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Abstract. It is well known that tree-structured perfect maps can be
uniquely identified by computing a maximum weight spanning tree with
mutual information providing the edge weights. In this paper I generalize
the edge evaluation measure by stating the conditions such a measure
has to satisfy in order to be able to identify tree-structured perfect maps.
In addition, I show that not only mutual information, but also the well-
known x? measure satisfies these conditions.

1 Introduction

At the core of the theory of graphical models [10,6,9,2, 1], that is, of Bayes
networks and Markov networks, is the notion of a so-called conditional inde-
pendence graph or independence map for a given multidimensional probability
distribution. It allows us to determine the conditional independence statements
obtaining in the probability distribution by applying a simple graph theoretic
criterion, which is based on node separation.

The exact form of this criterion depends on whether the graph is directed
(Bayes network) or undirected (Markov network). If it is undirected, so-called
u-separation is defined as follows: Let X, Y, and Z be three disjoint sets of
nodes of a graph G. Then Z u-separates X and Y iff all paths from a node in X
to a node in Y contain a node in Z. If the graph is directed, the slightly more
complicated notion of d-separation is used [10]: Here Z d-separates X and Y iff
there is no path, i.e., no sequence of consecutive edges (of any directionality)
along which the following two conditions hold:

1. every node, at which edges of the path converge (i.e., both edges are directed
towards the node), either is in Z or has a descendant in Z,
2. every other node is not in Z.

As already stated above, a graph G is called a conditional independence graph or
an independence map [10] iff all conditional independences that can be read from
it using these criteria actually hold in the associated probability distribution p,
or formally

X11Z|Y)e = X1U,Y|Z
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where (X | Z | Y)¢ denotes that Z separates X and Y in the graph G and
X 1,Y | Z means that

Vo € dom(X) : Vy € dom(Y) : Vz € dom(Z) :
PX=z,Y=y|Z=2)=PX=x|Z=2)-PY=y|Z=n2).

However, there may be additional conditional independences holding in the dis-
tribution that are not captured by the graph.

The dual concept is a so-called conditional dependence graph or dependence
map [10], which captures all conditional dependences holding in the distribution,
or—stated the other way round—all conditional independences obtaining in the
distribution are represented in the graph. Formally, we have

X1U,Y|Z = (X|Z|Y)e

The graph may represent additional conditional independences that do not hold
in the distribution, but wherever it indicates a conditional dependence, this
dependence holds in the distribution.

If a graph is both an independence map as well as a dependence map, that
is, if it captures exactly the conditional independence statements holding in the
distribution, no more and no less, it is called a perfect map [10].

In this paper I consider tree-structured perfect maps and examine how they
can be determined by constructing a maximum weight spanning tree for given
edge weights. While it is well-known that tree-structured perfect maps can be
uniquely determined if mutual information is used to compute the edge weights,
I state here more generally what conditions the edge evaluation measure has to
satisfy for this task. Furthermore, I show that not only mutual information, but
also the well-known y? measure satisfies these conditions.

2 Identifying Tree-Structured Perfect Maps

The best-known greedy approach to induce a graphical model-—and at the same
time the oldest—is optimum weight spanning tree construction and was first
suggested in [3]. All possible (undirected) edges over the set U = {Ay,..., A,}
of attributes used to describe the multidimensional domain under consideration
are evaluated with an evaluation measure (in [3] mutual information was used).
Then an optimum weight spanning tree is constructed with either the (well-
known) Kruskal algorithm [7] or the (somewhat less well-known) Prim algorithm
[12] (or any other greedy algorithm for this task).

I am interested in this approach here, because if the probability distribution,
for which a graphical model is desired, has a perfect map that is a tree, opti-
mum weight spanning tree construction is guaranteed to find this perfect map,
provided the evaluation measure used has a certain property.

However, before I state the corresponding theorem, I should introduce the
notion of symmetry (although it is, of course, canonical): An evaluation measure
m: U x U — R is called symmetric iff VA, B : m(A, B) = m(B, A).
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Theorem 1. Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B),

with equality obtaining only if the attributes A and C are conditionally indepen-
dent given B. (AB is a pseudo-attribute with values in dom(A) x dom(B).) Let
G be a singly connected (or tree-structured) undirected perfect map of a proba-
bility distribution p over a set U of attributes. Then constructing a mazimum
weight spanning tree for the attributes in U with m (computed from p) providing
the edge weights uniquely identifies G.

In order to prove this theorem, it is convenient to prove first the following lemma,
by which an important property of the measure m is established:

Lemma 1. Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B. Furthermore, let p be the probability distribution from which
m is computed. If A, B, and C are three attributes satisfying A1, C | B, but
neither A1, B | C nor C 1, B | A, then

m(A4,C) < min{m(A4, B),m(B,C)}.
Proof. From the facts that m is symmetric and A 1L, C' | B we know that
m(C, AB) = m(C, B) and m(A,CB) =m(A, B).
Since itis AY, B | C and C )L, B | A, we have
m(C,AB) > m(C,A)  and  m(A,CB) > m(A,C).
Consequently, m(C, A) < m(C, B) and m(C, A) < m(4, B). O

Proof. (of Theorem 1)

Let C' and A be two arbitrary attributes in U that are not adjacent in G. Since
the graph G is singly connected there is a unique path connecting C and A in G.
I show that any edge connecting two consecutive nodes on this path has a higher
weight than the edge (C, A).

Let B be the successor of C' on the path connecting C' and A in G. Then it
is C 1., A | B, but neither C 1L, B| Anor A1, B | C, because G is a perfect
map. Consequently, it is m(C, A) < m(C, B) and m(C, A) < m(B, A). If B is the
predecessor of A on the path, we already have that all edges on the path have
a higher weight than the edge (C, A). Otherwise we have that the edge (C, B)
has a higher weight than the edge (C, A). For the remaining path, i.e., the path
that connects B and A, the above argument is applied recursively.

Therefore any edge between two consecutive nodes on the path connecting
any two attributes C' and A has a higher weight than the edge (C, A). From this
it is immediately clear, for example by considering how the Kruskal algorithm
[7] works, that constructing the optimum weight spanning tree with m providing
the edge weights uniquely identifies G. ]
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In the next section I show in Theorems 3 and 4 that at least mutual information
and the y? measure have the property presupposed in this theorem.

It is clear that the above theorem holds also for directed trees, since any
undirected conditional independence graph that is a tree can be turned into an
equivalent directed tree by choosing an arbitrary root node and (recursively) di-
recting the edges away from this node. However, with an additional requirement,
it can also be extended to polytrees.

Theorem 2. Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes A and C are conditionally indepen-
dent given B and
VA, C: m(C,A) > 0

with equality obtaining only if the attributes A and C are (marginally) indepen-
dent. Let G be a singly connected directed perfect map of a probability distribu-
tion p over a set U of attributes. Then constructing a maximum weight spanning
tree for the attributes in U with m (computed from p) providing the edge weights
uniquely identifies the so-called skeleton of G, i.e., the undirected graph that
results if all edge directions are discarded.

Proof. Let C' and A be two arbitrary attributes in U that are not adjacent in G.
Since the graph G is singly connected, there is a unique path connecting C
and A. Suppose first that this path does not contain a node with converging
edges (from its predecessor and its successor on the path). In this case the proof
of Theorem 1 can be transferred, because, according to d-separation, we have
C1,A | B, but neither C 1L, B | Anor All,B | C (because G is a perfect
map). Therefore the value of m must be less for the edge (C, A) than for any
pair of consecutive nodes on the path connecting C' and A.

Suppose next that the path connecting C' and A in G contains at least one
node with converging edges (from its predecessor and its successor on the path).
According to the d-separation criterion (see Section 1 for the definition), C' and
A must be marginally independent and hence it is m(C, A) = 0. However, no
pair (B;, B;j) of consecutive nodes on the path is marginally independent (since
G is a perfect map) and thus m(B;, B;) > 0.

Therefore any edge between two nodes on a path connecting two nonadjacent
nodes in the perfect map G has a higher weight than the edge connecting them
directly. From this it is immediately clear, for example by considering how the
Kruskal algorithm [7] works, that constructing the maximum weight spanning
tree with m providing the edge weights uniquely identifies the skeleton of G. O

Note that the above theorem is an extension of a theorem shown in [14, 10], where
it was proven with mutual information providing the edge weights. Note also that
the edges of the skeleton found with the above approach may be directed with an
algorithm presented in [14, 10], although the result may not be unique, because
often the direction of some edges can be chosen arbitrarily.
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3 Edge Evaluation Measures

The theorems in the preceding section are formulated in a general way with
an evaluation measure m that has to satisfy certain properties. In this section
I show that at least mutual information [8,3], which is also known under the
names of cross entropy or information gain [13], and the y? measure satisfy
these conditions, so both can be used to identify tree-structured perfect maps.

3.1 Notation

In the following I will use the following notation: Let A, B, and C be three
attributes with domains dom(A) = {ay,...,a,, }, dom(B) = {b1,...,b,,}, and
dom(C) = {c1,...,¢ne}, respectively. Furthermore, let P be a strictly positive
probability measure defined on the joint domain of A, B, and C. In order to
make the formulae easier to read, I introduce the following abbreviations:

Di.. :P(C:Cz)v Dij. *P( *Cz, *aj)a

p.j. = P(A = aq;), pik = P(C =c¢;, B =1by),

Pk = P(B = bk), p,jk = ( = aj, = bk) and
pijk = P(C =c¢;, A=a;, B =by),

i.e., the index i always refers to the attribute C, the index j always refers to the
attribute A, and the index k always refers to the attribute B. If a formula refers
only to two attributes C' and A, the third index k is dropped.

3.2 Mutual Information

The mutual information of two attributes C' and A w.r.t. P can be defined in dif-
ferent ways. In the first place, it can be defined as a pointwise comparison of the
actual joint distribution, as it is described by p;;, to a hypothetical independent
distribution, as it can be computed by p; p_;. That is,

nc na

Lt (CLA) = D> pij log2

=1 j=1

Alternatively, one may draw on the notion of the Shannon entropy H of a prob-
ability distribution [15], which leads to

Imut(Cv A) = (C) + H( ) - (CA)

na nc mnA
= —sz log, pi — ZP; logapj + Y Y pijlogs pij,
=1 j=1

which can be interpreted intuitively as measuring the reduction of the expected
number of yes/no questions one has to ask in order to determine the obtain-
ing value combination, or the reduction of the expected binary code length for
transmitting the value tuple [1]. Obviously, the two definitions are equivalent.
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The following theorem shows that mutual information satisfies the prereq-
uisites of Theorem 1. Although the property of mutual information stated in it
is well-known and the proof is merely a technical task, I provide a full proof
(derived from a proof in [11] that mutual information is always nonnegative),
because it is rarely spelled out clearly and thus is difficult to find.

Theorem 3. Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, i.e., let Ya € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0b,C =c) > 0. Then

Imut(ca AB) 2 Imut(ca B)a

with equality obtaining only if the attributes C' and A are conditionally indepen-
dent given B.

Proof. Since it makes the proof much simpler, I show that
Imut<C»B) - Imut(07 AB) S 0
from which the original statement follows trivially.

It (Cy B) — It (C, AB)
= H(C) + H(B) — H(CB) — (H(C) + H(AB) — H(CAB))
— —H(CB) — H(AB) + H(CAB) + H(B)

nc nNp naA nNp
=3 pirlogopik+ > > pjklogsp
i=1 k=1 j=1k=1

nc NA np
=D Piklogy Pk —Zp #10gy .k
1=1 j=1 k=1
nc NA Np
Di.kP.jk
=222 pinlog
i=1 j=1 k=1 PijkD..k

nc ma Mp

_ PikD.jk
a ZZprklnpl jkP..k

i=1j=1k=1
T O (szkp.jk _ 1)
S In2 ;;kzlp”k PijkP. .k
1 nc na Nnp Di kD ik nc NA NB
2.
:E ZZZ — ZZZPW@
11] 1 k=1 i=1 j=1 k=1

=1

ngc MNnA

1
~n2 Z .Zzpzkpjk -

=1 j=1
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11112 (Zpuc) (ipﬁ) -1
1 B
m((z )
k
1
1n2(1_1) =%

where the inequality follows from the fact that
Inz <zxz-—1,

with equality obtaining only for z = 1. (This can most easily be seen from the
graph of Inz.) As a consequence, Igain(C, AB) = Igain(C, B) only if

Di.kD.jk
DijkP. .k

Viaj>k: =1 And V’L7]7kp2]|k:pz\kpj|k7

where p;jip = P(C = ¢;, A = a;j | B = by) and p; |, and p j);, likewise. That is,
Iain (C, AB) = Igain(C, B) only holds if the attributes C' and A are conditionally
independent given attribute B. m]

Note that with the above theorem it is easily established that mutual informa-
tion is always nonnegative and zero only for independent attributes: Assume
that attribute B has only one value. In this case it is Igain(C, B) = 0, since
the joint distribution on the values of the two attributes clearly coincides with
the distribution on the values of C. In addition, the combination of the at-
tributes A and B is obviously indistinguishable from A alone and thus we get
Iain (C, AB) = Igain(C, A). Consequently, we have as a corollary:

Corollary 1. Let C and A be two attributes with finite domains and let their
joint probability distribution be strictly positive, i.e. Ve € dom(C): Va € dom(A):
P(C=c,A=a)>0. Then

Igain(c7 A) Z 07
with equality obtaining only if C' and A are (marginally) independent.

Therefore mutual information also satisfies the prerequisites of Theorem 2.

3.3 x? Measure

As mentioned above, one way to define mutual information relies on a point-
wise comparison of the actual joint distribution, as it is described by p;j, to
a hypothetical independent distribution, as it can be computed by p;p;. The
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X2 measure, which is well known in statistics, does the same, but instead of
the pointwise quotient (as mutual information does) it computes the pointwise
squared difference of the two distributions. It is usually defined as

noc na N: N.

;; E where Eij = ZJV J

nc na N2 <N1 L_ Nij)2
B3 Rt s

=1 j=1

nc mnA

N Y (pi. p.j —pij)* )

i1 =1 Pi. Dy

where the N’s are counters for the occurrence of certain value combinations in a
sample. From these counters the probabilities are estimated by simple maximum
likelihood estimation (i.e. as relative frequencies).

With the above transformation it is obvious that the numerator of the frac-
tion is the squared difference of the actual joint distribution and the hypothetical
independent distribution. The denominator serves to weight these pointwise dif-
ferences. In order to render this measure independent of the number of sample
cases, the factor N (the size of the sample) is often discarded.

For the x? measure we have a direct analog of Theorem 3. That is, the x?
measure also satisfies the prerequisites of Theorem 1 and may thus also be used
to identify tree-structured perfect maps. The proof is also mainly a technical
task, although it is slightly more complicated than the proof of Theorem 3.

Theorem 4. Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, i.e. let Ya € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0b,C =c) > 0. Then

X*(C,AB) > x*(C,B),

with equality obtaining only if the attributes C and A are conditionally indepen-
dent given B.

Proof. Since it makes the proof much simpler, I show

1

v (F(C.AB) = x*(C.B)) > 0,

from which the original statement follows trivially.
v W (X*(C,AB) = x*(C, B))

nc MaA NpB nc mMB 2
k)

_ZZZ pz]k Di. pjk Z M

i=1 j=1 k=1 Pi.D.jk
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2 2 2
- iB: i": Piik = 2PijkPi.Pgk TP Pk PPy — 2piwpipok + PP P2,
i=1 k=1 \ j=1 Di..P.jk Di.P..k
nc nB na ka
- Z Z —"— — ik + PiP.k | — +2pik —PiP.k
i=1 k=1 \j=1 Pi.D.jk Pi.P.k
nc np nA pg'k p
- Z — L 2 PPk — S+ 2pi —pi Dk
i1 k=1 \ j=1 Pi-Pjk Di.D.k
ij
= ) Dk — Pk Pijk
i=1 k=1 i Pk =1 Pk =
nc mp nA pz_ X na na
1
:ZZ Zpﬁ Zi - Zpijlk Zpijék
i=1 k= 1}% Pk |\ 21 jo=1 Prizk ji=1 ja=1
nc np
py lcp k
=22 DD BRI g P
=1 k= 1plpk j1=1js=1 j1=1jo=1
_ i i ZA: i p?jlkpzzjgk — Pij1kDijakD.j1 kD jok
=1k PPk \ ST T D.jikD.jak
nc np 9
_ ZZ Z Z (P.j1kPijak — DijikP.jak)
P 1223 Dok ST D.j1kD.j2k

nc npB na

B . pjlk?mk—?ijlk?.jzk)z > o,

2
i=1 k=1 j1=1jo=1 Di.D..kP.j1kD.jok

where the semi-last step follows by duplicating the term in parentheses and then
interchanging the indices j; and j in the second instance (which is possible,
because they have the same range). From the result it is immediately clear that
x2(C,AB) > x?(C, B): Since each term of the sum is a square divided by a
product of (positive) probabilities, each term and thus the sum must be non-
negative. It also follows that the sum can be zero only if all of its terms are zero,
which requires their numerators to be zero:

Pijak _ Pijik
D.jok  DPjik
~ Viajhj?v k: Pijjok = Piljiks

Vi, 91, J2, K 1 DjikDijak — PijikD.jak = 0 & Vi, j1, 42,k :

where p;); = P(C = ¢; | A= aj,,B = b) with a € {1,2}. As a consequence
we have that x?(C, AB) = x%(C, B) only holds if the attributes C and A are
conditionally independent given attribute B. ]
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Note that no corollary is needed in this case, because from the definition of the
x? measure it is already obvious that x?(C, A) > 0. Therefore the x? measure
also satisfies the prerequisites of Theorem 2 and thus may also be used to identify
the skeleton of a polytree.

4 Conclusions

In this paper I provided a general statement of the conditions an edge evaluation
measure has to satisfy in order to be able to identify a tree-structured perfect
map or the skeleton of a polytree that is a perfect map. This generalizes the
well-known fact that applying maximum weight spanning tree construction with
mutual information providing the edge weights solves these tasks. In addition I
showed that not only mutual information, but also the well-known x? measure
satisfies these conditions, so that it may be used for the same task. However,
for mutual information also a stronger statement holds, namely that if there
is no tree-structured perfect map, constructing a maximum weight spanning
tree yields the best tree-structured approximation w.r.t. the Kullback-Leibler
information divergence [8] between the original distribution and the distribution
represented by the tree [3,10]. This result even generalizes to the construction
of tree-augmented naive Bayes classifiers, where the star-like structure of such
a classifier is augmented by edges that form a tree [5,4]. To find out whether
a similar result can be obtained for the x? measure, for example, w.r.t. the
difference between the original distribution and the approximation as it can be
measured by an adapted x? measure itself, remains as future work.
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