Effects of Irrelevant Attributes in Fuzzy Clustering
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Abstract— In fuzzy clustering soft cluster partitions are formed clusters. The partitioning property of a probabilistic clustering
based on the similarity of data points to the respective cluster algorithm, which “distributes” the weight of a datum to the
prototypes. Similarity is defined in terms of simultaneous close- different clusters. is due to this constraint.

ness regarding all attributes. In some applications the values of . . o

many atgtgribute% have been measured, bu?g natural clustering, ifit ~_ Unfortunately, the objective functio/ cannot be minimized
exists, occurs within a (small) subset of attributes. The remaining directly. Therefore an iterative algorithm is used, which alter-
dimensions can be considered irrelevant. They can obscure annately optimizes the membership degrees and the cluster pa-
existing grouping and make it harder to discover the cluster rgmeters. That is, first the membership degrees are optimized

structure. In prpba_\blllstlc fuzzy clusterlng_lrrelevant attributes for fixed cluster parameters, then the cluster parameters are
can lead to coincidental cluster centers in the worst case. We

study this effect in detail as well as the robustness of different OPtimized for fixed membership degrees. The main advantage
similarity functions and their possible parameterizations against Of this scheme is that in each of the two steps the optimum
irrelevant input dimensions. Empirical evidence is given for the can be computed directly. By iterating the two steps the joint
different properties of the membership functions. optimum is approached (although it cannot be guaranteed that
I. FuzzY CLUSTERING the global optimum will be reached—the algorithm may get
. . S . stuck in a local minimum of the objective functiaf.
Most fuzzy clustering algorithms are objective function . . .
s ) . L .~ The update formulae are derived by simply setting the
based: they determine an optimal (fuzzy) partition of a givepn . ~ . _ .
oo : ...~ "derivative of the objective functiod w.r.t. the parameters to
data seiX = {Z; | j = 1,...,n} into clusters by minimizing . L g
L : optimize equal to zero (necessary condition for a minimum).
an objective function . .
Independent of the chosen distance measure we thus obtain
(& n . .
the following update formula for the membership degrees [1]:
J(X,U,C)=> "> und 1) ’
i=1j—=1 djm%
subject to the constraints Wi = — = _——=_ T -
D=1y

The update formulae for the cluster parameters depend, of

. course, on what parameters are used to describe a cluster
. location, shape, size) and on the chosen distance measure. In

=1, forall j € {1,...,n}. 3 (_ ' ! )

;u / A n} ®) this paper we take the fuzzymeans (FCM) algorithm [2] as

an example. In the FCM the Euclidean distance measures the

) i i dissimilarity of data points to the clusters, which are described

to cluster: andd;; is the distance between datuffy and by their centers; only. Therefore the update formula for the

clus_tgri. The_c X n matrix .U = (uy) is called the fUZZY clusters in the alternating optimization scheme is given by
partition matrix andC describes the set of clusters by stating
S Z?:l U T

location parameters (i.e. the cluster center) and maybe size and
shape parameters for each cluster. The parameten > 1, G = W ()
is called thefuzzifier or weighting exponentlt determines J=1
the “fuzziness” of the classification: with higher values folrhis paper is organized as follows. In the next section we
m the boundaries between the clusters become softer, wiflwe an illustrative example of the effects that occur when
lower values they get harder. Usually = 2 is chosen. datasets with irrelevant attributes are clustered. In Section llI
Constraint (2) guarantees that no cluster is empty. Conwe analyze the observed effects and show which properties
straint (3) ensures that the membership degrees of a datofrthe similarity functions cause these observations. We fur-
to the clusters sum up to 1 and thus that each datum has timer describe an alternative similarity function and its devi-
same total influence. Because of the second constraint thtsng characteristics which contrast the observed properties
approach is usually callegrobabilistic fuzzy clusteringsince in standard fuzzy clustering. Empirical evidence is gathered
with it the membership degrees for a datum formally resemidfier different choices of similarity functions and for some
the probabilities of its being a member of the correspondinarameterizations in Section V.

(4)

> u;>0, forallie{l,....c}, and (2)
j=1

Here u;; € [0,1] is the membership degree of datum)



Il. ILLUSTRATIVE EXAMPLE

To demonstrate the effects of irrelevant attributes we gener-
ated an artificial data set. We used two classes with 150 data
points each and a high number of normally distributed at-
tributes. However, only one of the input dimensions is group- o
ing the generated example data. The generating model as well
as the data set is shown in Figure 1, with the relevant attribute
on the horizontal axis and one of the irrelevant attributes on 2R
the vertical. The clustering attribute is distributed with mean
i = 3.5 and varianceo? = 1 in the left cluster and with
u = 6.5, 02 = 1 in the right cluster. All other attributes have
u =5 ando? = 1 in both clusters and thus do not provide
any information for grouping the data points.

The interesting effects become visible when this artificial
data set is endowed with an increasing number of irrelevant
input dimensions. The result of FCM clustering with the
relevant attribute and only one noisy attribute is shown in
Figure 2. The two cluster centers are very slightly repelling c
each other due to the partitioning property of probabilistic
FCM, i.e., their distance is slightly larger than in the generating
model. This situation changes in the cluster partitions when SRS
more and more irrelevant dimensions are added. Then the
cluster centers seem to get attracted to each other and move
closer. With eight irrelevant attributes the clusters are about
to collapse (see Figure 3). The cluster centers finally coincide
in the center of the data cloud when 9 out of the 10 input
attributes are irrelevant (see Figure 4). All data points are
assigned to both clusters with equal membership degreeliofollows that with an increasing number of noisy inputs the
0.5 in the resulting probabilistic cluster partition. ratios of the membership degrees,

Fig. 2. FCM (n = 2) and one irrelevant dimension.

[1l. ANALYSIS uy _ 4 _ f(dy) ite{l,... c} (8)

To understand the above effects better it is worthwhile to ug gy f(dy)
look deeper into the computation of the membership degree$.each data poin; get closer to 1. Therefore, in order to
Since the cluster centers are centers of gravity in the clougeplain the observed effects we examine the magnitudes of
of weighted data points, their attraction and coincidence muke distanced;; and the influence of the membership function
occur because of changes of the weigljsof the data points. when the number of irrelevant features increases.
The weight calculations as given in Equation 4 can be divided
into two individual steps: the computation of un-normalized. Increased Distances

membership degrees first, followed by the normalization step:|n clustering algorithms distance is usually measured w.r.t.

2 all attributes. For instance, the Euclidean distance used in the
ui; = fldij) = d;; " ®) Fcm algorithm is an aggregate of attribute specific distances
ot A3 = (j0 — cik)?, wherek specifies thek-th attribute or
Ujj = =2 (7) the k-th feature vector component. With the set of relevant
P U attributesA,.; and a set of irrelevant and noisy attributés,
In Equation 6 the un-normalized membership degrees 4R€ squared Euclidean distance can be written as
a function of the distancel,; of the data pointZ; to the
cluster centei;. We call thisj functionf similarity ?unctior) dy; = Z dzzj-,k + Z d?j,p' ©)

because it assigns different membership degrees for data points k€ Arel PEAirx

to clusters depending how similar they are to each othdhat is, distances w.r.t. the irrelevant dimensions are added
These un-normalized membership degrees are normalizeddrthe distances w.r.t. those dimensions which group the data.
Equation 7 in order to satisfy the constraints stated in SectiornTherefore the resulting distance is larger than a distance mea-

The illustrative example shows that in the case of collapsisgred w.r.t. the relevant attributes only. Consequently, the more
clusters all membership degrees of the data points are eqiratlevant attributes are present, the more the true dissimilarity
In the general case, when such a cluster center coincidemcet. A, diminishes in value—and thus in importance—
occurs, we havei;; = 1/c, i € {1,...,¢c}, j € {1,...,n}. compared to the dissimilarity measured w.Af,,.



Fig. 5. A simple two cluster setting.

B. Influence of the Similarity Function

A similarity function f is a strictly monotonic decreasing
function: a high degree of similarity (membership) is assigned
to the cluster close to data point, whereas a lower similarity
(membership) is assigned to clusters that are further away. The
Fig. 3. FCM (n = 2) with 8 irrelevant dimensions. similarity function f in the FCM (see Equation 6) can be seen
as a special case of a generalized Cauchy function with two
parameters:

1
dg; +b

fcauchy (dm, a, b) = (10)
where the exponent = % and the reference radius= 0.

In the presence of many irrelevant inputs the influence of a
membership function depends on how it judges smaller differ-
ences in distance, especially when the overall distances of the
data points to clusters are high. In the two cluster example we
have for the relative difference in degrees of membership with
increasing distance to the clusters (in horizontal direction):

Fig. 4. FCM n = 2) and 9 irrelevant attributes. . Ugj . f(da;)
lim — = lim ————
daj—00 ulj daj—00 f(dgj + 6)
d3; + 2d2;6 + 6°
In addition, similarity information is lost due to noise that is daj =00 d%j
invariably present along the irrelevant input dimensions. W.r.t. _ 2daj0 + 62
the relevant attributes the within-cluster distances are small = d2£1§100 1+ T&E
whereas the inter-cluster cluster distances are significantly J
larger. There is some variation in both, intra-cluster as well = 1+0=1, (11)

as inter-clyster d?stance, but they can easily be _distinguishe\ﬁt.h m = 2 such thatf = feaucny (dij; 2,0). That is, the ratio
However, if the distances w.r.t. the irrelevant attributes, whiglf the degrees of membership (hetg; /u,;) to both clusters
are randomly dispersed, are added to these distance valggproaches 1 the more irrelevant input dimensions are in the
the variation in both the intra-cluster as well as the inte&ata_ The same situation can also be shown to exist in the
cluster distances increases. It may increase so much that th@sgeral case of more than two clusters: when the distances
two types of distances cannot be told apart any more. Asfa data point to the cluster centers are high without being
consequence, clusters are the harder to determine the mgggiificantly different, the Cauchy functions tend to assign
irrelevant attributes are present, because a higher numBghost equal degrees of membership. Due to this property we
of noisy features leads to higher variance of the measurgBserve the attraction of clusters at high numbers of irrelevant
distances. Note that this effect would be present even if thgatures as well as coincidental clusters in the worst case.
total distance would not be increased on average. This behavior of the Cauchy similarity function is known
Summarizing, we see that with a higher number of irrelevatd the extent that counter-intuitive membership degrees are
attributes the distancef; of a data pointr; to the different assigned to data points which are outliers or just further away
clusters tend to get (1) larger and (2) more dispersed. Hdrem the bulk of data. Such data points are assigned with mem-
we focus on the first effect. For a clustering algorithm it ibership degrees of abolfc to all clusters. Noise clustering
equivalent to moving a data poiat; further away from the approaches have been proposed for gathering such data points
cluster centers, as illustrated in Figure 5 for two clusters. iti a noise cluster [3], [4]. When clustering data with mainly
the data pointt; in the figure appears to be (moved) furtherelevant input dimensions the noise cluster approaches can
away from the centers due to irrelevant featurds, ~ d»; prevent the counter-intuitive membership degrees. In presence
sinced;; > ¢ for i = {1,2}. In the following we study the of an increasing number of irrelevant attributes, however, the
influence of membership functions on the relative differencessignment of data points to the noise cluster actually has a
of membership degrees (Equation 8) when the magnitudesdeteriorating effect: the farther away from all clusters a data
measured distances to clusters have changed as describeghoint is, the higher will be its degree of membership to the



noise cluster. Rather than solving the problem, this tendencyl.30
promotes the attraction of clusters, because the part of the data | ™.
point weight that is assigned to the noise cluster reduces thé-25p ™.
“attraction” exerted by the data points on the outskirts of the | e a—t
data set. Hence the clusters are even more likely to move t¢-207 e (dF
the center of gravity of the data set. As a consequence, with | e
noise clustering approaches, we observed cluster coincidencE™®[
already at even lower numbers of irrelevant attributes. 1 1o~~ @2

With irrelevant features it would certainly be bettertousea ™|  TTTTTTEEeeee
membership function that counteracts the situation that relative, _r N
differences in distance to the clusters diminish with higher _d
overall distance to the clusters. A better suited membership, o, ‘ ‘ ‘
function would still give a significantly higher membership 7 8 9 10 1 12
degree to the cluster that is closest and a much lower mem- Fig. 6. Ratios of membership degrees for increasing distance.
bership to clusters further away. The Gaussian function

— o3l . . .
Foauss(dij) = e (12) distances d;; — oo) both functions approach membership

has this property. For the simple two cluster example we gé€grees of 0. The difference between the two functions,
however, lies in the strength of their monotonic descent:

im %2 — f(dz;) the Gaussian function is falling much more steeply than the
daj—00 Utj daj—oo f(da; + 6) Cauchy membership function, thus avoiding the deteriorating
_d3; effects that results from the enlarged distances.
e
- dj;ggo Gy o7 C. The Role of the Fuzzifier

edg‘j o The generalized Cauchy fgnction cont.ains the fuzzifigr as a
lim ez e®%7 parameter of the membership computation (see Equation 10).

daj—00 a3 Sincea = 2+, fuzzifiersm > 2 lower the value of the
56 ; exponent in the Cauchy function. Hence cluster boundaries

djigm e®i%e7 = o0, (13)  get softer and the Cauchy functig,,cny (dij, a, 0) falls less

! steeply. On the other hand, fuzzifiews < 2 result in harder
with f = feauss. That is, when a data point is movedcluster boundaries and the Cauchy function falls more steeply.

further away (i.e., the overall distance to clusters increase$he ratios of membership degrees for different choices of the
the relative difference in degree of membership gets evéurzifier in the Cauchy function can be seen in Figure 6 for the
more expressed. Due to this relation this function implemerginple two cluster examples (= 1). With increasing overall
a winner-takes-all-principle in the limit: the data point willdistance to the clusters and lower values of the exponent, the
be assigned to the closest cluster, with higher distances tiiadency of the membership ratio to approach 1 is stronger
assignment becomes even stronger, and gets exclusive forttfn for high exponents irfcauchy. From the example it
distance approaching infinity. Thus we expect the Gaussiean be seen that the steeper Cauchy functions (with higher
function to be more robust than the Cauchy function. Higéxponents:) assign almost equal degrees of membership only
numbers of irrelevant attributes should not cause clustersdo higher distances. Therefore it can be expected that the
get attracted or to coincide whef},uss is used. observed effects of cluster attraction and coincidence will be
The abovementioned behavior of the Gaussian functiomore pronounced for lower exponentsand may occur even
can also be observed in soft learning vector quantizatiowith a low number of irrelevant features.
(SLVQ) when a Gaussian mixture approach is used [5]. In The considerations forn < 2 above are complemented
SLVQ the (un-normalized) assignment probabilities of a dakyy a reformulation of the fuzzy-means in [6], [7]. In the
point z; to prototypei are given byexp(d?j/Qaz), where limiting case when the fuzzifiem approaches 1 from above
o is the width of the Gaussian component densities. If ti{e» — 1. ), the membership degrees correspond to the nearest
width o goes to zero, the assignment probabilities becomeototype condition in classical learning vector guantization.
hard assignments (winner-takes-all case) [5]. Smaller widtibat is, data points are assigned to the closest (cluster)
(o — 0) and increasing distance to the clustéy; (— oo) are prototype with full weight and have no association to other
equivalent for this behavior of the Gaussian function: when clusters (hard memberships). Due to such hardened cluster
approaches 0 the entire expomalt,.gbt/Qa2 approacheso just assignments we expect that smaller values for the weighting
as the exponents in the equation above. exponent should make the clustering algorithm less sensitive
Apparently the way in which membership degrees ate higher numbers of noisy attributes. On the other hand, a
assigned byfcauchy and feauss differs because of their dif- stronger tendency towards attracting or coinciding clusters can
ferent asymptotic behavior for increasing distance. For largee expected if softer cluster partitions are desired.



TABLE |

Irrelevant features lead to noisier and in average increasing
NUMBERS OF IRRELEVANT ATTRIBUTES AT WHICH CLUSTERS COINCIDE

distance values while relative differences in dissimilarity of
m | 11]15]2]3)6]15] 100 1000 points to the clusters diminish. In such settings the tendency

no.im | - |15]9]6]3]3] 3] 3 for attracting or coincidental clusters is weaker the more
expressed differences in the assigned memberships are. Using
TABLE II the Gaussian function higher relative differences in degrees
FOUND CLUSTER CENTERS WITHfgauss of membership are obtained due to the increased overall
o of ir_atributes| cluster 11 cluster 2 d!stances. Using thg Cauchy funcnons, however, significantly
1 324341 | 6.61652 different membership are assigned only for harder values of
10 3.26322 | 6.62256 the fuzzifier (n — 14).
20 3.26294 | 6.60603
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in the weakest attraction observed. The attraction of the two
clusters got stronger even at lower numbers of noisy attributes
for m > 2. Form = 1.1 we did not observe coinciding
clusters even for 25 irrelevant features. In all other cases
clusters coincided after they had been attracting each other.
The numbers of irrelevant inputs at which clusters coincided
are summarized in Table | for all tested valuesrofFor higher
weighting exponents (softer clustering) clusters coincided al-
ready at lower counts of irrelevant input features. We can
conclude an increased tendency for the studied effects at higher
degrees of fuzziness, which complies with the expectations
formed in the preceding section.
In the second part of our experiments we used the Gaussian
membership function and again increased the number of noisy
features step by step. However, we did not observe attracting
or coinciding clusters. Table Il shows that even for a fairly high
number of irrelevant features the found cluster coordinates
stayed close to the corresponding values in the generating
model. The experiments also showed that data points were
strongly assigned either to the left or the right cluster. These
results comply with the considerations of the properties of
feauss @boOve and the expectation formed.

V. CONCLUSIONS

In standard fuzzy clustering clusters can attract each other or
even collapse in presence of irrelevant features. This tendency
is stronger when fuzzier cluster partitions are desined>
2). The effects are caused due to properties of the Cauchy
membership function. We found the Gaussian function to be
more robust against irrelevant input dimensions.



