily (see [3]). However, it should be
noted that the restriction to closed patterns is less
effective with graded synchrony than with binary
synchrony, because adding an item can now reduce
the support not only by losing instances, but also by
worsening the precision of synchrony. Hence, most
patterns are closed under graded synchrony.

4. Pattern Spectrum Filtering

The output of pure synchronous pattern mining is
usually (much) too large to be useful and thus fur-
ther reduction is necessary. One way of doing this
is to identify statistically significant patterns. Pre-
vious work showed that statistical tests on individ-
ual patterns are not suitable [13, 15] (even though
these papers considered time-binned data, their ar-
guments apply to our setting as well). The main
problems are the lack of proper test statistics as
well as multiple testing, that is, the huge number
of patterns makes it very difficult to control the
family-wise error rate, even with control methods
like Bonferroni correction, the Benjamini-Hochberg
procedure or the false discovery rate etc. [5].

To overcome this problem, we rely here on the ap-
proach suggested in [13] and refined in [15], namely
Pattern Spectrum Filtering (PSF). This method is
based on the following insight: even if it is highly
unlikely that a specific group of z items co-occurs
s times, it may still be likely that some group of
z items co-occurs s times, even if items occur in-
dependently. The reason is simply that there are
so many possible groups of z items (unless the item
base B as well as the group size z are tiny) that
even if each group has only a tiny probability of co-
occurring s times, it may be almost certain that one
of them co-occurs s times.

From this insight it was derived in [13] that pat-
terns should rather be judged based on their signa-
ture 〈z, s〉, where z = |I| is the size of a pattern I

and s its support. It is claimed that a pattern can-
not be called significant if a counterpart (that is,
same or larger pattern size z and same or higher
support s) can be explained as a chance event un-
der the null hypothesis of independent events.

In order to determine the likelihood of observ-
ing different pattern signatures 〈z, s〉 under the null
hypothesis of independent items, a data randomiza-
tion or surrogate data approach is employed. The
general idea is to represent the null hypothesis im-
plicitly by (surrogate) data sets that are generated
from the original data in such a way that their

occurrence probability is (approximately) equal to
their occurrence probability under the null hypoth-
esis. Such an approach has the advantage that it
needs no explicit data model for the null hypothe-
sis, which in many cases (including the one we are
dealing with here) may be difficult to specify. In-
stead, the original data is modified in random ways
to obtain data that are at least analogous to those
that could be sampled under conditions in which the
null hypothesis holds. An overview of several sur-
rogate data methods in the context of neural spike
train analysis can be found in [10].

The only adaptation that we have to make com-
pared to [13, 15] is that, due to our graded syn-
chrony, support values are no longer integers, but
can be any (non-negative) real number. As a con-
sequence, we have to change the pattern spectrum
from a bar chart with discrete values on both axes
to a histogram, where support bins with a (user-
specified) width are formed for the support axis.
An example of such a pattern spectrum, for data as
it will be used in Section 6, is shown in Figure 5(a).
It captures what pattern signatures occurred in a
large number of surrogate data sets.

5. Pattern Set Reduction

Unfortunately, even after pattern spectrum filter-
ing, many spurious patterns may remain. Such pat-
terns are caused by an actual pattern interacting
with background chance events, which gives rise to
subset, superset and overlap patterns. Supersets re-
sult from items outside of an actual pattern occur-
ring by chance together with some of the instances
of the actual pattern. Subsets result from some of
the items in the actual pattern occurring together,
in addition to the instances of the actual pattern, as
a chance event. Finally, overlap pattern result from
items outside of an actual pattern co-occurring with
some instances of the injected pattern and at least
one chance event of a subset of the actual pattern.

In order to remove such spurious induced pat-
terns, we draw on pattern set reduction (PSR), as
it was proposed in [15] for time-binned data, and
transfer it to graded synchrony. The basic idea of
pattern set reduction is to define a preference rela-
tion between patterns X and Y with Y ⊂ X ⊆ B.
Only patterns to which no other pattern is preferred
are kept. All other patterns are deleted.

The preference relations considered in [15] are
based on three core principles: (1) explaining excess
coincidences (subsets), (2) explaining excess items
(supersets) and (3) assessing the pattern probabil-
ity based on the number of covered events. More
formally, let zX = |X| and zY = |Y | be the sizes
of the patterns X and Y , respectively, and let
sX = sS,w(X) and sY = sS,w(Y ) be their support
values. Since we have Y ⊂ X it follows zX > zY

and sY > sX , because support is anti-monotone
and we consider only closed patterns. With (1), X
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Figure 3: Example of generated data sets that imi-
tate parallel neural spike trains.

is preferred to Y if the excess coincidences sY − sX

that Y exhibits over X can be explained as a chance
event. With (2), Y is preferred to X if the presence
of zX − zY excess items that X contains over Y can
be explained as a chance event. With (3), the pat-
tern is preferred for which z · s (or, alternatively,
(z − 1) · s) is larger. In the case of time-binned
data or binary synchrony, z · s is the number of
individual events supporting a pattern. In the al-
ternative version, the events of a reference item, to
which the events of the other items are synchronous
(as it makes no sense to speak of synchronous events
if there is only one item), are disregarded.

Transferring (1) and (2) to the case of graded
synchrony turns out to be difficult, because the de-
cision whether excess coincidences or excess items
can be explained as chance events is made based
on the pattern spectrum, using heuristic signature
modifications that are tricky to transfer to a non-
integer support. In addition, they are based on
pairwise pattern comparisons, while the third ap-
proach relies on a potential function (in the sense of
physics), thus simplifying the reduction process. As
a consequence, we focus here on the third method,
even though its intuitive justification as a number of
events is also lost. However, we argue that the prod-
uct of size (or size minus 1) and support can also
be justified as derived from the shape of the deci-
sion border between significant and non-significant
patterns as it is induced by the pattern spectrum.
(This border generally has a hyperbolic shape and is
derived, in the binary case, from curves of pattern
signatures having equal probability under certain
simplifying assumptions—see [15].)

However, the graded synchrony we employ in this
paper forces us to adapt this function. The reason is
that with graded synchrony increasing the pattern
size generally reduces the support, and not neces-
sarily because instances get lost, but because the
precision of synchrony is reduced by added items.
This needs to be taken into account in the eval-
uation function. Since the loss of synchrony de-
pends on the number of items, we heuristically chose
(z − 1)(s + kz), where k is a (user-specified) param-
eter that is meant to capture the loss of synchrony
relative to the pattern size.

σw(R)

d(R)

d(R) = max〈i,t〉∈R t

− min 〈i,t〉∈R t
1

0

β = 1

2

β = 1

3

0 w = v w = 3

2
v w = 2v

Figure 4: Effect of increasing the window w beyond
the expected amount v of jitter in the data.

6. Experiments

We implemented our frequent synchronous pattern
mining method in Python, using an efficient C-
based Python extension module that implements
the pattern mining and pattern spectrum estima-
tion algorithms (see below for the sources). We gen-
erated event sequence data as independent Poisson
processes with parameters chosen in reference to our
application domain: 100 items (number of neurons
that can be simultaneously recorded with current
technology), 20Hz event rates (typical average fir-
ing rate observed in spike train recordings), 3s total
time (typical recording times for spike trains range
from a few seconds up to about an hour).

Into such independent data sets we injected a sin-
gle synchronous pattern each, with sizes z ranging
from 2 to 12 items and numbers c of occurrences
(instances) ranging from 2 to 12. To simulate im-
precise synchrony, the events of each pattern in-
stance were jittered independently by drawing an
offset from a uniform distribution on [− v

2 ms, + v
2 ms]

with v = 2, 3, 4, 5ms (which corresponds to typical
bin lengths for time-binning of parallel neural spike
trains, which are 1 to 7ms). An example of such a
data set is depicted in Figure 3.

Then we tried to detect the injected synchronous
patterns with the methods described above, first
carrying out pattern mining on the original data
(with a minimum support smin = 1 and a minimum
pattern size zmin = 2), then filtering it with a pat-
tern spectrum derived from 10,000 data sets with
independent spike trains (as shown in Figure 5(a)),
and finally applying pattern set reduction. Apart
from the jitter width v, we varied two parameters:
the window width w and the parameter k (pattern
set reduction, see Section 5). The parameter k was
varied between 0.1 and 0.2, in steps of 0.01.

The reason for varying w is as follows: while with
binary synchrony it is obvious that we should choose
w = v (since this allows us to capture all pattern
instances, while incurring a minimum of chance pat-
terns), using the same relation is not likely to pro-
duce the best results for graded synchrony. This
becomes obvious if we consider the extreme case
that all instances of a pattern realize the maximum
spread v (that is, for all instances the earliest and
the latest event are v apart). In this case the sup-
port of the pattern is 0, regardless of the number of
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Figure 5: Results for injected synchronous patterns with signatures (z, c) ∈ {2, . . . , 12}2, instances jittered
with v = 2ms. Pattern mining executed with w = 3.6ms windows and reduced with (z − 1)(c + kz) where
k = 0.15. Individual diagrams: (a) pattern spectrum derived from 10,000 surrogate data sets; (b) false
negatives rates if supersets of injected pattern count as detections; (c) false negative rates for exact detections;
(d) rate of patterns other than the injected patterns (superset, subsets, overlap patterns unrelated patterns);
(e) number of reported supersets of injected pattern; (f) number of reported subsets of injected pattern;
(g) number of reported patterns that overlap the injected pattern; (h) number of patterns that are unrelated
to injected pattern (at most one item in common). Diagrams (b)–(h) are derived from/averaged over 1000
data sets. Note the logarithmic scale on the vertical axis in diagrams (e)–(h).

instances, because the degree of synchrony of each
individual instance is 0. That is, with w = v we
have, in a way, gone too far with graded synchrony:
while we wanted only to introduce a (partial) de-
pendence on the precision of synchrony, we achieved
that the precision of synchrony submerges the de-
pendence on the number of instances.

Fortunately, though, this can easily be fixed by
choosing a window width w > v, say w = α·v. Note
that even though the value v of the jitter width is
generally unknown in practice, there usually exists
some expectation of its size. Choosing w = α · v

then merely means that one has to multiply this
expectation by a certain factor. Note also, that the
same problem exists for binary synchrony, where we
merely know that α = 1 is optimal.

The effect of choosing a value w > v is demon-
strated in Figure 4: while with w = v the entire
degree of synchrony depends on the precision of
synchrony, w = α · v yields a minimum degree of
synchrony of β = α−1

α
(provided that the jitter of

patterns in the data is actually limited to v), while
only 1 − β = 1 − α−1

α
= 1

α
depends on the preci-

sion of synchrony. Hence, with this approach, the
support consists of two elements: an element that
derives from the number of instances (which is con-
trolled by β = α−1

α
) and an element that captures

the precision of synchrony (which is controlled by
1 − β = 1

α
). In our experiments, we varied the fac-

tor α between 1 and 2, in steps of 0.1.

Example results for a choice of the analysis pa-
rameters (window width w and parameter k) that
seemed optimal after comparing to alternative set-

tings are shown in Figure 5. False negatives occur
mainly for small pattern sizes and few coincidences,
which is mainly due to the fact that such patterns
can be explained as chance events (that is, the pat-
terns are deleted by pattern spectrum filtering).
However, for sufficiently large patterns (four and
more items) and sufficiently many instances (five to
six are almost always sufficient), the detection is es-
sentially perfect. Alternative results, especially for
different factors α = w

v
and different values of the

parameter k, are shown in Figure 6. We see that
choices different from the one in Figure 5 deterio-
rate the detection quality.

7. Conclusions

In this paper we presented a method for mining
frequent synchronous patterns in event sequences
based on a graded notion of synchrony. In order to
avoid having to solve a maximum independent set
problem, we chose an approximation of the induced
support measure, which is efficiently computable
with interval list intersection. We transferred the
methods of pattern spectrum filtering and pattern
set reduction, adapting the filtering process and the
pattern evaluation function, so that they take care
of the underlying graded synchrony measure. Our
experiments demonstrate that the whole process,
consisting of pattern mining, pattern spectrum fil-
tering and pattern set reduction works very well and
can detect even relatively small patterns with fairly
few instances. Since we are defining and improving
a detection method we worked with artificial data,
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Figure 6: Results for in-
jected patterns with signa-
tures (z, c) ∈ {2, . . . , 12}2,
instances jittered with v =
2ms. Pattern set reduction
executed with (z−1)(c+kz).
(a) false negatives (FN) for
w = 3.2ms and k = 0.2;
(b) FN for w = 3.4ms and
k = 0.16; (c) FN for w =
3.6ms and k = 0.15; dia-
grams (d), (e) and (f) cor-
respond to (a), (b) and (c),
respectively, and show the
rate of other patterns.

for which we know whether it contains what we want
to detect (which is impossible for real world data).
In the future, we plan to investigate possible pattern
set reduction approaches more thoroughly and ex-
tend our method to handle selective participation,
i.e. the occurrence of incomplete instances. Finally
we plan to apply our method to real world data.

Software and Additional Results

Python and C implementations of synchronous pat-
tern mining with binary synchrony can be found at:

http://www.borgelt.net/coconad.html and
http://www.borgelt.net/pycoco.html.

Modified versions, which use a graded notion of syn-
chrony and which we developed for the experiments
in this paper, will soon be made available at the
same URLs. Extended result diagrams as well as
the Python scripts with which we conducted out
experiments will be made available at:

http://www.borgelt.net/ovlexp.html.
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