
Local Structure Learning in Graphical Models

Christian Borgelt and Rudolf Kruse
Dept. of Knowledge Processing and Language Engineering

Otto-von-Guericke-University of Magdeburg
Universitätsplatz 2, D-39106 Magdeburg, Germany

e-mail: {borgelt,kruse}@iws.cs.uni-magdeburg.de

Abstract A topic in probabilistic network learning is to exploit local network struc-
ture, i.e., to capture regularities in the conditional probability distributions, and to
learn networks with such local structure from data. In this paper we present a mod-
ification of the learning algorithm for Bayesian networks with a local decision graph
representation suggested in Chickering et al. (1997), which is often more efficient. It
rests on the idea to exploit the decision graph structure not only to capture a larger
set of regularities than decision trees can, but also to improve the learning process.
In addition, we study the influence of the properties of the evaluation measure used
on the learning time and identify three classes of evaluation measures.

1 Introduction

Probabilistic inference networks—especially Bayesian networks Pearl (1992), but also
Markov networks Lauritzen and Spiegelhalter (1988)—are well-known tools for rea-
soning under uncertainty in multidimensional spaces. The idea underlying them is to
exploit independence relations between variables in order to decompose a multivariate
probability distribution into a set of (conditional or marginal) distributions on lower-
dimensional subspaces. Efficient implementations include HUGIN Andersen et al. (1989)
and PATHFINDER Heckerman (1991).

Such independence relations have been studied extensively in the field of graphical
modeling Kruse et al. (1991) and though using them to facilitate reasoning in multi-
dimensional domains has originated in probabilistic reasoning, this approach has been
generalized to be usable with other uncertainty calculi Shafer and Shenoy (1988), e.g. in
the so-called valuation-based networks Shenoy (1991), and has been implemented e.g.
in PULCINELLA Saffiotti and Umkehrer (1991).

Due to their connection to fuzzy systems and their ability to deal not only with
uncertainty but also with imprecision, recently possibilistic networks also gained some
attention Gebhardt (1997); Borgelt and Kruse (2002). They have been implemented
e.g. in POSSINFER Gebhardt and Kruse (1995a); Kruse et al. (1994). In this paper
we consider Bayesian networks and a type of possibilistic networks that is based on the
context-model interpretation of a degree of possibility Gebhardt and Kruse (1993).

A Bayesian network is a directed acyclic graph in which each node represents a variable
that is used to describe some domain of interest, and each edge represents a direct

1

dependence between two variables. The structure of the directed graph encodes a set
of conditional independence statements that can be read from the graph using a graph
theoretic criterion called d-separation Pearl (1992). In addition, it represents a particular
joint probability distribution, which is specified by assigning to each node in the network
a (conditional) probability distribution for the values of the corresponding variable given
the parent variables in the network (if any).

Formally, a Bayesian network describes a factorization of a multivariate probability
distribution that results from an application of the product theorem of probability the-
ory to the joint distribution and a simplification of the factors achieved by exploiting
conditional independence statements of the form P (A | B,X) = P (A | X), where A and
B are variables and X is a set of variables. Hence, the represented joint distribution can
be computed as

P (A1, . . . , An) =
n∏

i=1

P (Ai | parents(Ai)),

where parents(Ai) is the set of parents of variable Ai.
The directed acyclic graph of a Bayesian network captures the global structure of the

underlying domain, i.e., the structure of (conditional) dependences and independences,
but fails to take into account local structure that may be present in the conditional
probability distributions stored with the nodes. An important issue in Bayesian network
research is to capture such local structure and enable learning it from data.

In this paper we present a modification of the approach presented in Chickering et al.
(1997) to learn Bayesian networks with a local decision graph structure from data. Our
approach rests on exploiting the decision graph structure not only to capture a larger set
of regularities in conditional probability tables but also to simplify the learning process.
Our approach is also more efficient, because it needs fewer visits to the database to learn
from.

Furthermore, we apply our local structure learning method to learning possibilistic
networks from data. The transfer to this type of networks is straightforward. We also
consider a large variety of evaluation measures (or scoring functions) for both probabilistic
and possibilistic network learning. Many of these measures originated from decision tree
learning, but can also be applied to learning Bayesian networks if the parents of a variable
in a Bayesian network are seen as combined into one pseudo-variable. Some of them can
easily be transferred to the possibilistic case. We study the influence of the evaluation
measure on the running time of the learning algorithm and identify three classes of
evaluation measures. Finally, we present experimental results for both learning Bayesian
networks and possibilistic networks.

2 Possibilistic Networks

The development of possibilistic networks was triggered by the fact that probabilistic
networks are well suited to represent and process uncertain information, but cannot
that easily be extended to handle imprecise information. Since the explicit treatment of
imprecise information is more and more claimed to be necessary for industrial practice,

2

it is reasonable to investigate graphical models related to alternative uncertainty calculi,
e.g. possibility theory.

Maybe the best way to explain the difference between uncertain and imprecise infor-
mation is to consider the notion of a degree of possibility. The interpretation we prefer
is based on the context model Gebhardt and Kruse (1993); Kruse et al. (1994). In this
model possibility distributions are seen as information-compressed representations of (not
necessarily nested) random sets and a degree of possibility as the one-point coverage of
a random set Nguyen (1984).

Let ω0 be the actual, but unknown state of a domain of interest, which is contained
in a set Ω of possible states. Let (C, 2C , P), C = {c1, c2, . . . , cm}, be a finite probability
space and γ : C → 2Ω a set-valued mapping. C is seen as a set of contexts that have to be
distinguished for a set-valued specification of ω0. The contexts are supposed to describe
different physical and observation-related frame conditions. P ({c}) is the (subjective)
probability of the (occurrence or selection of the) context c.

A set γ(c) is assumed to be the most specific correct set-valued specification of ω0,
which is implied by the frame conditions that characterize the context c. By ‘most specific
set-valued specification’ we mean that ω0 ∈ γ(c) is guaranteed to be true for γ(c), but is
not guaranteed for any proper subset of γ(c). The resulting random set Γ = (γ, P) is an
imperfect (i.e. imprecise and uncertain) specification of ω0. Let πΓ denote the one-point
coverage of Γ (the possibility distribution induced by Γ), which is defined as

πΓ : Ω → [0, 1], πΓ(ω) = P ({c ∈ C | ω ∈ γ(c)}) .

In a complete modeling, the contexts in C must be specified in detail, so that the rela-
tionships between all contexts cj and their corresponding specifications γ(cj) are made
explicit. But if the contexts are unknown or ignored, then πΓ(ω) is the total mass of all
contexts c that provide a specification γ(c) in which ω0 is contained, and this quantifies
the possibility of truth of the statement “ω = ω0” Gebhardt and Kruse (1993, 1996).

That in this interpretation a possibility distribution represents uncertain and impre-
cise knowledge can be understood best by comparing it to a probability distribution and
to a relation. A probability distribution covers uncertain, but precise knowledge. This
becomes obvious, if one notices that a possibility distribution in the interpretation de-
scribed above reduces to a probability distribution, if ∀cj ∈ C : |γ(cj)| = 1, i.e. if for
all contexts the specification of ω0 is precise. On the other hand, a relation represents
imprecise, but certain knowledge about dependences between attributes. Thus, not sur-
prisingly, a relation can also be seen as a special case of a possibility distribution, namely
if there is only one context. Hence the context-dependent specifications are responsible
for the imprecision, the contexts for the uncertainty in the imperfect knowledge expressed
by a possibility distribution.

With this interpretation the theory of possibilistic networks can be developed in anal-
ogy to the probabilistic case. The only difference is that instead of the product to deter-
mine a new joint distribution and the sum to determine a (new) marginal distribution,
the operations minimum and maximum have to be used.

As a concept of possibilistic independence we use possibilistic non-interactivity. Let
X, Y , and Z be three disjoint subsets of variables. Then X is called conditionally

3

independent of Y given Z w.r.t. π, if ∀ω ∈ Ω :

π(ωX∪Y | ωZ) = min{π(ωX | ωZ), π(ωY | ωZ)}

whenever π(ωZ) > 0, where π(· | ·) is a non-normalized conditional possibility distribu-
tion

π(ωX | ωZ) = max{π(ω′) | ω′ ∈ Ω ∧ proj X(ω) = ωX ∧ proj Z(ω) = ωZ},

with projX(ω) the projection of a tuple ω to the variables in X.
Learning possibilistic networks from data has been studied in Gebhardt and Kruse

(1995b, 1996); Borgelt and Kruse (1997a,b). The idea to exploit local structure can be
applied directly to (conditional) possibility distributions, since it is not bound to any
specific uncertainty or imprecision calculus.

3 Local Network Structure

Whereas the global structure of a probabilistic or possibilistic network is the directed
acyclic graph that encodes the conditional independence statements that hold in a cer-
tain domain of interest, the term “local structure” refers to regularities in the conditional
probability or possibility tables that are stored with the nodes of the network. Several
approaches to exploit such regularities have been studied for Bayesian networks in order
to capture additional (i.e. context specific) independences and thus to (potentially) en-
hance inference. Among these are similarity networks Heckerman (1991) and the related
multinets Geiger and Heckerman (1991), the use of asymmetric representations for de-
cision making Smith et al. (1993) and probabilistic Horn rules Poole (1993), and finally
also decision trees Boutilier et al. (1996) and decision graphs Chickering et al. (1997). In
this paper we focus on the decision tree/decision graph approach, since it appears to be
the most convenient one, and review it in the following for discrete Bayesian networks
(i.e., in which all variables are discrete).

A very simple way to encode a conditional probability distribution is a table, which
for each combination of values of the conditioning variables contains a line stating the
corresponding conditional probability distribution for the values of the conditioned vari-
able. As a simple example, let us consider the small section of a Bayesian network
shown in figure 1 (and let us assume that in this network the variable C has no other
parents than variables A and B). Let dom(A) = {a1, a2, a3}, dom(B) = {b1, b2}, and
dom(C) = {c1, c2}. Then the conditional probabilities P (C = ck | A = ai, B = bj) have
to be stored with the node for variable C, e.g. as shown in table 1. The second column
contains only entries 1−pi, because the probabilities have to sum to 1 and there are only
two possible values for variable C.

The same conditional probability distribution can also be stored in a tree, where
the leaves hold the conditional probability distributions and each level of inner nodes
corresponds to one conditioning variable (see figure 2). The branches in this tree are
labeled with the values of the conditioning variables and thus each path from the root to
a leaf corresponds to one combination of values of the conditioning variables. Obviously
such a tree is equivalent to a decision tree for the variable C (like one learned e.g. by

4

A�
��
B�
��

C�
��JĴ

�

Figure 1. A small section of a Bayesian network.

parents child
A B C = c1 C = c2

a1 b1 p1 1− p1

a1 b2 p2 1− p2

a2 b1 p3 1− p3

a2 b2 p4 1− p4

a3 b1 p5 1− p5

a3 b2 p6 1− p6

Table 1. A conditional probability table for the network section shown in figure 1.

A

?

���
���

HHH
HHj

a1 a2
a3

B B B
�
���

�
���

�
���

C
CCW

C
CCW

C
CCW

b1 b1 b1b2 b2 b2

C C C C C C

Figure 2. A full decision tree for variable C.

the well-known decision tree induction program C4.5 Quinlan (1993)) with the following
restrictions: All leaves have to lie on the same level and in one level of the tree the
same variable has to be tested on all paths. If these restrictions hold, we call the tree a
full decision tree, because all possible combinations of values of the test attributes are
explicitly represented in the tree.

Let us assume now that there are some regularities in the conditional probability
distribution (see table 2), that is, let certain conditional probabilities be identical. Since
the table clearly shows that the value of the variable B is important only if A has the
value a2, the tests of variable B can be removed from the branches for the values a1 and
a3 (see figure 3). This shows the advantages of a decision tree representation.

Unfortunately, however, a decision tree is not powerful enough to capture all possible
regularities that may be present in a conditional probability table. Although we can
achieve a lot by accepting a change in the test order of the variables and by accepting
binary splits and multiple tests of the same variable (then, for example, the regularities

5

parents child
A B C = c1 C = c2

a1 b1 p1 1− p1

a1 b2 p1 1− p1

a2 b1 p3 1− p3

a2 b2 p4 1− p4

a3 b1 p2 1− p2

a3 b2 p2 1− p2

Table 2. A conditional probability table for the section of a Bayesian network shown in
figure 1 with some regularities.

A

?

�
�����

H
HHHHj

a1 a2
a3

C CB
�
���

C
CCW

b1 b2

C C

Figure 3. A partial decision tree for variable C.

in table 3 can be represented by the decision tree shown in figure 4), the regularities
shown in table 4 cannot be represented by a decision tree.

The problem is that in a decision tree a test of a variable splits the lines of a conditional
probability table into disjoint subsets that cannot be brought together again. In table 4
a test of variable B thus separates lines 1 and 2 and a test of variable A separates lines
4 and 5. Hence either test prevents us from exploiting one of the two equivalences of
probabilities. This drawback can be overcome by allowing a node of the tree to have
more than one parent, thus going from decision trees to decision graphs Chickering et
al. (1997). With decision graphs the regularities in table 4 can easily be captured, see
figure 5.

4 Learning Local Structure

To learn a decision graph three operations are defined in Chickering et al. (1997):
• full split : Split a leaf node according to the values of some variable.
• binary split : Split a leaf node such that one child corresponds to some value ak of

some variable and the other child to all other values of this variable.
• merge: merge two distinct leaf nodes.

A greedy algorithm based on these operations can easily be found Chickering et al.
(1997). It applies all possible operations of the types defined above to a given decision

6

parents child
A B C = c1 C = c2

a1 b1 p1 1− p1

a1 b2 p1 1− p1

a2 b1 p2 1− p2

a2 b2 p3 1− p3

a3 b1 p2 1− p2

a3 b2 p4 1− p4

Table 3. A conditional probability table for the section of a Bayesian network shown in
figure 1 with a second kind of regularities.

�
��/

�
��/

�
��/

S
SSw

S
SSw

S
SSw

A

a1 a2, a3

B

b1 b2

A

a2 a3

C

C

C C

Figure 4. A decision tree with two tests of variable A that captures the regularities in
the conditional probability table shown in table 3.

graph and then selects that operation (if any) that leads to the highest improvement of
the network score. This search is carried out until no operation can be found that leads
to an improvement.

Our approach is only a slight modification of the above. The additional degree of
freedom of decision graphs compared to decision trees, namely that a node in a decision
graph can have more than one parent, can be exploited not only to capture a larger set of
regularities but also to improve the learning process for the local structure of a Bayesian
network. Our idea is as follows: With decision graphs, we can always work with the
complete set of inner nodes of a full decision tree and let only leaves have more than
one parent. Even if we do not care about the order of the conditioning variables in the
decision structure and allow only one test per variable on each path, such a structure can
capture all regularities in the examples examined in the preceding section. For example,
the regularities of table 3 are captured by the decision graph with a full set of inner nodes
shown in figure 6.

7

parents child
A B C = c1 C = c2

a1 b1 p1 1− p1

a1 b2 p1 1− p1

a2 b1 p2 1− p2

a2 b2 p3 1− p3

a3 b1 p3 1− p3

a3 b2 p4 1− p4

Table 4. A conditional probability table for the section of a Bayesian network shown in
figure 1 with a third kind of regularities.

A

?

��
����

HH
HHHj

a1 a2
a3

C B B
�
���

S
SSw

�
��/

C
CCW

b1
b2 b1 b2

C C C

Figure 5. A decision graph for which no equivalent decision tree exists. It captures the
regularities in table 4

It is easy to see that such an approach can capture any regularities that may be
present in conditional probability tables. Basically, merging the leaves of a full decision
tree is the same as merging lines of a conditional probability table. The decision graph
structure just makes it much easier to keep track of the different value combinations of
the conditioning (i.e. parent) variables, for which the same probability distribution for
the values of the conditioned (i.e. child) variable has to be adopted.

In a learning algorithm we use only two operations, namely (1) adding a new level
to a decision tree/graph, i.e., splitting all leaves according to the values of a new parent
variable, and (2) merging two leaves into one. The first step, which may seem to be costly,
does no harm, since it is necessary, even if one only learns a Bayesian network without
local structure (provided the conditional distributions are represented as a decision tree).
Only this step involves visiting the database to learn from in order to determine the
conditional value frequencies. The next step, in which leaves are merged, can be carried
out without visiting the database, since all necessary information is already available in
the leaf nodes (provided the original leaf nodes are kept during a trial merge and are
simply restored afterwards). Thus we need to visit the database only as often as an
algorithm for learning a Bayesian network without local structure does. In contrast to
this, the algorithm presented in Chickering et al. (1997) needs to visit the database each
time a split of leaf nodes is considered. This can exceed by far the number of times

8

A

?

��
����

HH
HHHj

a1 a2
a3

B B B

??

�
���

S
SSw

�
��/

C
CCW

b1 b2 b2
b1 b1 b2

C C C C

Figure 6. A decision graph with a full set of inner nodes that captures the regularities
in table 3. Note that the test of variable B in the leftmost node on the second level is
without effect, because both edges lead to the same leaf.

an algorithm for learning a network without local structure needs to visit the database,
especially, since multiple tests of the same variable along the same path are permitted.

The leaf merging process is often less costly as it may seem at first sight, since we can
exploit the fact that several evaluation measures (or scoring functions) are computed leaf
by leaf or from terms that are computed leaf by leaf (see below). Hence, when two leaves
are merged, the decision graph need not be reevaluated completely, but the change can
often be computed locally from the frequency distributions in the merged leaves and the
distribution in the resulting leaf.

To find the best set of mergers of leaf nodes, one can use any of the well-known
search heuristics, e.g. greedy search or, if a mechanism for re-splitting leaf nodes is
provided (which is easy to program), simulated annealing. Since we chose a greedy parent
selection on a topological order (that is, the well-known K2 search method Cooper and
Herskovits (1992)) in our experiments, we implemented a simple greedy search. That
is, we always merge those two leaf nodes, that lead to the highest improvement of the
evaluation measure. The merging process stops, if no leaf merger improves the value of
the evaluation measure. However, we implemented the greedy merging in two different
ways. In the first approach any merger between two leaf nodes of the current decision
graph can be selected. We call this unrestricted merging. In the second approach, we
first consider merging only such leaves that have the same parent. Only after no merger
improving the evaluation measure can be found anymore, we allow mergers of leaves that
have the same grandparent, and so on. This approach we call levelwise merging, since we
climb up in the tree level by level to determine which leaves are considered for a possible
merger. The latter approach can be slightly more efficient, since in general a slightly
smaller set of mergers is considered. It can also lead to a simpler structure, since mergers
of leaves that are “far apart” in the tree are less likely.

Of course, our approach can result in a complicated structure that may hide a simple
structure of context-specific independences. But the same is true, though maybe less
likely, for the algorithm presented in Chickering et al. (1997) and thus some postprocess-
ing to simplify the structure found by the algorithm—for instance, by changing the order
of variables and by splitting tests along a path—is always advisable.

9

5 Evaluation Measures

The process of selecting parent variables when learning a Bayesian network is very similar
to selecting a test attribute in decision tree induction. The only difference is that in
decision tree learning only single attributes are considered, whereas in Bayesian network
learning there can be more than one parent. But this is not really a difference, since we
can always view all parents as one pseudo-variable, the domain of which is the Cartesian
product of the parents’ individual domains.

This view can easily be extended to a decision graph representation, where several
paths (and thus several pseudo-values) can lead to the same leaf (the same conditional
probability distribution). In this case we only have to combine certain elements of the
Cartesian product of the parents’ domains into one pseudo-element. For example, for
the decision graph shown on figure 5, we can view the parents A and B as one pseudo-
variable X with dom(X) = {x1, x2, x3, x4}, where x1=̂(a1, b1) ∨ (a1, b2), x2=̂(a2, b1),
x3=̂(a2, b2) ∨ (a3, b1) and x4=̂(a3, b2).

The only thing we have to take care of is that in contrast to the measures commonly
used for Bayesian network learning, like Bayesian measures based on the Bayesian Dirich-
let metric or measures based on the minimum description length principle, attribute
selection measures for decision tree induction usually do not have a built-in property
that prevents them from selecting too many parent variables. An example is informa-
tion gain, which for decision tree induction is known to be biased towards many-valued
attributes.1 Since an additional parent variable obviously increases the number of values
of the pseudo-attributes, information gain tends to select too many parents. Fortunately,
this drawback can easily be overcome by requiring a candidate parent to improve the
value of an evaluation measure by a predefined minimal amount, before this candidate
is considered eligible. We made this parameter an optional argument of our program.

Limits of space prevent us from describing in detail the evaluation measures we used
in the experiments reported in section 6. Hence we only list them here without much
explanation. An interested reader is asked to consult the references or Borgelt and Kruse
(2002), which discusses them in some detail.

Probabilistic Measures

• information gain Igain Kullback and Leibler (1951); Chow and Liu (1968)
(mutual information/cross entropy)

• information gain ratio Igr Quinlan (1993)
• symmetric information gain ratio Isgr Lopez de Mantaras (1991)
• Gini index Breiman et al. (1984); Wehenkel (1996)
• symmetric Gini index Zhou and Dillon (1991)
• modified Gini index Kononenko (1994)
• relief measure Kira and Rendell (1992); Kononenko (1994)
• relevance Baim (1988)

1The reason is that a split of a value of a test attribute into two values can lead only to the
same or a higher information gain, and in practice almost always leads to a higher information
gain, mainly due to a quantization effect.

10

• χ2 measure
• K2 metric Cooper and Herskovits (1992); Heckerman et al. (1995)
• BDeu metric Buntine (1991); Heckerman et al. (1995)
• minimum description length with coding based on relative frequencies lrel

Kononenko (1995)
• minimum description length with coding based on absolute frequencies labs

Kononenko (1995) (closely related to the K2-metric)
• stochastic complexity Krichevsky and Trofimov (1983); Rissanen (1987)

Probabilistic Measures

• possibilistic analog of the χ2-measure Borgelt and Kruse (1997a)
• possibilistic analog of mutual information (mutual specificity) Borgelt and Kruse

(1997a)
• specificity gain Sgain Gebhardt and Kruse (1996); Borgelt and Kruse (1997a)
• specificity gain ratio Sgr Borgelt and Kruse (1997a)
• symmetric specificity gain ratio Ssgr Borgelt and Kruse (1997a)

When it comes to learning the local structure of a graphical model, it becomes important
whether an evaluation measure can be computed from individual terms for each of the
leaves of the decision graph representing the conditional distribution to assess, which
makes it possible to compute the new value of the measure after merging two leaves by
computing a simple delta, or whether it is not possible to find the new value by such
“local” computations, so that the whole conditional distribution has to be reevaluated.
This consideration leads to three classes of evaluation measures:

• The improvement resulting from a merger is independent of other mergers.

Examples: ◦ χ2 measure
◦ information gain
◦ K2 metric

• The improvement resulting from a merger depends on other mergers, but can be
computed locally from the merged leaves and certain cached values.

Examples: ◦ information gain ratio
◦ symmetric/modified Gini index

• The improvement resulting from a merger depends on other mergers in such a way
that the full tree has to be reevaluated.
Examples: ◦ specificity gain

◦ (symmetric) specificity gain ratio
In order to understand this distinction, let us briefly take a closer look at one example
from each class. For the first class we consider the K2 metric Cooper and Herskovits
(1992), which is based on a Bayesian approach. The idea underlying it is to compute the
probability of a (directed) graph structure given the data, i.e., to compute

P (~G | D) =
1

P (D)

∫
Θ

P (D | ~G, Θ)f(Θ | ~G)P (~G) dΘ,

11

where ~G is the directed graph underlying the graphical model, D is the dataset to learn
from, and Θ is the set of parameters of the model, i.e., the conditional probabilities. f
describes the prior probability (in a Bayesian sense) of a each assignment of parame-
ter values given the structure of the graph. By restricting our considerations to a Bayes
factor for comparing networks, which eliminates the need to explicitly compute the prob-
ability of the database, and by making certain assumptions about data and parameter
independence Cooper and Herskovits (1992), we get

P (~G, D) = γ

r∏
k=1

mk∏
j=1

∫
· · ·
∫

θijk

(
nk∏
i=1

θ
Nijk

ijk

)
f(θ1jk, . . . , θnkjk) dθ1jk . . .dθnkjk,

where γ is a normalization factor, r is the number of variables, mk the number of distinct
instantiations of the parent variables of variable k, nk the number of values of variable k,
θijk the conditional probability that variable k has the i-th value given that its parent
variables are instantiated with the j-th combination of values, and Nijk is the number of
times variable k is instantiated with its i-th value and its parents are instantiated with
their j-th value combination in the database D to learn from. To solve this formula,
f(θ1jk, . . . , θnkjk) = const. is chosen Cooper and Herskovits (1992) and then the solution
can be obtained with Dirichlet’s integral:

K2(~G, D) = γ
r∏

k=1

mk∏
j=1

(nk − 1)!
(N.jk + nk − 1)!

nk∏
i=1

Nijk!.

In implementations the logarithm of this measure is computed, so that the products turn
into sums. From this formula it is obvious, that merging two leaves removes two factors
from the second product, namely the two that refer to the two merged leaves, and adds
a new one that refers to the result of the merger. Therefore the change of this measure
as it results from merging leaves can easily be computed as a simple delta. This makes
the computations very efficient.

As an example of an evaluation measure from the second class we consider the
information gain ratio Quinlan (1993). This measure is based on Shannon entropy
H = −

∑n
i=1 pi log2 pi and can be seen as a normalization of the information gain

Igain(A,B) = HA −HA|B = HA + HB −HAB

= −
∑

a∈dom(A)

P (A = a) log2 P (A = a)

−
∑

b∈dom(B)

P (B = b) log2 P (B = b)

+
∑

a∈dom(A)

∑
b∈dom(B)

P (A = a,B = b) log2 P (A = a,B = b),

namely as

Igr(A,B) =
Igain(A,B)

HA
=

HA + HB −HAB

HA

12

The normalization is meant to remove the abovementioned bias towards many-valued
attributes. It is easy to see that information gain allows to compute the change that
results from merging two leaves as a simple delta, since only terms from the first and
the third sum have to be replaced, while it is not possible to compute such a delta for
information gain ratio due to the normalization factor. However, if we cache the values
of the entropies it is computed from, the recomputation involves almost no additional
costs. The entropies can be adapted by computing a delta resulting from the merger and
then we only have to recompute the quotient.

As an example of an evaluation measure from the third class we consider the specificity
gain Gebhardt and Kruse (1996); Borgelt and Kruse (1997a). It can be seen as a
generalization of Hartley information gain on the basis of an α-cut view of possibility
distributions and is defined as

Sgain(A,B) =
∫ sup Π

0

log2

(∑
a∈dom(A)

[Π]α(A = a)

)
+ log2

(∑
b∈dom(B)

[Π]α(B = b)

)

− log2

(∑
a∈dom(A)

∑
b∈dom(B)

[Π]α(A = a,B = b)

)
dα.

The formula shows that this measure is analogous to information gain. However, it does
not share all of the nice properties of information gain. In particular, its change as it
results from merging two leaves cannot be computed as a simple delta. The reason is
that the computation of this measures involves sorting the degrees of possibility, and if
two leaves are merged, they have to be resorted. This also makes it clear why no values
can be cached to make a local computation possible. Fortunately, only the specificity
based measures have this disadvantageous property. All other measures, possibilistic as
well as probabilistic, belong to one of the other two classes.

6 Experimental Results

All experiments reported here were carried out with a prototype learning program for
probabilistic and possibilistic networks called INES (Induction of NEtwork Structures,
written by the first author of this paper), into which the described method and all of the
listed evaluation measures are incorporated. This program as well as datasets and shell
scripts to carry out the experiments can be retrieved free of charge at

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html#ines
As a test case we chose the Danish Jersey cattle blood group determination problem
Rasmussen (1992), for which a Bayesian network designed by domain experts and a
database of 500 real world sample cases exist. Nevertheless, for learning Bayesian net-
works, we did not use the real world database, since it contains a lot of missing values.
Instead, we used 20 artificially generated databases with 1000 sample cases each, 10 of
which we used for learning, 10 for testing the learning result, over which the results were
then averaged. The real world dataset was used only for learning possibilistic networks,
since with them, missing values can be handled directly.

13

eval. num. of add. miss. num. of network quality
measure conds. conds. conds. params. train test
indep. vars. 0.0 0.0 22.0 59 −19921 −20087
original 22.0 0.0 0.0 219 −11391 −11506

Table 5. Reference evaluations for Bayesian network learning.

eval. num. of add. miss. num. of network quality
measure conds. conds. conds. params. train test
Igain 35.0 17.1 4.1 1342 −11229 −11818
Igr 24.0 6.7 4.7 209 −11615 −11737
Isgr 32.0 11.3 1.3 317 −11388 −11575
Gini 35.0 17.1 4.1 1342 −11233 −11813
χ2 35.0 17.3 4.3 1301 −11235 −11805
K2 metric 23.3 1.4 0.1 230 −11385 −11512
BDeu metric 31.2 9.3 0.1 276 −11385 −11521
lrel 22.5 0.6 0.1 220 −11390 −11508

Table 6. Results of Bayesian network learning without local structure.

To evaluate the quality of the learned network, we chose the following approach:
Given a Bayesian network, the probability of any (complete) sample case can easily be
computed. If we assume the sample cases to be independent, we can compute from these
probabilities the probability of the whole database (simply as their product). If we assume
all network structures to have the same prior probability, this database probability is a
direct measure of the network quality.

For possibilistic networks, we used a similar approach. Given a possibilistic network,
the possibility degree of any (complete) tuple can be computed. If a tuple contains
missing values, we assign to this tuple the maximal possibility degree over all complete
tuples that are compatible with this tuple. The sum of these possibility degrees we used
as a quality measure. This is justified, since due to the the way in which a possibilistic
network approximates a multivariate possibility distribution, the possibility degree re-
sulting from the network must always be equal or greater than the true possibility degree.
Hence, the lower the sum of the possibility degrees for the tuples in the database, the
better the network. More details about this evaluation method can be found in Borgelt
and Kruse (1997b, 2002).

The results of some of our experiments are shown in tables 5 to 13. In addition to
the network evaluation, these tables show the total number of conditions (parents) as
a measure of the complexity of the global network structure, the number of additional
and missing edges compared to the human expert designed reference network (which
is reasonable only for Bayesian network learning), and the number of (probability or
possibility) parameters as a measure of the complexity of the local network structure.

14

eval. num. of add. miss. num. of network quality
measure conds. conds. conds. params. train test
Igain 35.0 17.1 4.1 1260 −11192 −11806
Igr 31.6 11.0 1.4 133 −14979 −15151
Isgr 34.7 13.9 1.2 342 −11424 −11675
Gini 35.0 17.1 4.1 1254 −11195 −11802
χ2 35.0 17.3 4.3 1216 −11197 −11794
K2 metric 26.4 4.5 0.1 195 −11341 −11507
BDeu metric 36.0 14.3 0.3 306 −11336 −11505
lrel 25.1 3.8 0.7 219 −11350 −11498

Table 7. Results of Bayesian network learning with local structure (unrestricted).

eval. num. of add. miss. num. of network quality
measure conds. conds. conds. params. train test
Igain 35.0 17.1 4.1 1260 −11192 −11806
Igr 32.1 11.7 1.6 132 −15202 −15354
Isgr 34.7 13.9 1.2 342 −11424 −11675
Gini 35.0 17.1 4.1 1254 −11195 −11802
χ2 35.0 17.3 4.3 1216 −11197 −11794
K2 metric 26.3 4.4 0.1 195 −11341 −11508
BDeu metric 35.9 14.2 0.3 305 −11338 −11504
lrel 25.0 3.7 0.7 219 −11350 −11497

Table 8. Results of Bayesian network learning with local structure (levelwise).

eval. num. of add. miss. num. of network quality
measure conds. conds. conds. params. train test
Igain 35.0 17.1 4.1 1260 −11192 −11806
Igr 24.0 6.7 4.7 121 −14752 −14926
Isgr 32.0 11.3 1.3 217 −11452 −11650
Gini 35.0 17.1 4.1 1253 −11195 −11802
χ2 35.0 17.3 4.3 1216 −11197 −11794
K2 metric 23.3 1.4 0.1 168 −11352 −11492
BDeu metric 31.2 9.3 0.1 218 −11357 −11484
lrel 22.5 0.6 0.1 162 −11357 −11488

Table 9. Results of Bayesian network learning with local structure preserving the global
structure.

15

Table 5 shows the evaluation results for a graph without edges (independent variables)
and the human expert designed reference structure. These evaluation can be used as a
baseline for comparisons. From table 6 it can be seen that some measures tend to
select too many conditions (parents), thus leading to overfitting. As already said, this
disadvantage can be amended to some degree by requiring a certain minimal improvement
of the network evaluation when adding a condition.

At first sight it is surprising that allowing local structure to be learned (see tables 7 to
9), although in most cases it leads to a reduction of the number of necessary parameters,
makes the global structure more complex, since for several measures the number of
selected conditions is larger than for networks without local structure. But a second
thought (and a closer inspection of the learned networks) reveals that this could have
been foreseen. In a frequency distribution determined from a database of sample cases
random fluctuations are to be expected. Usually these do not lead to additional conditions
(except for measures like information gain), since the “costs” of an additional level with
several (approximately) equivalent leaves prevents the selection of such a condition. But
the disadvantage of (approximately) equivalent leaves is removed by the possibility to
merge these leaves, and thus those fluctuations that show a higher deviation from the
true (independent) probability distribution are filtered out and become significant to the
measure. Information gain ratio seems to be an especially pronounced example. The
effect occurs for both unrestricted and levelwise merging, which lead to very similar
results.

This effect reduces when learning from a larger dataset, but does not vanish com-
pletely. We believe this to be a general problem any learning algorithm for local struc-
ture has to cope with. Therefore it may be advisable not to combine learning global
and local network structure, but to learn the global structure first and to simplify the
learned structure afterwards by learning the local structure. To check this assumption,
we applied learning the local structure to the outcome of global structure learning, with
the sets of parents fixed. The result, which is shown in table 9, is indeed slightly bet-
ter. However, information gain ratio still yields very bad results compared to the other
measures, thus indicating that it is not adequate to select the leaves to merge and to
determine when to stop merging.

The results of learning possibilistic networks with local structure, which are shown in
tables 10 to 14, are very similar to the results of probabilistic network learning. However,
the gains from local structure learning while preserving the learned global structure seem
to be much smaller here and thus it seems to be more advisable to combine local and
global structure learning.

7 Conclusions

In this paper we presented a method to learn the local structure of a Bayesian network
from data, which we believe to be more efficient than the approach presented in Chicker-
ing et al. (1997). We applied the same idea to possibilistic networks, thus arriving at an
algorithm to learn possibilistic networks with local structure. The experimental results
show that trying to learn local structure has to be handled with care, since it can lead to
the counter-intuitive effect of a more complicated global structure. Maybe it is advisable

16

eval. num. of num. of network quality
measure conds. params. avg. min. max.
indep. vars. 0 80 10.160 10.064 11.390
original 22 308 9.917 9.888 11.318

Table 10. Results of possibilistic network learning without local structure.

eval. num. of num. of network quality
measure conds. params. avg. min. max.
Sgain 31 1630 8.621 8.524 10.292
Sgr 18 196 9.553 9.390 11.100
Ssgr 28 496 9.057 8.946 10.740
poss. χ2 35 1486 8.329 8.154 10.200
mut. spec. 33 774 8.344 8.206 10.416

Table 11. Results of possibilistic network learning without local structure.

eval. num. of num. of network quality
measure conds. params. avg. min. max.
Sgain 34 768 8.739 8.548 10.620
Sgr 21 215 9.637 9.450 11.254
Ssgr 28 367 9.225 9.084 10.996
poss. χ2 35 1348 8.347 8.152 10.222
mut. spec. 33 666 8.332 8.182 10.390

Table 12. Results of possibilistic network learning with local structure (unrestricted).

to base selecting another parent on the score for a full decision tree, and to use local
structure learning only to simplify this tree afterwards.

Bibliography

S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. HUGIN — A shell for building
Bayesian belief universes for expert systems. Proc. 11th Int. J. Conf. on Artificial
Intelligence, 1080–1085, 1989

P.W. Baim. A Method for Attribute Selection in Inductive Learning Systems. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 10:888-896, 1988

C. Borgelt and R. Kruse. Evaluation Measures for Learning Probabilistic and Possi-
bilistic Networks. Proc. 6th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’97),
Vol. 2:pp. 1034–1038, Barcelona, Spain, 1997

C. Borgelt and R. Kruse. Some Experimental Results on Learning Probabilistic and

17

eval. num. of num. of network quality
measure conds. params. avg. min. max.
Sgain 34 752 8.584 8.349 10.500
Sgr 21 215 9.637 9.450 11.254
Ssgr 28 361 9.252 9.110 11.008
poss. χ2 35 1347 8.348 8.152 10.222
mut. spec. 33 674 8.332 8.182 10.390

Table 13. Results of possibilistic network learning with local structure (levelwise).

eval. num. of num. of network quality
measure conds. params. avg. min. max.
Sgain 31 1566 8.678 8.566 10.404
Sgr 18 182 9.627 9.446 11.202
Ssgr 28 455 9.074 8.948 10.812
poss. χ2 35 1349 8.348 8.162 10.224
mut. spec. 33 621 8.402 8.262 10.502

Table 14. Results of possibilistic network learning with local structure preserving the
global structure.

Possibilistic Networks with Different Evaluation Measures. Proc. 1st Int. Joint Con-
ference on Qualitative and Quantitative Practical Reasoning (ECSQARU/FAPR’97),
pp. 71–85, Springer, Berlin, Germany, 1997)

C. Borgelt and R. Kruse. Graphical Models — Methods for Data Analysis and Mining.
J. Wiley & Sons, Chichester, United Kingdom 2002

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context Specific Indepen-
dence in Bayesian Networks. Proc. 12th Conf. on Uncertainty in Artificial Intelligence
(UAI’96), Portland, OR, 1996

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression
Trees, Wadsworth International Group, Belmont, CA, 1984

W. Buntine. Theory Refinement on Bayesian Networks. Proc. 7th Conf. on Uncertainty
in Artificial Intelligence, pp. 52–60, Morgan Kaufman, Los Angeles, CA, 1991

D.M. Chickering, D. Heckerman, and C. Meek. A Bayesian Approach to Learning
Bayesian Networks with Local Structure. Proc. 13th Conf. on Uncertainty in Ar-
tificial Intelligence (UAI’97), pp. 80–89, Morgan Kaufman, San Franscisco, CA, 1997

C.K. Chow and C.N. Liu. Approximating Discrete Probability Distributions with De-
pendence Trees. IEEE Trans. on Information Theory 14(3):462–467, IEEE 1968

G.F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning 9:309–347, Kluwer 1992

J. Gebhardt and R. Kruse. The context model — an integrating view of vagueness and
uncertainty Int. Journal of Approximate Reasoning 9:283–314, 1993

18

J. Gebhardt and R. Kruse. POSSINFER — A Software Tool for Possibilistic Infer-
ence. In: D. Dubois, H. Prade, and R. Yager, eds. Fuzzy Set Methods in Information
Engineering: A Guided Tour of Applications, Wiley 1995

J. Gebhardt and R. Kruse. Learning Possibilistic Networks from Data. Proc. 5th Int.
Workshop on Artificial Intelligence and Statistics, 233–244, Fort Lauderdale, 1995

J. Gebhardt and R. Kruse. Tightest Hypertree Decompositions of Multivariate Possi-
bility Distributions. Proc. Int. Conf. on Information Processing and Management of
Uncertainty in Knowledge-based Systems, 1996

J. Gebhardt. Learning from Data: Possibilistic Graphical Models. Habil. thesis, Univer-
sity of Braunschweig, Germany 1997

D. Geiger and D. Heckerman. Advances in Probabilistic Reasoning. Proc. 7th Conf. on
Uncertainty in Artificial Intelligence (UAI’91), pp. 118–126, Morgan Kaufman, San
Franscisco, CA, 1997

D. Heckerman. Probabilistic Similarity Networks. MIT Press 1991
D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian Networks: The Com-

bination of Knowledge and Statistical Data. Machine Learning 20:197–243, Kluwer
1995

M. Higashi and G.J. Klir. Measures of Uncertainty and Information based on Possibility
Distributions. Int. Journal of General Systems 9:43–58, 1982

K. Kira and L. Rendell. A Practical Approach to Feature Selection. Proc. 9th Int. Conf.
on Machine Learning (ICML’92), pp. 250–256, Morgan Kaufman, San Franscisco,
CA, 1992

G.J. Klir and M. Mariano. On the Uniqueness of a Possibility Measure of Uncertainty
and Information. Fuzzy Sets and Systems 24:141–160, 1987

I. Kononenko. Estimating Attributes: Analysis and Extensions of RELIEF. Proc. 7th
Europ. Conf. on Machine Learning (ECML’94), Springer, New York, NY, 1994

I. Kononenko. On Biases in Estimating Multi-Valued Attributes. Proc. 1st Int. Conf. on
Knowledge Discovery and Data Mining, 1034–1040, Montreal, 1995

R.E. Krichevsky and V.K. Trofimov. The Performance of Universal Coding. IEEE Trans.
on Information Theory, IT-27(2):199–207, 1983

R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty and Vagueness in Knowledge-based
Systems: Numerical Methods. Series: Artificial Intelligence, Springer, Berlin 1991

R. Kruse, J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems, John Wiley &
Sons, Chichester, England 1994

S. Kullback and R.A. Leibler. On Information and Sufficiency. Ann. Math. Statistics
22:79–86, 1951

S.L. Lauritzen and D.J. Spiegelhalter. Local Computations with Probabilities on Graph-
ical Structures and Their Application to Expert Systems. Journal of the Royal Sta-
tistical Society, Series B, 2(50):157–224, 1988

R. Lopez de Mantaras. A Distance-based Attribute Selection Measure for Decision Tree
Induction. Machine Learning 6:81–92, Kluwer 1991

H.T. Nguyen. Using Random Sets. Information Science 34:265–274, 1984
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

(2nd edition). Morgan Kaufman, New York 1992

19

D. Poole. Probabilistic Horn Abduction and Bayesian Networks. Artificial Intelligence,
64(1):81-129, 1993

J.R. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufman, 1993
L.K. Rasmussen. Blood Group Determination of Danish Jersey Cattle in the F-blood

Group System. Dina Research Report no. 8, 1992
J. Rissanen. Stochastic Complexity. Journal of the Royal Statistical Society (Series B),

49:223-239, 1987
A. Saffiotti and E. Umkehrer. PULCINELLA: A General Tool for Propagating Uncer-

tainty in Valuation Networks. Proc. 7th Conf. on Uncertainty in AI, 323–331, San
Mateo 1991

G. Shafer and P.P. Shenoy. Local Computations in Hypertrees. Working Paper 201,
School of Business, University of Kansas, Lawrence 1988

P.P. Shenoy. Valuation-based Systems: A Framework for Managing Uncertainty in Ex-
pert Systems. Working Paper 226, School of Business, University of Kansas, Lawrence,
1991

J.E. Smith, S. Holtzman, and J.E. Matheson. Structuring Conditional Relationships in
Influence Diagrams. Operations Research, 41(2):280–297, 1993

L. Wehenkel. On Uncertainty Measures Used for Decision Tree Induction. Proc. IPMU,
1996

X. Zhou and T.S. Dillon. A statistical-heuristic Feature Selection Criterion for Decision
Tree Induction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13:834–
841, 1991

20

