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Abstract: In learning graphical models we
often face the problem that a good fit to the
data may call for a complex model, while real
time requirements for later inferences force
us to strive for a simpler one. In this paper
we suggest a learning algorithm that tries to
achieve a compromise between the goodness
of fit of the learned graphical model and the
complexity of inferences in it. It is based on
the idea to extend an optimal spanning tree in
order to improve the fit to the data, while re-
stricting the extension in such a way that the
resulting graph has hypertree structure with
maximal cliques of at most size 3.
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1 Introduction

In recent years graphical models [18, 12]—
especially Bayesian networks [14, 8] and
Markov networks [11], but also the more
general valuation-based networks [17] and,
though to a lesser degree, the newer possi-
bilistic networks [6, 1]—gained considerable
popularity as powerful tools to model de-
pendences in complex domains and thus to
make inferences under uncertainty in these
domains feasible. Graphical models are based
on the idea that under certain conditions a
multidimensional (probability or possibility)
distribution can be decomposed into (condi-
tional or marginal) distributions on lower di-
mensional subspaces. This decomposition is
represented by a graph, in which each node
stands for an attribute and each edge for a
direct dependence between two attributes.

The graph representation also supports draw-
ing inferences, because the edges indicate the
paths along which evidence has to be trans-
mitted [8, 2]. However, in order to derive cor-
rect and efficient evidence propagation meth-
ods, the graphs have to satisfy certain condi-
tions. In general, cycles pose problems, mak-
ing it possible that the same information can
travel on different routes to other attributes.
In order to avoid erroneous results in this case,
the graphs are often transformed into singly
connected structures, namely so-called join or
Junction trees [11, 8, 2].

Since constructing graphical models manually
can be tedious and time consuming, a large
part of recent research has been devoted to
learning them from a dataset of sample cases
[4, 7,5, 6, 1]. However, many known learning
algorithms do not take into account that the
learned graphical model may later be used to
draw time-critical inferences and that in this
case the time complexity of evidence propa-
gation may have to be restricted, even if this
can only be achieved by accepting approxima-
tions. The main problem is that during join
tree construction edges may have to be added,
which can make the graph more complex than
is acceptable. In such situations it is desirable
that the complexity of the join tree can be
controlled at learning time, even at the cost
of a less exact representation of the domain
under consideration.

To achieve this we suggest an algorithm that
constructs a graphical model by extending an
optimal spanning tree in such a way that the
resulting graph has hypertree structure with
maximal cliques of at most size 3.



2 Optimal Spanning Trees

Constructing an optimum weight spanning
tree is a special case of methods that learn
a graphical model by measuring the strength
of marginal dependences between attributes.
The idea underlying these heuristic, but of-
ten highly successful approaches is the fre-
quently valid assumption that in a graphical
model correctly representing the probability
or possibility distribution on the domain of
interest an attribute is more strongly depen-
dent on adjacent attributes than on attributes
that are not directly connected to it. Conse-
quently, it should be possible to find a proper
graphical model by selecting edges that con-
nect strongly dependent attributes. Among
the methods based on this idea constructing
an optimum weight spanning tree is the sim-
plest and best known learning algorithm. It
is at the same time the oldest approach, as it
was suggested as early as 1968 in [3].

In general, the algorithm consists of two com-
ponents: an evaluation measure, which is used
to assess the strength of dependence of two
attributes, and a method to construct an op-
timum weight spanning tree from given edge
weights (which are, of course, provided by the
evaluation measure). The latter component
may be, for example, the well-known Kruskal
algorithm [10]. For the former component,
i.e., the evaluation measure, there is a vari-
ety of measures to choose from. In [3], in
which learning probabilistic graphical mod-
els was considered, mutual information (also
called information gain or cross entropy) was
used. It is defined as (A and B are attributes):

Imut(A) B) = H(A) +H(B) - H(AB)7

where H(A) is the Shannon entropy of the
probability distribution on A, i.e.,

Z P(a)logy P(a).
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H(A) = —

(Here P(a) is an abbreviation of P(A = a)
and denotes the probability that A assumes—
as a random variable—the value a.) H(B)
and H(AB) are defined analogously. Alter-

natively, one may use the x? measure

Xz(AvB):N Z

a€dom(A)
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where N is the number of cases in the dataset
to learn from (which is often dropped in ap-
plications), or the symmetric Gini index (see,
for example, [1] for a definition), etc.

While the above measures are designed for
learning probabilistic networks, it is clear that
the same approach may also be used to learn
possibilistic networks: We only have to choose
a measure for the possibilistic dependence of
two attributes. Best known among such mea-
sures is the specificity gain

Sgain(A7 B) = nsp(A) + IlSp(B) - IlSp(AB),

where nsp(A) denotes the U-uncertainty mea-
sure of nonspecificity [9] of the (marginal) pos-
sibility distribution m4 on attribute A:

sup(ma)
nsp(A) = /0 logy |[ralu|de.

([ a]a denotes the a-cut of the possibility dis-
tribution.) nsp(B) and nsp(AB) are defined
analogously. It should be noted that the for-
mula of specificity gain is very similar to the
formula of information gain/mutual informa-
tion due to the fact that in possibility theory
the measure of nonspecificity plays roughly
the same role Shannon entropy plays in prob-
ability theory.

Alternatively, one may use possibilistic mutual
information [1]:

dmi(A, B)
wap(a,b)
= — mag(a,b)lo - )
aedoZm(A) Apla. b)log, min{rma(a), 75 (b)}
bedom(B)

which is based on a translation of a differ-
ent way of writing mutual information to the
possibilistic setting (see [1] for details) or a
possibilistic version of the x? measure [1]:

dy2(A, B)
min{m4(a), 75(b)} — map(a,b))?
_Z( {ma(a), mp(b)} — map(a,b))”

- min{74(a), 75(b)}

ac€dom(A)
bedom(B)



It is worth noting that the optimum weight
spanning tree approach has an interesting
property in the probabilistic setting: Pro-
vided that there is a perfect tree-structured
graphical model of the domain of interest
and the evaluation measure used has a cer-
tain property (at least mutual information
and the y? measure have this property), then
the perfect model can be found by construct-
ing an optimum weight spanning tree (see
[1] for details). For mutual information even
more can be shown: Constructing an opti-
mum weight spanning tree with this measure
yields the best tree-structured approximation
of the probability distribution on the domain
of interest w.r.t. Kullback-Leibler information
divergence (3, 14].

Unfortunately, these properties do not carry
over to the possibilistic setting. Even if there
is a perfect graphical model with tree struc-
ture, constructing an optimum weight span-
ning tree with any of the possibilistic mea-
sures mentioned above is not guaranteed to
find this tree (see [1] for a counterexample).
As a consequence there is no analog of the
stronger approximation statement either.

3 Extending Spanning Trees

Even if there is no perfect tree-structured
graphical model of the domain of interest,
constructing an optimum weight spanning
tree can be a good starting point for learn-
ing a graphical model. The algorithm sug-
gested in [16], for example, starts by con-
structing a(n undirected) spanning tree and
then turns it into a (directed) polytree by
directing the edges based on the outcomes
of conditional independence tests. The ad-
vantage of this approach is that it keeps the
single-connectedness of the graph and thus al-
lows for a simple derivation of evidence propa-
gation methods. However, by doing so, it does
not really restrict the complexity of later in-
ferences, as this complexity depends on the
number of parents an attribute has in the
polytree. This can be seen by considering the
construction of a join tree for the polytree
[2]. The first step consists in forming a so-
called moral graph by “marrying” the parents
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Figure 1: The dotted edges cannot both be
the result of “marrying” parents in a directed
graph, but may be generated in our algorithm.

of an attribute (i.e., connecting them with an
edge). In this way the set of parents of an at-
tribute together with the attribute itself be-
come a clique in the resulting graph and thus
a node in the final join tree. As the size of
the nodes in the join tree is a decisive factor
of the complexity of inferences, the number of
parents directly determines this complexity.
Unfortunately, there is no way to restrict the
number of parents in this algorithm. On the
other hand, the restriction to singly connected
graphs may be too strong for some learning
tasks, as such graphs cannot capture certain
rather simple dependence structures.

To amend these drawbacks, we suggest a sim-
ple learning algorithm, which also starts from
an initial optimum weight spanning tree, but
may yield more complex structures than poly-
trees, while at the same time restricting the
size of the nodes in the join tree. The basic
idea of this algorithm is as follows: First an
(undirected) optimum weight spanning tree is
constructed. Then this tree is enhanced by
edges where a conditional independence state-
ment implied by the tree does not hold. How-
ever, we do not check arbitrary conditional
independence statements, but only those that
refer to edges, which connect nodes having
a common neighbor in the optimum weight
spanning tree. It should be noted that this
restriction is similar to directing the edges of
the spanning tree, because adding an edge be-
tween two nodes having a common neighbor is
similar to directing the edges of the spanning
tree towards the common neighbor (because
the construction of a moral graph would add
exactly this edge). However, our approach is
more general, since it allows for structures like
those shown in figure 1, which cannot result
from directing edges alone.



Figure 2: Maximal cliques with four or more
nodes cannot be created without breaking the
rules for adding edges.
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Figure 3: The node A can be bypassed only by
an edge connecting the node D to a neighbor
of A (which may or may not be B).

A further restriction of the additional edges is
achieved by the following requirement: If all
edges of the optimum weight spanning tree
are removed, the remaining graph must be
acyclic. This condition is interesting, because
it guarantees that the resulting graph has hy-
pertree structure (a precondition for the con-
struction of a join tree, see [11, 2] for details)
and that its maximal cliques comprise at most
three nodes. Consequently, with this condi-
tion we can restrict the size of the join tree
nodes and thus the complexity of inferences.

Theorem: If an undirected tree is extended
by adding edges only between nodes with a
common neighbor in the tree and if the added
edges do not form a cycle, then the resulting
graph has hypertree structure and its maxi-
mal cliques contain at most three nodes.

Proof: Consider first the size of the maxi-
mal cliques. Figure 2 shows, with solid edges,
the two possible structurally different span-
ning trees with four nodes. In order to turn
these into cliques the dotted edges have to be
added. However, in the graph on the left the
edge (B, D) connects two nodes not having a
common neighbor in the original tree and in
the graph on the right the additional edges
form a cycle. Therefore it is impossible to get
a clique with a size greater than three without
breaking the rules for adding edges.

In order to show that the resulting graph has
hypertree structure, it is sufficient to show
that all cycles with a length greater than three
have a chord (i.e., an edge connecting two
nodes of the cycle that are not adjacent in the
considered cycle). This is easily verified with
the following argument. Neither the original
tree nor the graph without the edges of this
tree contain a cycle. Therefore in all cycles
there must be a node A at which an edge from
the original tree meets an added edge. Let the
former edge connect the nodes B and A and
the latter connect the nodes C' and A. Since
edges may only be added between nodes that
have a common neighbor in the tree, there
must be a node D that is adjacent to A as
well as to C in the original tree. This node
may or may not be identical to B. If it is iden-
tical to B and the cycle has a length greater
than three, then the edge (B, C) clearly is a
chord. Otherwise the edge (A, D) is a chord,
because D must also be in the cycle. To see
this, consider Figure 3, which depicts the sit-
uation referred to. To close the cycle we are
studying there must be a path connecting B
and C that does not contain A. However,
from the figure it is immediately clear that
any such path must contain D, because A can
only be bypassed via an edge that has been
added between D and a neighbor of A (note
that this neighbor may or may not be B). O

In order to test for conditional (in)de-
pendence, we simply use the conditional forms
of the marginal dependence measures men-
tioned above. That is, in the probabilistic
case we compute for a measure m

Z P(c)-m(A,B | c),

c€dom(C)

mci(A,B ’ C) =

where m(A, B | C = ¢) is defined as m(A, B)
with all marginal probabilities P(a) and P(b)
replaced by their conditional counterparts
P(a|c)and P(b| c). The possibilistic case is
analogous. We only have to take into account
that the possibility degrees may not add up
be 1, so that normalization is necessary, i.e.,

ma(A,B|C)= 3 ”CS(C) “m(A, B | ¢),

c€dom(C)



net eds. | pars. train test
indep. 0 59 | —19921 | —20087
orig. 22 | 219 | —11391 | —11506
Tgain 20 | 286 | —12123 | —12340
X2 20 | 283 | —12123 | —12336
Igain 35 | 1484 | —11454 | —12029
X2 35 | 1732 | —11441 | —12034
Tgain 35 | 1342 | —11229 | —11818
X2 35 | 1301 | —11235 | —11805
K2 23 | 230 | —11385 | —11511

Table 1: Probabilistic network learning.

where s = 3~ cgom(c) To(c). Based on these
measures we select the additional edges greed-
ily (similar to the Kruskal algorithm).

As a final remark we would like to point out
that this approach is not guaranteed to find
the best possible graph with the stated prop-
erties, neither in the probabilistic nor in the
possibilistic setting. That is, if there is a per-
fect graphical model of the domain under con-
sideration, which has hypertree structure and
the maximal cliques of which have at most
size 3, then this approach may not find it. An
example of such a case can be found in [1].

4 Experimental Results

We implemented our algorithm in a proto-
typical fashion as part of the INES program
(Induction of NEtwork Structures) [1] and
tested it on the well-known Danish Jersey cat-
tle blood group determination problem [15].

For our probabilistic tests, we used databases
randomly generated from a human expert de-
signed Bayesian network for the Danish Jer-
sey cattle domain. Details of the experimen-
tal setup can be found in [1]. Table 1 shows
the results. The first section contains the re-
sults for a network without any edges and the
original network, followed by results obtained
with a pure optimal spanning tree approach.
The third section lists the results of the al-
gorithm suggested in this paper and the fi-
nal section shows the result of greedy parent
selection w.r.t. a topological order. All net-
works were evaluated by computing the log-
likelihood of the training and a test dataset.

net eds. | pars. | min. | avg. | max.
indep. 0 80 | 10.06 | 10.16 | 11.39
orig. 22| 308 | 9.89| 9.92|11.32
Sgain 20| 415 8.88 | 899 10.71
d,2 20 | 449 | 8.66 | 8.8210.33
dmi 20| 372 | 847 | 8.60 | 10.39
Sgain 29 | 2110 | 8.14 | 8.30 | 10.13
d,2 35| 1672 | 8.10 | 8.28 | 10.18
dmi 311 1353 | 7.97| 8.14|10.25
Sgain 31| 1630 | 8.52 | 8.62 | 10.29
d,2 35| 1486 | 8.15| 8.33 | 10.20
dmi 33| 774 | 8.21 | 8.34|10.42

Table 2: Possibilistic network learning.

For our possibilistic tests we used a database
of 500 real world sample cases, which contains
a large number of missing values and is thus
well suited for a possibilistic approach. The
results are shown in table 2. The meaning
of the sections is the same as for table 1, al-
though the evaluation is done differently (de-
tails about how we assess the quality of a pos-
sibilistic network can be found in [1]).

As was to be expected, in both cases, proba-
bilistic as well as possibilistic, the results are
in between those of the pure optimum weight
spanning tree algorithm and the greedy par-
ent selection algorithm. However, in compar-
isons with the latter it should be noted that
the greedy parent selection needs a topolog-
ical order to work on and is thus provided
with important additional information, while
our algorithm relies on the data alone.

5 Conclusions and Future Work

In this paper we suggested a learning algo-
rithm for graphical models, which extends an
optimal spanning tree by adding edges. Due
to specific restrictions, which edges may be
added, the result is guaranteed to have hyper-
tree structure and maximal cliques of limited
size, thus providing for efficient inferences.
The experimental results are promising, es-
pecially for possibilistic networks.

A drawback of the suggested algorithm is that
the size of the maximal cliques is restricted to
a fixed value, namely 3. Obviously, it would



be more desirable if the size restriction were
a parameter. Therefore in our future research
we plan to search for conditions that enable
us to extend optimal spanning trees in more
complex ways, while restricting the model to
hypertrees with maximal cliques of at most
size 4, 5 etc. Unfortunately, such conditions
seem to be much more complex and thus dif-
ficult to find.
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