
Learning Probabilistic and Possibilistic Networks: Theory and Applications

Rudolf Kruse and Christian Borgelt

Dept. of Information and Communication Systems
Otto-von-Guericke-University of Magdeburg
D-39106 Magdeburg, Germany
e-mail: {kruse,borgelt}@iik.cs.uni-magdeburg.de

Abstract. Inference networks, probabilistic as well as possibilistic, are popular techniques to make
reasoning in complex domains feasible. Since constructing such networks by hand can be tedious and
time consuming, a large part of recent research has been devoted to learning them from data. In this
paper we review probabilistic and possibilistic networks and discuss the basic ideas used in learning
algorithms for these types of networks. With an application in the automotive industry we demonstrate
that the considered methods are not only of theoretical importance, but also relevant in practice.

1 Introduction

Since reasoning in multi-dimensional domains tends
to be infeasible in the domains as a whole — and
the more so, if uncertainty and/or imprecision are
involved — decomposition techniques, that reduce
the reasoning process to computations in lower di-
mensional subspaces, have become very popular.
For example, decomposition based on dependence
and independence relations between variables has
been studied extensively in the field of graphical
modeling [19]. Some of the best-known approaches
are Bayesian networks [25], Markov networks [22],
and the more general valuation-based networks [32].
But recently possibilistic networks also gained a lot
of interest due to their close connection to fuzzy
methods [20]. All approaches led to the devel-
opment of efficient implementations, for example
HUGIN [1], PULCINELLA [30], PATHFINDER
[13] and POSSINFER [9].

In this paper we review probabilistic and possi-
bilistic networks and discuss methods to learn them
from data, i.e. to determine from a database of sam-
ple cases an appropriate decomposition of the prob-
ability or possibility distribution on the domain un-
der consideration [7, 14, 10, 11]. Such automated
learning is important, since constructing a network
by hand can be tedious and time-consuming. If a
database of sample cases is available, as it often is,
learning algorithms can take over at least part of
the construction task.

These new methods can be used to do “data
mining”, i.e. to discover useful knowledge that is
hidden in the large amounts of data stored in data
warehouses. We demonstrate the practical rele-
vance of this approach with an application in the au-
tomotive industry, in which the induction of prob-
abilistic and possibilistic networks was used to find
weaknesses in Mercedes Benz vehicles and thus to
improve the product quality.

2 Probabilistic and Possibilistic Networks

The basic presupposition underlying every infer-
ence network, probabilistic or possibilistic, is that a
multi-dimensional distribution can be decomposed
without much loss of information into a set of (over-
lapping) lower-dimensional distributions.1 This set
of lower-dimensional distributions is usually repre-
sented as a hypergraph, in which there is a node for
each variable and a hyperedge for each distribution
of the decomposition. To each node and to each hy-
peredge a projection of the multi-dimensional dis-
tribution (a marginal distribution) is assigned: to
the node a projection to its variable and to a hyper-
graph a projection to the set of variables connected
by it. Thus hyperedges represent direct influences
that the connected variables have on each other, i.e.
how constraints on the value of one variable affect
the probabilities or possibilities of the values of the
other variables in the hyperedge. Reasoning in such
a hypergraph consists in propagating evidence, i.e.
observed constraints on the values of some of the
variables, along the hyperedges.

The idea of propagation can be understood best
by a simple example. Imagine three variables, A,
B, and C, and a (hyper)graph A—B—C. When
evidence about A is fed into the network it is prop-
agated like this: The constraints on the values of
variable A stated by the evidence are extended to
the space A × B to obtain constraints on tuples
(ai, bj), which are then projected to the variable B
to compute the constraints on the values of this vari-
able. These constraints are then in turn extended
to the subspace B×C and projected to variable C.

For this scheme to be feasible, the main oper-
ations, projection and extension of distributions,

1Of course, this presupposition need not hold. A distribu-
tion need not be decomposable, even if one accepts a certain
limited loss of information. But in such a situation inference
networks cannot be used.
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Figure 1: A three-dimensional
probability distribution with its
marginal distributions (sums over
lines/columns). Since in this dis-
tribution the equations ∀i, j, k :

P (ai, bj , ck) =
P (ai, bj)P (bj , ck)

P (bj)

hold, it can be decomposed into the
marginal distributions on the sub-
spaces {A, B} and {B, C}.
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Figure 2: Product/sum propaga-
tion of the evidence that vari-
able A has value a4 in the three-
dimensional probability distribu-
tion shown in figure 1 using the
marginal probability distributions
on the subspaces A×B and A×C.

have to satisfy certain preconditions [31]. In proba-
bility theory a product/sum propagation method
is used, in which the marginal distribution of
e.g. a two-dimensional distribution is calculated
by summing over one dimension, that is P (ai) =∑

j P (ai, bj). Extension consists in multiplying the
prior probability distribution on the superset with
the quotient of posterior and prior probability on
the subset.

An example is given in figures 1 and 2. Fig-
ure 1 shows a three-dimensional probability dis-
tribution on the joint domain of the variables
A = {a1, a2, a3, a4}, B = {b1, b2, b3}, and C =
{c1, c2, c3}, and the marginal distributions calcu-
lated by summing over lines/columns. Since in this
distribution the equations

∀i, j, k : P (ai, bj , ck) =
P (ai, bj)P (bj , ck)

P (bj)

hold, it can be decomposed into the marginal distri-
butions on the subspaces A×B and B×C. There-
fore it is possible to propagate the observation that
variable A has value a4 using the scheme in fig-
ure 2.2 One can easily check that the resulting

2This scheme is a simplification and does not lend itself

marginal distributions are the same as those that
can be computed from the three-dimensional distri-
bution directly.

We now turn to possibilistic networks. Our ap-
proach rests on an interpretation of a degree of pos-
sibility that is based on the context model [8, 20]. In
this model possibility distributions are interpreted
as information-compressed representations of (not
necessarily nested) random sets, a degree of possi-
bility as the one-point coverage of a random set [24].
With this interpretation we can construct possibilis-
tic networks in much the same way as probabilistic
networks. The only difference is that instead of a
product/sum scheme, minimum/maximum propa-
gation is used. That is, the projection of e.g. a
two-dimensional distribution is calculated by deter-
mining the maximum over one dimension, extension
by calculating the minimum of the prior joint distri-
bution on the superset and the posterior marginal
distribution.

An example is given in figures 3 and 4. Figure 3
shows a three-dimensional possibility distribution
on the joint domain of the variables A, B, and C

to direct implementation. Especially joining evidence from
two (hyper)edges needs additional computations, which we
omitted here.
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Figure 3: A three-dimensional pos-
sibility distribution with maximum
projections. Since in this distribu-
tion the equations
∀i, j, k : π(ai, bj , ck) =

minj(maxi π(ai, bj , ck),
maxk π(ai, bj , ck))

hold, it can be decomposed into the
two projections to the subspaces
{A, B} and {B, C}.
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Figure 4: Minimum/maximum pro-
pagation of the evidence that vari-
able A has value a4 in the three-
dimensional possibility distribution
shown in figure 3 using the marginal
distributions on the subspaces
A×B and A× C.

and various marginal distributions determined by
computing the maximum over lines/columns. Since
in this distribution the equations

∀i, j, k : π(ai, bj , ck) =
min

j
(max

i
π(ai, bj , ck),max

k
π(ai, bj , ck))

hold, it can be decomposed into marginal distribu-
tions on the subspaces A × B and B × C. There-
fore it is possible to propagate the observation that
variable A has value a4 using the scheme shown in
figure 4. Again the marginal distributions obtained
are the same as those that can be computed directly
from the three-dimensional distribution.

3 Learning Inference Networks from Data

An algorithm for learning inference networks con-
sists always of two parts: an evaluation measure and
a search method. The evaluation measure estimates
the quality of a given decomposition (a given hy-
pergraph) and the search method determines which
decompositions (which hypergraphs) are inspected.
Often the search is guided by the value of the eval-
uation measure, since it is usually the goal to max-
imize (or to minimize) its value.

There are several evaluation measures for learn-
ing probabilistic as well as for learning possibilistic
networks. We can only list some of them here, since
limits of space do not allow us to discuss all of them
in detail.

Probabilistic Measures
• χ2-measure

• information gain/mutual information [21, 26, 27]

• (symmetric) information gain ratio [26, 27, 23]

• Gini-index [5]

• symmetric Gini-index [34]

• minimum description length based on relative or
on absolute frequency coding [28, 17]

• stochastic complexity [18, 29]

• g-function (a Bayesian measure) [7]

Possibilistic Measures
• dχ2 , a derivate of the χ2-measure [3, 4]

• dmi, a derivate of mutual information [3, 4]

• specificity gain [10, 2]

• (symmetric) specificity gain ratio [2]
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Figure 5: Illustration of the idea of
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stating the allowed coordinates is
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value pairs. Specificity gain aggre-
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Figure 6: The specificity gain of the
three attribute pairs of the possibil-
ity distribution shown in figure 3.
On the left is the maximum projec-
tion as calculated from the whole
distribution, on the right the inde-
pendent distribution, i.e. the distri-
bution calculated as the minimum
of the maximum projections to the
single variable domains. Specificity
gain can be seen as measuring the
difference of the two.

We illustrate the idea underlying these measures
by discussing one of them as an example. Since
in our research we focus on possibilistic networks,
we choose a possibilistic measure: specificity gain.
This measure is based on the U -uncertainty mea-
sure of nonspecificity of a possibility distribution
[16], which is defined as

nsp(π) =
∫ sup(π)

0

log2 |[π]α|dα

and can be justified as a generalization of Hart-
ley information [12] to the possibilistic setting [15].
nsp(π) reflects the expected amount of information
(measured in bits) that has to be added in order to
identify the actual value within the set [π]α of alter-
natives, assuming a uniform distribution on the set
[0, sup(π)] of possibilistic confidence levels α [11].

The role nonspecificity plays in possibility the-
ory is similar to that of Shannon entropy in proba-
bility theory. Thus the idea suggests itself to con-
struct an evaluation measure from nonspecificity in
the same way as information gain is constructed
from Shannon entropy, i.e. by computing the gain
in information/specificity that results from using
the joint distribution instead of the marginal ones.
Therefore we define for two variables A and B the

specificity gain as

Sgain = nsp(πmax A) + nsp(πmax B) − nsp(πAB).

Generalizations to more than two variables are easy
to find [3, 4]. This measure is equivalent to the one
defined in [11].

The idea of specificity gain is illustrated in fig-
ure 5. The joint possibility distribution is seen as a
set of relational cases, one for each α-level. Speci-
ficity gain aggregates the gain in Hartley informa-
tion for these relational cases by computing the in-
tegral over all α-levels.

To demonstrate the application of specificity
gain figure 6 states the specificity gain for the three-
dimensional possibility distribution shown in fig-
ure 3. It is easy to see that interpreting the speci-
ficity gain as a (hyper)edge weight and applying the
Kruskal algorithm yields the correct decomposition
of this distribution.

All of the mentioned measures can be used in
combination with a large variety of search methods.
Two of the most common methods are optimum
weight spanning tree construction [6] and greedy
parent selection [7] (K2 algorithm). But in general
any heuristic search method can be used, like e.g.
simulated annealing, genetic algorithms etc.
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4 Application in the Automotive Industry

Even high quality products like Mercedes-Benz ve-
hicles sometimes show undesired behaviour. As
a major concern of the Mercedes-Benz AG is to
further improve the quality of their products, a
lot of effort is dedicated to finding the causes of
these faults in order to be able to prevent simi-
lar faults from occurring in the future. Therefore
the Mercedes-Benz AG maintains a quality infor-
mation database to control the quality of produced
vehicles. In this database for every produced ve-
hicle it is recorded its configuration (product line,
motor type, special equipment etc.) and any faults
detected during production or maintenance.

In a cooperation with the Data Mining Group
of the Daimler-Benz AG Research and Technology
Center Ulm we applied INES (Induction of NEt-
work Structures), a prototype implementation of
the described methods, to this database. This pro-
gram contains all mentioned evaluation measures
and two search methods, optimum weight spanning
tree construction and greedy parent selection.

The idea used in this application is very simple.
Since we are interested in causes of faults, we learn a
two-layered network, in which the top layer contains
attributes describing the vehicle configuration and
the bottom layer contains attributes describing pos-
sible vehicle faults. This is illustrated in figures 7
and 8. (Since real dependences and numbers are, of
course, highly confidential, these figures show ficti-
tious examples. Any resemblance to actual depen-
dences and numbers is purely coincidental.) Fig-
ure 7 shows a possible learned two-layered network,
figure 8 the frequency distribution associated with
the first of its subnets. Since in this example the
fault rate for cars with an air conditioning system
and an electrical sliding roof is considerably higher
than that of cars without one or both of these items,
we can conjecture that the increased consumption

of electrical energy due to installed air condition-
ing and electrical sliding roof is a cause of increased
battery faults.

Although specific results are confidential, we can
remark here that on a truck database INES easily
found a dependence pointing to a possible cause of
a fault, which was already known to the domain
experts, but had taken them considerable effort
to discover “by hand”. Other dependences found
were considered by the domain experts as valuable
starting points for further technical investigations.
Hence we can conclude that learning probabilistic
and possibilistic networks is a very useful method
to support the detection of product weaknesses.
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