
Effects of Irrelevant Attributes in Fuzzy Clustering
Christian D̈oring, Christian Borgelt, and Rudolf Kruse
Dept. of Knowledge Processing and Language Engineering

Otto-von-Guericke-University of Magdeburg
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Abstract— In fuzzy clustering soft cluster partitions are formed
based on the similarity of data points to the respective cluster
prototypes. Similarity is defined in terms of simultaneous close-
ness regarding all attributes. In some applications the values of
many attributes have been measured, but a natural clustering, if it
exists, occurs within a (small) subset of attributes. The remaining
dimensions can be considered irrelevant. They can obscure an
existing grouping and make it harder to discover the cluster
structure. In probabilistic fuzzy clustering irrelevant attributes
can lead to coincidental cluster centers in the worst case. We
study this effect in detail as well as the robustness of different
similarity functions and their possible parameterizations against
irrelevant input dimensions. Empirical evidence is given for the
different properties of the membership functions.

I. FUZZY CLUSTERING

Most fuzzy clustering algorithms are objective function
based: they determine an optimal (fuzzy) partition of a given
data setX = {~xj | j = 1, . . . , n} into clusters by minimizing
an objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

um
ij d2

ij (1)

subject to the constraints
n∑

j=1

uij > 0, for all i ∈ {1, . . . , c}, and (2)

c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}. (3)

Here uij ∈ [0, 1] is the membership degree of datum~xj

to cluster i and dij is the distance between datum~xj and
cluster i. The c × n matrix U = (uij) is called the fuzzy
partition matrix andC describes the set of clusters by stating
location parameters (i.e. the cluster center) and maybe size and
shape parameters for each cluster. The parameterm, m > 1,
is called thefuzzifier or weighting exponent. It determines
the “fuzziness” of the classification: with higher values for
m the boundaries between the clusters become softer, with
lower values they get harder. Usuallym = 2 is chosen.

Constraint (2) guarantees that no cluster is empty. Con-
straint (3) ensures that the membership degrees of a datum
to the clusters sum up to 1 and thus that each datum has the
same total influence. Because of the second constraint this
approach is usually calledprobabilistic fuzzy clustering, since
with it the membership degrees for a datum formally resemble
the probabilities of its being a member of the corresponding

clusters. The partitioning property of a probabilistic clustering
algorithm, which “distributes” the weight of a datum to the
different clusters, is due to this constraint.

Unfortunately, the objective functionJ cannot be minimized
directly. Therefore an iterative algorithm is used, which alter-
nately optimizes the membership degrees and the cluster pa-
rameters. That is, first the membership degrees are optimized
for fixed cluster parameters, then the cluster parameters are
optimized for fixed membership degrees. The main advantage
of this scheme is that in each of the two steps the optimum
can be computed directly. By iterating the two steps the joint
optimum is approached (although it cannot be guaranteed that
the global optimum will be reached—the algorithm may get
stuck in a local minimum of the objective functionJ).

The update formulae are derived by simply setting the
derivative of the objective functionJ w.r.t. the parameters to
optimize equal to zero (necessary condition for a minimum).
Independent of the chosen distance measure we thus obtain
the following update formula for the membership degrees [1]:

uij =
d
− 2

m−1
ij∑c

t=1 d
− 2

m−1
tj

. (4)

The update formulae for the cluster parameters depend, of
course, on what parameters are used to describe a cluster
(location, shape, size) and on the chosen distance measure. In
this paper we take the fuzzyc-means (FCM) algorithm [2] as
an example. In the FCM the Euclidean distance measures the
dissimilarity of data points to the clusters, which are described
by their centers~ci only. Therefore the update formula for the
clusters in the alternating optimization scheme is given by

~ci =

∑n
j=1 um

ij~xj∑n
j=1 um

ij

. (5)

This paper is organized as follows. In the next section we
give an illustrative example of the effects that occur when
datasets with irrelevant attributes are clustered. In Section III
we analyze the observed effects and show which properties
of the similarity functions cause these observations. We fur-
ther describe an alternative similarity function and its devi-
ating characteristics which contrast the observed properties
in standard fuzzy clustering. Empirical evidence is gathered
for different choices of similarity functions and for some
parameterizations in Section IV.



II. I LLUSTRATIVE EXAMPLE

To demonstrate the effects of irrelevant attributes we gener-
ated an artificial data set. We used two classes with 150 data
points each and a high number of normally distributed at-
tributes. However, only one of the input dimensions is group-
ing the generated example data. The generating model as well
as the data set is shown in Figure 1, with the relevant attribute
on the horizontal axis and one of the irrelevant attributes on
the vertical. The clustering attribute is distributed with mean
µ = 3.5 and varianceσ2 = 1 in the left cluster and with
µ = 6.5, σ2 = 1 in the right cluster. All other attributes have
µ = 5 and σ2 = 1 in both clusters and thus do not provide
any information for grouping the data points.

The interesting effects become visible when this artificial
data set is endowed with an increasing number of irrelevant
input dimensions. The result of FCM clustering with the
relevant attribute and only one noisy attribute is shown in
Figure 2. The two cluster centers are very slightly repelling
each other due to the partitioning property of probabilistic
FCM, i.e., their distance is slightly larger than in the generating
model. This situation changes in the cluster partitions when
more and more irrelevant dimensions are added. Then the
cluster centers seem to get attracted to each other and move
closer. With eight irrelevant attributes the clusters are about
to collapse (see Figure 3). The cluster centers finally coincide
in the center of the data cloud when 9 out of the 10 input
attributes are irrelevant (see Figure 4). All data points are
assigned to both clusters with equal membership degree of
0.5 in the resulting probabilistic cluster partition.

III. A NALYSIS

To understand the above effects better it is worthwhile to
look deeper into the computation of the membership degrees.
Since the cluster centers are centers of gravity in the clouds
of weighted data points, their attraction and coincidence must
occur because of changes of the weightsum

ij of the data points.
The weight calculations as given in Equation 4 can be divided
into two individual steps: the computation of un-normalized
membership degrees first, followed by the normalization step:

u∗ij = f(dij) = d
− 2

m−1
ij , (6)

uij =
u∗ij∑c

t=1 u∗tj
. (7)

In Equation 6 the un-normalized membership degrees are
a function of the distancedij of the data point~xj to the
cluster center~ci. We call this functionf similarity function,
because it assigns different membership degrees for data points
to clusters depending how similar they are to each other.
These un-normalized membership degrees are normalized in
Equation 7 in order to satisfy the constraints stated in Section I.

The illustrative example shows that in the case of collapsing
clusters all membership degrees of the data points are equal.
In the general case, when such a cluster center coincidence
occurs, we haveuij = 1/c, i ∈ {1, . . . , c}, j ∈ {1, . . . , n}.

Fig. 1. The generating model.

Fig. 2. FCM (m = 2) and one irrelevant dimension.

It follows that with an increasing number of noisy inputs the
ratios of the membership degrees,

uij

utj
=

u∗ij
u∗tj

=
f(dij)
f(dtj)

, i, t ∈ {1, . . . , c}, (8)

of each data point~xj get closer to 1. Therefore, in order to
explain the observed effects we examine the magnitudes of
the distancesdij and the influence of the membership function
when the number of irrelevant features increases.

A. Increased Distances

In clustering algorithms distance is usually measured w.r.t.
all attributes. For instance, the Euclidean distance used in the
FCM algorithm is an aggregate of attribute specific distances
d2

ij,k = (xj,k − ci,k)2, wherek specifies thek-th attribute or
the k-th feature vector component. With the set of relevant
attributesArel and a set of irrelevant and noisy attributesAirr

the squared Euclidean distance can be written as

d2
ij =

∑
k∈Arel

d2
ij,k +

∑
p∈Airr

d2
ij,p. (9)

That is, distances w.r.t. the irrelevant dimensions are added
to the distances w.r.t. those dimensions which group the data.
Therefore the resulting distance is larger than a distance mea-
sured w.r.t. the relevant attributes only. Consequently, the more
irrelevant attributes are present, the more the true dissimilarity
w.r.t. Arel diminishes in value—and thus in importance—
compared to the dissimilarity measured w.r.t.Airr.



Fig. 3. FCM (m = 2) with 8 irrelevant dimensions.

Fig. 4. FCM (m = 2) and 9 irrelevant attributes.

In addition, similarity information is lost due to noise that is
invariably present along the irrelevant input dimensions. W.r.t.
the relevant attributes the within-cluster distances are small
whereas the inter-cluster cluster distances are significantly
larger. There is some variation in both, intra-cluster as well
as inter-cluster distance, but they can easily be distinguished.
However, if the distances w.r.t. the irrelevant attributes, which
are randomly dispersed, are added to these distance values,
the variation in both the intra-cluster as well as the inter-
cluster distances increases. It may increase so much that these
two types of distances cannot be told apart any more. As a
consequence, clusters are the harder to determine the more
irrelevant attributes are present, because a higher number
of noisy features leads to higher variance of the measured
distances. Note that this effect would be present even if the
total distance would not be increased on average.

Summarizing, we see that with a higher number of irrelevant
attributes the distancesdij of a data point~xj to the different
clusters tend to get (1) larger and (2) more dispersed. Here
we focus on the first effect. For a clustering algorithm it is
equivalent to moving a data point~xj further away from the
cluster centers, as illustrated in Figure 5 for two clusters. If
the data point~xj in the figure appears to be (moved) further
away from the centers due to irrelevant features,d1j ≈ d2j

sincedij � δ for i = {1, 2}. In the following we study the
influence of membership functions on the relative differences
of membership degrees (Equation 8) when the magnitudes of
measured distances to clusters have changed as described.

c1j c2j ~xj

δ →

Fig. 5. A simple two cluster setting.

B. Influence of the Similarity Function

A similarity function f is a strictly monotonic decreasing
function: a high degree of similarity (membership) is assigned
to the cluster close to data point, whereas a lower similarity
(membership) is assigned to clusters that are further away. The
similarity functionf in the FCM (see Equation 6) can be seen
as a special case of a generalized Cauchy function with two
parameters:

fcauchy(dij ; a, b) =
1

da
ij + b

, (10)

where the exponenta = 2
m−1 and the reference radiusb = 0.

In the presence of many irrelevant inputs the influence of a
membership function depends on how it judges smaller differ-
ences in distance, especially when the overall distances of the
data points to clusters are high. In the two cluster example we
have for the relative difference in degrees of membership with
increasing distance to the clusters (in horizontal direction):

lim
d2j→∞

u2j

u1j
= lim

d2j→∞

f(d2j)
f(d2j + δ)

= lim
d2j→∞

d2
2j + 2d2jδ + δ2

d2
2j

= lim
d2j→∞

(
1 +

2d2jδ + δ2

d2
2j

)
= 1 + 0 = 1, (11)

with m = 2 such thatf = fcauchy(dij ; 2, 0). That is, the ratio
of the degrees of membership (here:u2j/u1j) to both clusters
approaches 1 the more irrelevant input dimensions are in the
data. The same situation can also be shown to exist in the
general case of more than two clusters: when the distances
of a data point to the cluster centers are high without being
significantly different, the Cauchy functions tend to assign
almost equal degrees of membership. Due to this property we
observe the attraction of clusters at high numbers of irrelevant
features as well as coincidental clusters in the worst case.

This behavior of the Cauchy similarity function is known
to the extent that counter-intuitive membership degrees are
assigned to data points which are outliers or just further away
from the bulk of data. Such data points are assigned with mem-
bership degrees of about1/c to all clusters. Noise clustering
approaches have been proposed for gathering such data points
in a noise cluster [3], [4]. When clustering data with mainly
relevant input dimensions the noise cluster approaches can
prevent the counter-intuitive membership degrees. In presence
of an increasing number of irrelevant attributes, however, the
assignment of data points to the noise cluster actually has a
deteriorating effect: the farther away from all clusters a data
point is, the higher will be its degree of membership to the



noise cluster. Rather than solving the problem, this tendency
promotes the attraction of clusters, because the part of the data
point weight that is assigned to the noise cluster reduces the
“attraction” exerted by the data points on the outskirts of the
data set. Hence the clusters are even more likely to move to
the center of gravity of the data set. As a consequence, with
noise clustering approaches, we observed cluster coincidence
already at even lower numbers of irrelevant attributes.

With irrelevant features it would certainly be better to use a
membership function that counteracts the situation that relative
differences in distance to the clusters diminish with higher
overall distance to the clusters. A better suited membership
function would still give a significantly higher membership
degree to the cluster that is closest and a much lower mem-
bership to clusters further away. The Gaussian function

fgauss(dij) = e−
1
2 d2

ij (12)

has this property. For the simple two cluster example we get:

lim
d2j→∞

u2j

u1j
= lim

d2j→∞

f(d2j)
f(d2j + δ)

= lim
d2j→∞

e−
d2
2j
2

e−
(d2j+δ)2

2

= lim
d2j→∞

e
d2
2j
2 ed2jδe

δ2
2

e
d2
2j
2

= lim
d2j→∞

ed2jδe
δ2
2 = ∞, (13)

with f = fgauss. That is, when a data point is moved
further away (i.e., the overall distance to clusters increases),
the relative difference in degree of membership gets even
more expressed. Due to this relation this function implements
a winner-takes-all-principle in the limit: the data point will
be assigned to the closest cluster, with higher distances this
assignment becomes even stronger, and gets exclusive for the
distance approaching infinity. Thus we expect the Gaussian
function to be more robust than the Cauchy function. High
numbers of irrelevant attributes should not cause clusters to
get attracted or to coincide whenfgauss is used.

The abovementioned behavior of the Gaussian function
can also be observed in soft learning vector quantization
(SLVQ) when a Gaussian mixture approach is used [5]. In
SLVQ the (un-normalized) assignment probabilities of a data
point xj to prototype i are given byexp(d2

ij/2σ2), where
σ is the width of the Gaussian component densities. If the
width σ goes to zero, the assignment probabilities become
hard assignments (winner-takes-all case) [5]. Smaller widths
(σ → 0) and increasing distance to the cluster (dij →∞) are
equivalent for this behavior of the Gaussian function: whenσ
approaches 0 the entire exponentd2

ij/2σ2 approaches∞ just
as the exponents in the equation above.

Apparently the way in which membership degrees are
assigned byfcauchy and fgauss differs because of their dif-
ferent asymptotic behavior for increasing distance. For larger
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Fig. 6. Ratios of membership degrees for increasing distance.

distances (dij →∞) both functions approach membership
degrees of 0. The difference between the two functions,
however, lies in the strength of their monotonic descent:
the Gaussian function is falling much more steeply than the
Cauchy membership function, thus avoiding the deteriorating
effects that results from the enlarged distances.

C. The Role of the Fuzzifier

The generalized Cauchy function contains the fuzzifier as a
parameter of the membership computation (see Equation 10).
Since a = 2

m−1 , fuzzifiers m > 2 lower the value of the
exponent in the Cauchy function. Hence cluster boundaries
get softer and the Cauchy functionfcauchy(dij , a, 0) falls less
steeply. On the other hand, fuzzifiersm < 2 result in harder
cluster boundaries and the Cauchy function falls more steeply.
The ratios of membership degrees for different choices of the
fuzzifier in the Cauchy function can be seen in Figure 6 for the
simple two cluster example (δ = 1). With increasing overall
distance to the clusters and lower values of the exponent, the
tendency of the membership ratio to approach 1 is stronger
than for high exponents infcauchy. From the example it
can be seen that the steeper Cauchy functions (with higher
exponentsa) assign almost equal degrees of membership only
at higher distances. Therefore it can be expected that the
observed effects of cluster attraction and coincidence will be
more pronounced for lower exponentsa and may occur even
with a low number of irrelevant features.

The considerations form < 2 above are complemented
by a reformulation of the fuzzyc-means in [6], [7]. In the
limiting case when the fuzzifierm approaches 1 from above
(m → 1+), the membership degrees correspond to the nearest
prototype condition in classical learning vector quantization.
That is, data points are assigned to the closest (cluster)
prototype with full weight and have no association to other
clusters (hard memberships). Due to such hardened cluster
assignments we expect that smaller values for the weighting
exponent should make the clustering algorithm less sensitive
to higher numbers of noisy attributes. On the other hand, a
stronger tendency towards attracting or coinciding clusters can
be expected if softer cluster partitions are desired.



TABLE I

NUMBERS OF IRRELEVANT ATTRIBUTES AT WHICH CLUSTERS COINCIDE

m 1.1 1.5 2 3 6 15 100 1000

no. irr. - 15 9 6 3 3 3 3

TABLE II

FOUND CLUSTER CENTERS WITHfgauss

no. of irr. attributes cluster 1 cluster 2

1 3.24341 6.61652
10 3.26322 6.62256
20 3.26294 6.60603
40 3.31177 6.62485

IV. EXPERIMENTS

In our experiments we investigated the tendency for cluster
attraction and coincidence with an increasing numbers of noisy
attributes using the example dataset described in Section II. We
clustered the dataset using the fuzzyc-means algorithm with
different values for the fuzzifierm to validate the influence of
the Cauchy function. For each parameter value we executed
FCM several times, adding one more irrelevant inputs in
each step. For an increasing number of irrelevant inputs we
observed the attraction of cluster centers as expected for the
Cauchy function. The valuesm = 1.1 and m = 1.5 resulted
in the weakest attraction observed. The attraction of the two
clusters got stronger even at lower numbers of noisy attributes
for m ≥ 2. For m = 1.1 we did not observe coinciding
clusters even for 25 irrelevant features. In all other cases
clusters coincided after they had been attracting each other.
The numbers of irrelevant inputs at which clusters coincided
are summarized in Table I for all tested values ofm. For higher
weighting exponents (softer clustering) clusters coincided al-
ready at lower counts of irrelevant input features. We can
conclude an increased tendency for the studied effects at higher
degrees of fuzziness, which complies with the expectations
formed in the preceding section.

In the second part of our experiments we used the Gaussian
membership function and again increased the number of noisy
features step by step. However, we did not observe attracting
or coinciding clusters. Table II shows that even for a fairly high
number of irrelevant features the found cluster coordinates
stayed close to the corresponding values in the generating
model. The experiments also showed that data points were
strongly assigned either to the left or the right cluster. These
results comply with the considerations of the properties of
fgauss above and the expectation formed.

V. CONCLUSIONS

In standard fuzzy clustering clusters can attract each other or
even collapse in presence of irrelevant features. This tendency
is stronger when fuzzier cluster partitions are desired (m >
2). The effects are caused due to properties of the Cauchy
membership function. We found the Gaussian function to be
more robust against irrelevant input dimensions.

Irrelevant features lead to noisier and in average increasing
distance values while relative differences in dissimilarity of
points to the clusters diminish. In such settings the tendency
for attracting or coincidental clusters is weaker the more
expressed differences in the assigned memberships are. Using
the Gaussian function higher relative differences in degrees
of membership are obtained due to the increased overall
distances. Using the Cauchy functions, however, significantly
different membership are assigned only for harder values of
the fuzzifier (m → 1+).
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