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Abstract. In standard frequent item set mining one tries to find item
sets the support of which exceeds a user-specified threshold (minimum
support) in a database of transactions. We, instead, strive to find item
sets for which the similarity of the covers of the items (that is, the sets of
transactions containing the items) exceeds a user-defined threshold. This
approach yields a much better assessment of the association strength of
the items, because it takes additional information about their occurrences
into account. Starting from the generalized Jaccard index we extend our
approach to a total of twelve specific similarity measures and a general-
ized form. In addition, standard frequent item set mining turns out to be
a special case of this flexible framework. We present an efficient mining
algorithm that is inspired by the well-known Eclat algorithm and its im-
provements. By reporting experiments on several benchmark data sets
we demonstrate that the runtime penalty incurred by the more complex
(but also more informative) item set assessment is bearable and that the
approach yields high quality and more useful item sets.

1 Introduction

Frequent item set mining and association rule induction are among the most
intensely studied topics in data mining and knowledge discovery in databases.
The enormous research efforts devoted to these tasks have led to a variety of so-
phisticated and efficient algorithms, among the best-known of which are Apriori
[1,2], Eclat [38,39] and FP-growth [19,16,17].

Unfortunately, a standard problem in this research area is that the output
(that is, the set of reported item sets or association rules) is often huge and can
easily exceed the size of the transaction database to mine. As a consequence, the
(usually few) interesting item sets and rules drown in a sea of irrelevant ones.
One of the reasons for this is that the support measure for item sets and the
confidence measure for rules are not very informative, because they do not say
that much about the actual strength of association of the items in the set or rule:
a set of items may be frequent simply because its elements are frequent and thus
their frequent co-occurrence can even be expected by chance. In association rule
induction adding an item to the antecedent may be possible without affecting
the confidence much, because the association is actually brought about by the
other items in the antecedent. Therefore a considerable number of redundant
and/or irrelevant item sets and rules is often produced.
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Approaches to cope with this problem include, for instance, [36,37], which
rely on subsequent filtering and statistical tests in order to single out the relevant
rules and patterns. In this chapter, however, we pursue a different direction,
namely changing the search criterion for item sets, so that fewer irrelevant item
sets are produced in the first place. The core idea is to replace the support
measure with a more expressive measure that better captures whether the items
in a set are associated. To obtain such a measure we draw on the insight that for
associated items their covers—that is, the sets of transactions containing them—
are more similar than for independent items. Since the Jaccard index is a very
natural and straightforward measure for the similarity of sets, this leads us to the
definition of a Jaccard item set, which is an item set for which the generalized
Jaccard index of the covers of its items exceeds a user-specified threshold. This
index has the advantage that it is also anti-monotone, so that the same search
and pruning techniques can be employed as in frequent item set mining.

We then extend our approach to a total of twelve specific similarity measures
that can be generalized from pairs of sets (or, equivalently, binary vectors).
We present a generalized form, from which all of these measures can be obtained
by proper parameterization, but which also allows for other options. Finally, it
turns out that standard frequent item set mining is a special case of this flexible
framework, which, however, also offers several better alternatives.

The rest of this chapter is organized as follows: in Section 2 we briefly re-
view frequent item set mining and a core search procedure and introduce our
notation. In Section 3 we present the generalized Jaccard index with the help of
which we then define Jaccard item sets. Section 4 reviews the Eclat algorithm,
the processing scheme of which we employ in the search for Jaccard item sets.
In Section 5 we show how the difference set idea for Eclat can be adapted to ef-
ficiently compute the value of the denominator of the generalized Jaccard index,
thus completing our JIM algorithm (for Jaccard Item set Mining). In Section 6
we consider a total of twelve specific similarity measures that can be used in
place of the Jaccard index, together with a generalized form. In Section 7 we
apply our algorithm to standard benchmark data sets and to the 2008/2009
Wikipedia Selection for schools to demonstrate the speed and usefulness of our
algorithm. Finally, in Section 8, we draw conclusions from our discussion.

2 Frequent Item Set Mining

Frequent item set mining is a data analysis method that was originally developed
for market basket analysis. It aims mainly at finding regularities in the shopping
behavior of the customers of supermarkets, mail-order companies, online shops
etc. In particular, it tries to identify sets of products (or generally items) that are
associated or frequently bought together. Once identified, such sets of associated
products may be used to optimize the organization of the offered products on
the shelves of a supermarket or the pages of a mail-order catalog or web shop.
They can also give hints which products may conveniently be bundled or may
be suggested to a new customer, or to a current customer after a purchase.
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Formally, the task of frequent item set mining can be described as follows: we
are given a set B of items, called the item base, and a database T of transactions.
Each item represents a product, and the item base represents the set of all
products on offer. The term item set refers to any subset of the item base B. Each
transaction is an item set and represents a set of products that has been bought
by an actual customer. Since two or even more customers may have bought the
exact same set of products, the total of all transactions must be represented as a
vector, a bag, or a multiset, since in a simple set each transaction could occur at
most once.! Note that the item base B is usually not given explicitly, but only
implicitly as the union of all transactions in the given database.

We write T = (t1,...,t,) for a transaction database with n transactions.
Thus we are able to distinguishing equal transactions by their position in the
database vector (that is, the transaction index is an implicit identifier). In order
to conveniently refer to the index set of the transactions, we introduce the ab-
breviation N,, := {k € N | £k < n} = {1,...,n}. Given an item set I C B
and a transaction database T, the cover Kr(I) of I w.r.t. T is defined as
Kr(I) = {k € N, | I C t}, that is, as the set of indices of transactions
that contain I. The support sp(I) of an item set I C B is the number of trans-
actions in the database T it is contained in, that is, sp(I) = |Kp(I)|. Given a
user-specified minimum support smin € N, an item set [ is called frequent in T
iff s7(I) > Smin- The goal of frequent item set mining is to identify all item sets
I C B that are frequent in a given transaction database T'. Note that the task of
frequent item set mining may also be defined with a relative minimum support,
which is the fraction of transactions in 7' that must contain an item set I in
order to make I frequent. This alternative definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T
and a minimum support Spin, which is adopted by basically all frequent item set
mining algorithms (except those of the Apriori family), is a depth-first search in
the subset lattice of the item base B. Viewed properly, this approach can be seen
as a simple divide-and-conquer scheme. For some chosen item ¢, the problem to
find all frequent item sets is split into two subproblems: (1) find all frequent item
sets containing the item ¢ and (2) find all frequent item sets not containing the
item i. Each subproblem is then further divided based on another item j # i:
find all frequent item sets containing (1.1) both items ¢ and j, (1.2) item 4, but
not 7, (2.1) item j, but not ¢, (2.2) neither item 4 nor j etc.

All subproblems that occur in this divide-and-conquer recursion can be de-
fined by a conditional transaction database and a prefiz. The prefix is a set of
items that has to be added to all frequent item sets that are discovered in the
conditional database, from which all items in the prefix have been removed.
Formally, all subproblems are tuples S = (T¢, P), where T is a conditional
transaction database and P C B is a prefix. The initial problem, with which
the recursion is started, is S = (T, 0), where T is the given transaction database
to mine and the prefix is empty. A subproblem Sy = (Tp, Py) is processed as

1 Alternatively, each transaction may be enhanced by a unique transaction identifier,
and these enhanced transactions may then be combined in a simple set.
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follows: Choose an item ¢ € Bj, where By is the set of items occurring in Tj.
This choice is arbitrary, but usually follows some predefined order of the items.
A common choice is to process the items in the order of increasing frequency
in the transaction database to mine, as this often leads to the shortest search
times. If s, () > Smin, then report the item set PyU{i} as frequent with the sup-
port st, (i), and form the subproblem S = (71, P1) with P; = PyU{i}. The con-
ditional transaction database T; comprises all transactions in Ty that contain
the item 7, but with the item ¢ removed. This also implies that transactions that
contain no other item than ¢ are entirely removed: no empty transactions are
ever kept. If T3 is not empty, process S7 recursively. In any case (that is, regard-
less of whether s, (i) > Smin Or not), form the subproblem Sy = (T3, P»), where
P, = P, and the conditional transaction database T5 comprises all transactions
in Ty (including those that do not contain the item ), but again with the item i
removed. If T3 is not empty, process Sy recursively.

Eclat, FP-growth, and several other frequent item set mining algorithms
all follow this basic recursive processing scheme [15,5]. They differ mainly in
how they represent the conditional transaction databases. There are basically
two fundamental approaches, namely horizontal and vertical representations.
In a horizontal representation, the database is stored as a list (or array) of
transactions, each of which is a list (or array) of the items contained in it. In a
vertical representation, a transaction database is stored by first referring with a
list (or array) to the different items. For each item a list of transaction identifiers
is stored, which indicate the transactions that contain the item.

However, this distinction is not pure, since there are many algorithms that use
a combination of the two forms of representing a database. For example, while
Eclat [38,39] uses a purely vertical representation and SaM (Split and Merge) [6]
uses a purely horizontal representation, FP-growth [19,16,17] combines in its
FP-tree structure a (compressed) horizontal representation (prefix tree of trans-
actions) and a vertical representation (links between the tree branches).?

The basic processing scheme outlined above can easily be improved with so-
called perfect extension pruning, which relies on the following simple idea: given
an item set I, an item 4 ¢ I is called a perfect extension of I, iff I and I U {i}
have the same support, that is, if 7 is contained in all transactions containing I.
Perfect extensions have the following obvious properties: (1) if the item ¢ is a
perfect extension of an item set I, then it is also a perfect extension of any item
set J D I aslongasi ¢ J and (2) if I is a frequent item set and K is the set of
all perfect extensions of I, then all sets I U J with J € 2K (where 2X denotes
the power set of K) are also frequent and have the same support as I.

These properties can be exploited by collecting in the recursion not only
prefix items, but also, in a third element of a subproblem description, perfect
extension items. Once identified, perfect extension items are no longer processed
in the recursion, but are only used to generate all supersets of the prefix that have

2 Note that Apriori, which also uses a purely horizontal representation, is not men-
tioned here, because it relies on a different processing scheme: it traverses the subset
lattice level-wise rather than depth-first.
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the same support. Depending on the data set, this method, which is also known
as hypercube decomposition [34,35], can lead to a considerable acceleration of
the search. It should be clear that this optimization can, in principle, be applied
in all frequent item set mining algorithms.3

3 Jaccard Item Sets

As outlined in the introduction, we base our item set mining approach on the
similarity of item covers rather than on item set support. In order to measure
the similarity of a set of item covers, we start from the Jaccard index [22], which
is a well-known statistic for comparing sets. For two arbitrary sets A and B it
is defined as AB |AN B

(4,B) = |[AuB|’
Obviously, J(A, B) is 1 if the sets coincide (i.e. A = B) and 0 if they are disjoint
(i.e. AN B = (). For overlapping sets its value lies between 0 and 1.

The core idea of using the Jaccard index for item set mining lies in the
insight that the covers of (positively) associated items are likely to have a high
Jaccard index, while a low Jaccard index rather indicates independent or even
negatively associated items. However, since we consider also item sets with more
than two items, we need a generalization to more than two sets (here: item
covers). In order to achieve this, we define, in a perfectly straightforward manner,
the carrier Lp(I) of an item set I w.r.t. a transaction database T' as

Lr(I)={k €N, | INty #0} ={k €N, | Fi € Ii €t} = | J Kr({i}).
i€l

The extent r¢(I) of an item set I w.r.t. a transaction database T is the size of its
carrier, that is, rp(I) = |Lr(I)|. Recall also that, in analogy, the cover Kr(I)
of an item set I w.r.t. a transaction database T is

Kp(I)={k €N, | I Cty} ={k €N, |VieI:icty} =) Er({i})
i€l

and that the support sp(I) of an item set I is the size of this cover, that is,
sp(I) = |Kr(I)|. With these two notions we can simply define the generalized
Jaccard index of an item set I w.r.t. a transaction database T as its support
divided by its extent, that is, as

s _ [Kr(D)] _ |Nier Kr({iD)]
D) ZeD] T Ui Kr(@)l

3 Note that perfect extension pruning is not the same as restricting the output to
closed frequent item sets [26], even though a closed item set can be defined as an
item set that does not possess a perfect extension. The reason is that the search,
in order to avoid redundant work, usually does not consider all possible extensions.
Hence there may be perfect extensions which are not detected in the search.

Jr(I) =
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Clearly, this is a very natural and straightforward generalization of the Jaccard
index. Since for an arbitrary item a € B it is obviously Kr(I U {a}) C Kr(I)
and equally obviously Ly(I U {a}) D Ly(I), we have sp(I U{a}) < sp(I) and
rp(IU{a}) > rp(I). From these two relations it follows

Jr(IUu{a}) < Jp(I).

Therefore the generalized Jaccard index w.r.t. a transaction database T" over an
item base B is an anti-monotone function on the partially ordered set (25, C).
Given a user-specified minimum Jaccard value Jyi,, an item set I is called
Jaccard-frequent if Jp(I) > Jmin. The goal of Jaccard item set mining is to
identify all item sets that are Jaccard-frequent in a given transaction database T'.
Since the generalized Jaccard index is anti-monotone, this task can be addressed
with the same basic scheme as the task of frequent item set mining. The only
problem to be solved is to find an efficient scheme for computing the extent r¢(I).

4 The Eclat Algorithm

Since we will draw on the scheme of the well-known Eclat algorithm for min-
ing Jaccard item sets, we briefly review some of its core ideas in this section.
As already mentioned, Eclat [38] uses a purely vertical representation of condi-
tional transaction databases. That is, it uses lists of transaction indices, which
represent the cover of an item or an item set. It then exploits the obvious relation

Kr(I1ULL) = Kr(I) N Kp(I2),

which can easily be verified by inserting the definition of a cover. In particular,
Eclat exploits the special case

Kr(IU{a,b}) = Kr(IU{a}) N Kr(IU{b}),

which allows to extend an item set by an item. This is used in the recursive
divide-and-conquer scheme described above by intersecting the list of transaction
indices associated with the split item with the lists of transaction indices of all
items that have not yet been considered in the recursion. In this case the set I
in the formula above is the prefix P of the conditional transaction database.

An alternative to the intersection approach, which is particularly useful for
mining dense transaction databases®*, relies on so-called difference sets (or diffsets
for short) [39]. The diffset Dp(a | I) of an item a w.r.t. an item set I and a
transaction database T is defined as

Dr(a|I) = Kr(I) — Kp(IU {a}).

4 A transaction database is called dense if the average fraction of all items that occur
per transaction is relatively high. Formally, we may define the density of a transaction
database T as 6(T) = ﬁ >y |tx], which is equivalent to the fraction of ones in
a binary matrix representation of the transaction database 7.
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That is, a diffset Dp(a | I) lists the indices of all transactions that contain I,
but not a. Since obviously

sr(IU{a}) = sr(I) —[Dr(a|I)|,

diffsets are equally effective for finding frequent item sets, provided one can derive
a formula that allows to compute diffsets with a larger conditional item set [
without going through covers (using the above definition of a diffset). However,
this is easily achieved, because the following equality holds [39]:

Dr(b|IU{a}) = Dy(b|I) - Dr(a| I).

This formula allows to formulate the search entirely with the help of diffsets. It
may be started either with the complements of the covers of the items, which are
the diffsets for an empty condition, or by forming the differences of the covers of
individual items to obtain the diffsets for condition sets with only a single item.

5 The JIM Algorithm (Jaccard Item Set Mining)

The diffset approach as it was reviewed in the previous section can easily be
transferred in order to find an efficient scheme for computing the carrier and
thus the extent of item sets. To this end we define the extra set Er(a | I) as

Er(a|I)=Kr({a}) = | JEr({i}) ={k €Ny |a €ty AVi € I:i ¢ t;}.
el

That is, Er(a | I) is the set of indices of all transactions that contain a, but no
item in I. Thus it identifies the extra transaction indices that have to be added
to the carrier if item a is added to the item set I. For extra sets we have

Er(a|TU{b}) =Er(all) - Er(b|I),

which corresponds to the analogous formula for diffsets reviewed above. This
relation is easily verified as follows:

Er(a|I)— Er(b| )
={keN,|actyAViel:i¢ty} —{keN, |betprAViel: it}
={keN,|lactsAViel:i¢gtyAN~(betyA\Vicl:i¢ty)}
={keN,|lactyAViel:i¢gtyN(b¢tyvIiel:icty)}
={keN,|(actyAViel:i¢t, Nb¢ty)
ViaetyA\Viel:igt, AT el iety)}

=false
:{kGNn‘aetk/\ViEIZ’i¢tk/\b¢tk}
={keN,|actyA\Vie TU{b}: 1 ¢t}
= Er(a | TU{b})



Cover Similarity based Item Set Mining 111

In order to see how extra sets can be used to compute the extent of item sets,
let I = {i1,...,im}, with some arbitrary, but fixed order of the items that is
indicated by the index. This will be the order in which the items are used as
split items in the recursive divide-and-conquer scheme. It is

Lr(I) = Uiy Kr({in}) = Upey (Br({ix}) — US| Ko({id}))
= UZL:1 E(Zk ‘ {ih s 7ik—1})a

and since the terms of the last union are clearly all disjoint, we have immediately
rr(l) = Y 1B | {iv, i D)l = re(d = {im}) +1E(im | 1 = {im})].
k=1

Thus we have a simple recursive scheme to compute the extent of an item set
from its parent in the search tree (as defined by the divide-and-conquer scheme).

The search algorithm for Jaccard item sets can now easily be implemented
as follows: we start be creating a vertical representation of the given transaction
database. The only difference to the Eclat algorithm is that we have not only
one, but two transaction lists per item 4: one represents Kr({i}) as in standard
Eclat, and the other represents Er(i | ), which happens to be equal to Kr({i}).
That is, for the initial transaction database the two lists are identical. However,
this will obviously not be maintained in the recursive processing. In the recursion
the first list for the split item is intersected with the first list of all other items
to form the lists representing the covers of the corresponding pairs. The second
list of the split item is subtracted from the second list of all other items, thus
yielding the extra sets of transactions for these items given the split item. From
the sizes of the resulting lists the support and the extent of the enlarged item
sets and thus their generalized Jaccard index can easily be computed.

Note that the support computation may, as in the Eclat algorithm, also be
based on diffsets. Likewise, an analogous scheme can be derived for the extent
computation. In addition, Jaccard item set mining can also exploit perfect exten-
sion pruning. The only difference is that an item a is now called a perfect exten-
sion of an item set I w.r.t. a transaction database T only if sy (I U{a}) = sp(I)
and rp(I U{a}) = rp(I), while standard frequent item set mining only requires
the first equality. Such perfect extensions are handled exactly in the same way:
they are not employed as split items, but collected in a third element of the
subproblem description, and are used only to generate all supersets of an item
set that share the same generalized Jaccard index.

6 Other Similarity Measures

Up to now we focused on the generalized Jaccard index to measure the simi-
larity of sets (item covers). However, there is a large number of other similarity
measures for sets (or, equivalently, for binary vectors, because a set may be rep-
resented by its indicator vector w.r.t. some base set). Recent extensive overviews
of such measures for the pairwise case include [7] and [8].
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quantity requirement on transaction behavior

nr none (independent of the set I) | constant
st(I) = |Kr(I)| = ’ﬂie] KT({Z})’ contains all items anti-monotone
rr(I) = |Lr(I)| = ‘Uie] KT({’L})‘ contains at least one item monotone
gr(I) =ro(I) — sr(I) contains some, but not all items | monotone
zr(I)=ny —rp(I) contains no item anti-monotone

Table 1. Quantities in terms of which the considered similarity measures are specified,
together with their behavior as functions on the partially ordered set (ZB, Q).

By relying on the same scheme that we used to generalize the Jaccard index
to more than two sets, a large number of such set similarity or binary vector
similarity measures can be generalized beyond pairwise comparisons as follows:
with the JIM algorithm we presented in the preceding section, we can easily
compute the five quantities listed in Table 1. These quantities count the number
of transactions that satisfy different requirements w.r.t. a given item set I (see
the second column of Table 1). With these quantities a wide range of similarity
measures for sets or binary vectors can be generalized.

Exceptions are measures for comparing two sets X and Y that refer explicitly
to the number | X — Y| of elements that are contained in the set X, but not in
the set Y, and distinguish this number from the number |Y — X| of elements that
are contained in the set Y, but not in the set X. This distinction is difficult to
generalize beyond the pairwise case, because the number of possible containment
patterns of an element to the members of a family of sets grows exponentially
with the number of the sets (here: covers, and thus: items). As a generalization
would have to consider all of these containment patterns separately, it becomes
quickly infeasible. Note, however, that an occurrence of the sum | X —Y|+]Y — X|
does not pose a problem, because this sum corresponds to the value ¢r (7).

By collecting from [8] similarity measures that can be specified in terms of
the quantities listed in Table 1, we compiled Table 2. Note that the index T" and
the argument I are omitted to make the formulas more easily readable. Note also
that the Gower & Legendre measure Sg = ‘%277;” [18] listed in [8] is exactly the
same as the second Sokal & Sneath measure (it is just written differently, with a
factor of 2 canceled from both numerator and denominator). Furthermore, note
that the Hamann measure Sy = £t2=% = =25 [2()] listed in [8] is equivalent to
the Sokal& Michener measure Sy, because Sy + 1 = 25\, and hence omitted.
Likewise, the second Baroni-Urbani& Buser measure Sy = % [4] listed in
[8] is equivalent to the one given in Table 2, because Sy + 1 = 25g. Finally, note
that all of the measures listed in Table 2 have range [0, 1] except Sk (Kulezynski)
and So (Sokal& Sneath 3), which have range [0, 00).

Table 2 is split into two parts depending on whether the numerator of a mea-
sure refers only to the support s or to both the support s and the number z of
transactions that do not contain any of the items in the considered set I. The for-
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Measures derived from inner product: = Measures derived from Hamming distance:

Russel & Rao S s _ s Sokal & Michener gy = +z  n—q

[28] R= 5 T r¥z| [Hamming [30,21]°M~ 5 T " a

Kulczynski g s _ s Faith S — 2s+2z s+ 32

[25] T g T r—s| |2l T T T T a

Jaccard [22] g - S5 _ 8 AZZ0O0 [7] g, — s5toz

Tanimoto [33] |77~ s+q 7 o €[0,1] 2= n

Dice [10] 9 9s Rog.ers& Sy — stz _ n—gq

Sgrensen [32] |Sp = %5 1 4 = Tanimoto [27] n+gq n+gq

Czekanowski [9] Sokal & Sneath 2 S — 2(s+z)  n-—gq

Sokal&SneathlS s s [31,29)] N ¥ s+z n—1q

— =

[31, 29] $+2¢  7+4] |Sokal& Sneath 3 S — s+z _ n—gq
[31,29] °T 4 q

Table 2. Considered similarity &]iaroni—Urbani S = vszts

measures for sets/binary vectors. Buser [4] vsz+r

mer are referred to as based on the inner product, because in the pairwise case
s is the value of the inner (or scalar) product of the binary vectors that are com-
pared. The latter measures (that is, those with both s and z in the numerator)
are referred to as based on the Hamming distance, because in the pairwise case
q is the Hamming distance of the two vectors and n — ¢ = s + z their Hamming
similarity. The decision whether for a given application the term z should be con-
sidered in the numerator of a similarity measure or not is difficult. Discussions
of this issue for the pairwise case can be found in [29] and [11].

Note that the Russel& Rao measure is simply normalized support, demon-
strating that our framework comprises standard frequent item set mining as a
special case. The Sokal & Michener measure is simply the normalized Hamming
similarity. The Dice/Sgrensen/Czekanowski measure may be defined without the
factor 2 in the numerator, changing the range to [0,0.5]. The Faith measure is
equivalent to the AZZOO measure (Alter Zero Zero One One) for ¢ = 0.5 and
the Sokal& Michener/Hamming measure results for o = 1. AZZOO is meant to
introduce flexibility in how much weight should be placed on z, the number of
transactions which lack all items in I (zero zero), relative to s (one one).

All measures listed in Table 2 are anti-monotone on the partially ordered
set (28, C), where B is the underlying item base. This is obvious if in at least
one of the formulas given for a measure the numerator is (a multiple of) a
constant or anti-monotone quantity or a (weighted) sum of such quantities, and
the numerator is (a multiple of ) a constant or monotone quantity or a (weighted)
sum of such quantities (see Table 1). This is the case for all but Sp, Sy and Sg.

That Sp is anti-monotone can be seen by considering its reciprocal value

:25+q:1+i

S5t .
D 2s 2s
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Since ¢ is monotone and s is anti-monotone, Sp !is clearly monotone and thus
Sp is anti-monotone. Applying the same approach to Sg, we arrive at

_\/sz—i—r_w/sz—i—s—i—q_l_’_ q
Vsz+s Vsz+s Vsz+s

Since ¢ is monotone and both s and /sz are anti-monotone, Sy Yis clearly
monotone and thus Sp is anti-monotone. Finally, Sy can be written as

S5t

2n — 2
R [ A (. T
2n —q 2n —q n+s+z

Since ¢ is monotone, the numerator is monotone, and since n is constant and s
and z are anti-monotone, the denominator is anti-monotone. Hence the fraction
is monotone and since it is subtracted from 1, Sy is anti-monotone.

Note that all measures in Table 2 can be expressed as

CcoS + €12 + con + c34/82
C48 + 52 + cgn + c7A/82

(1)

by specifying appropriate coefficients cg, ..., c;. For example, we obtain Sy for
co=cs =1, c5=—land ¢y =cy =c3 =c4 =cy =0, since §; = 2 = =,
Similarly, we obtain So forco =c; =cg =1,¢c4 =c5 = —1l and c3 = ¢c3 = ¢7 = 0,
since Sp = HTZ = =22 This general form allows for a flexible specification of

various similarity measures. Note, however, that not all selections of coefficients
lead to an anti-monotone measure and hence one has to carefully check this
property before using a measure that differs from the pre-specified ones.

7 Experiments

We implemented the described item set mining approach as a C program that
was derived from an Eclat implementation by adding the second transaction
identifier list for computing the extent of item sets. All similarity measures listed
in Table 2 are included as well as the general form (1). This implementation has
been made publicly available under the GNU Lesser (Library) Public License.’

In a first set of experiments we applied the program to five standard bench-
mark data sets, which exhibit different characteristics, especially different den-
sities, and compared it to a standard Eclat search. The data sets we used are:
BMS-Webview-1 (a web click stream from a leg-care company that no longer
exists, which has been used in the KDD cup 2000 [23,40]), T10I4D100K (an
artificial data set generated with IBM’s data generator [41]), census (a data set
derived from an extract of the US census bureau data of 1994, which was pre-
processed by discretizing numeric attributes), chess (a data set listing chess end
game positions for king vs. king and rook), and mushroom (a data set describ-
ing poisonous and edible mushrooms by different attributes). The first two data

® See http://www.borgelt.net/jim.html
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sets are available in the FIMI repository [14], the last three in the UCI machine
learning repository [3]. The discretization of the numeric attributes in the cen-
sus data set was done with a shell/gawk script that can be found on the web
page given in Footnote 5 (previous page). For the experiments we used an Intel
Core 2 Quad Q9650 (3GHz) machine with 8 GB main memory running Ubuntu
Linux 10.04 (64 bit) and gcc version 4.4.3.

The goal of these experiments was to determine how much the computation
of the carrier/extent of an item set affected the execution time. Therefore we
ran the JIM algorithm without any threshold for the similarity measure (we
used the Jaccard index, i.e. Jy, = 0, but any other measure gives basically the
same results), using only a minimum support threshold (which is supported by
our implementation in parallel). As a consequence, JIM and Eclat always found
exactly the same set of frequent item sets for a given minimum support value
and thus any difference in execution time comes from the additional costs of the
carrier/extent computation. The difference in the generated output consists only
in the Jaccard index that the JIM program computes, but standard Eclat can
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not compute as it lacks knowledge of the quantity r7(I). In addition, we explored
whether the common rule of thumb of frequent item set mining, namely that it
is best to process the items in the order of increasing frequency (cf. page 107),
also holds for cover similarity based item set mining. Therefore we tried both
ascending and descending frequency order for the items.

The results are depicted in the diagrams in Figure 1, which show the dec-
imal logarithm of the execution time in seconds over minimum support (as an
absolute number, that is, as a number of transactions). We observe first that for
Eclat (dashed lines) processing the items in increasing order of frequency (light
gray) almost always works better, since the execution times are shorter than for
the reverse order (dark gray)—as expected. For JIM (solid lines), however, the
picture is not so clear cut. On three data sets, namely census, BMS-Webview-1,
and T10I4D100K, it is better to process the items in descending order of their
frequency (the dark gray curve is lower than the light one). On chess it is better
to use ascending order (the light gray curve is lower than the dark one), while on
the fifth data set (mushroom) it depends on the minimum support which order
yields the shorter execution time (the two curves intersect).

We interpret these findings as follows: for the support computation (which
is all that Eclat does) it is clearly better to process the items in ascending order
of their frequency, because this reduces the average length of the transaction
identifier lists. By intersecting with short lists early, the lists processed in the
recursion tend to be shorter and thus are processed faster. The same obviously
also holds for the support computation part of JIM. However, for the extent
computation it is plausible that the opposite order is preferable. Since it works
on extra sets, it is advantageous to add frequent items as early as possible to the
carrier, because this increases the size of the already covered carrier and thus
reduces the average length of the extra lists that are processed in the recursion.
Therefore, since there are different preferences, it depends on the data set which
operation governs the complexity and thus which item order is better.

From Figure 1 we conjecture that dense data sets (high fraction of ones in
a bit matrix representation), like chess and mushroom, favor ascending order,
while sparse data sets, like census, BMS-Webview-1 and T10I4D100K, favor
descending order. This is plausible, because in dense data sets the intersection
lists tend to be long, so it is important to reduce them. In sparse data sets,
however, the extra lists tend to be long, so here it is more important to focus
on them. The mushroom data set behaves more like a dense data set for lower
minimum support and more like a sparse data set for higher minimum support.

Naturally, the execution times of JIM are always greater than those of the
corresponding Eclat runs (with the same order of the items), but the execution
times are still bearable. This shows that even if one does not use a similarity
measure to prune the search, this additional information can be computed fairly
efficiently. However, it should be kept in mind that the idea of the approach is to
set a threshold for the similarity measure, which can effectively prune the search,
so that the actual execution times found in applications are much lower. In our
own practice we basically always achieved execution times that were lower than
for the Eclat algorithm (but, of course, with a different output).
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item set st | Jr

Reptiles, Insects 12| 1.0000
phylum, chordata, animalia 3410.7391
planta, magnoliopsida, magnoliophyta 14 {0.6667
wind, damag, storm, hurrican, landfal 2310.1608
tournament, doubl, tenni, slam, Grand Slam 10{0.1370
dinosaur, cretac, superord, sauropsida, dinosauria 10]0.1149
decai, alpha, fusion, target, excit, dubna 12]0.1121
conserv, binomi, phylum, concern, animalia, chordata | 14 | 0.1053

Table 3. Jaccard item sets found in the 2008/2009 Wikipedia Selection for schools.

In another experiment we used an extract from the 2008/2009 Wikipedia
Selection for schools®, which consisted of 4861 web pages. Each of these web
pages was taken as a transaction and processed with standard text processing
methods (like name detection, stemming, stop word removal etc.) to extract
a total of 59330 terms/keywords. The terms occurring on a web page are the
items occurring in the corresponding transaction. The resulting data file was
then mined for Jaccard item sets with thresholds of J,;, = 0.1 and s, = 10.
Some examples of term associations found in this way are listed in Table 3.

Clearly, there are several term sets with surprisingly high Jaccard indices and
thus strongly associated terms. For example, “Reptiles” and “Insects” always
appear together (on a total of 12 web pages) and never alone (as their Jaccard
index is 1, so their covers are identical). A closer inspection revealed, however,
that this is an artifact of the name detection, which extracts these terms from
the Wikipedia category title “Insects, Reptiles and Fish” (but somehow treats
“Fish” not as a name, but as a normal word). All other item sets contain normal
terms, though (only “Grand Slam” is another name), and are not artifacts of the
text processing step. The second item set captures several biology pages, which
describe different vertebrates, all of which belong to the phylum “chordata” and
the kingdom “animalia”. The third set indicates that this selection contains a
surprisingly high number of pages referring to magnolias. The remaining item
sets show that term sets with five or even six terms can exhibit a quite high Jac-
card index, even though they have a fairly low support (only 10-20 transactions,
which corresponds to 0.2-0.4% of the 4861 transactions/web pages).

An impression of the filtering power can be obtained by comparing the size
of the output to standard frequent item set mining: for sy;; = 10 there are
83130 frequent item sets and 19394 closed item sets with at least two items.
A threshold of Jyi, = 0.1 for the generalized Jaccard index reduces the output
to 5116 (frequent) item sets. From manual inspection, we gathered the impres-
sion that the Jaccard item sets contained more meaningful sets and that the
Jaccard index was a valuable additional piece of information. It has to be con-
ceded, though, that whether item sets are more “meaningful” or “interesting”

5 See http://schools-wikipedia.org/
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item set st| Jr

35201, 35205, 35193, 35189, 35197, 35209 3710.1034
18767, 18751, 18755, 18763, 18743, 18747, 18759(33(0.1467
18543, 18567, 18751, 18539, 18763, 18743, ...

... 18747, 18571, 18759 27(0.1089
18543, 18567, 18751, 18539, 18763, 18743, ...
... 18747, 18571, 18759, 18767 27(0.0951

Table 4. Some Jaccard item sets that were found in BMS-Webview-1.

is difficult to assess in a convincing fashion. Such an assessment would require
an objective measure, which is not available (and if it were available, it could
be used directly for the mining). What can be said, though, is that the support
and the generalized Jaccard index assess item sets in very different ways, since
for the 5116 item sets mentioned above, the correlation coefficient of the support
and the generalized Jaccard index is merely 0.18. That is, neither does a high
support imply a high generalized Jaccard index nor vice versa.

As an additional example, Table 4 lists Jaccard item sets that were found
in BMS-Webview-1. Despite their low support (25-40 transactions, which cor-
responds to 0.04%-0.07% of the 59602 transactions), they could quickly and
effectively be identified with Jaccard item set mining. This result is particularly
impressive, because standard frequent item set mining without a restriction to
e.g. closed item sets is not possible in reasonable time on BMS-Webview-1 for
a minimum support less than about 32 transactions. Restricting the output to
closed item sets makes mining feasible and yields 110427 item sets for sy, = 32.
Jaccard item set mining with thresholds of sy, = 32 and Jy,in = 0.1 (but with-
out a restriction to closed item sets) reduces the output to 982 item sets. Again
item sets with fairly many items and surprisingly high generalized Jaccard index
are found. As for the 2008/2009 Wikipedia Selection for schools the correlation
coefficient of the support and the generalized Jaccard index is very low, in this
case actually even slightly negative, namely —0.02.

An example of a Jaccard item set from the census data set is

{loss=none, gain=none, country=United-States, race=White,
workclass=Private, sex=Male, age=middle-aged,
marital_status=Married-civ-spouse, relationship=Husband},

that is, an item set with 9 items with a support of 5245 (10.7%) and a Jaccard
index of 0.1074. Again it is surprising to see how large an item set can possess
a high generalized Jaccard index. Although this set would be discovered with
standard frequent item set mining as well, the generalized Jaccard index provides
a relevant additional assessment and thus distinguishes it from other item sets.

As a final remark we would like to point out that the usefulness of our method
is indirectly supported by a successful application of the Jaccard item set mining
approach for (missing) concept detection (see [24] as well as the chapter by Kotter
and Berthold in this book, which describes the application).
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8 Conclusions

In this chapter we introduced the notion of a Jaccard item set as an item set
for which the generalized Jaccard index of the covers of its items exceeds a user-
specified threshold. In addition, we extended this basic idea to a total of twelve
similarity measures for sets or binary vectors, all of which can be generalized
in the same way and can be shown to be anti-monotone. By exploiting an idea
that is similar to the difference set approach for the well-known Eclat algorithm,
we derived an efficient search scheme that is based on forming intersections
and differences of sets of transaction indices in order to compute the quantities
that are needed to compute the similarity measures. Since it contains standard
frequent item set mining as a special case, mining item sets based on cover
similarity yields a flexible and versatile framework. Furthermore, the similarity
measures provide highly useful additional assessments of found item sets and
thus help us to select the interesting ones. By running experiments on standard
benchmark data sets we showed that mining item sets based on cover similarity
can be done fairly efficiently, and by evaluating the results obtained with a
threshold for the cover similarity measure we demonstrated that the output is
considerably reduced, while expressive and meaningful item sets are preserved.
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