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Abstract. The explosion of data stored in commercial or administra-
tional databases calls for intelligent techniques to discover the patterns
hidden in them and thus to exploit all available information. There-
fore a new line of research has recently been established, which became
known under the names “Data Mining” and “Knowledge Discovery in
Databases”. In this paper we study a popular technique from its arsenal
of methods to do dependency analysis, namely learning inference net-
works (also called “graphical models”) from data. We review the already
well-known probabilistic networks and provide an introduction to the
recently developed and closely related possibilistic networks.

1 Introduction

Due to the advances in hardware and software technology, large databases (prod-
uct databases, customer databases, etc.) are nowadays maintained in almost ev-
ery company and scientific or administrational institution. But often the data is
only recorded; evaluation is restricted to simple retrieval and aggregation opera-
tions that can be carried out e.g. by SQL queries. It is clear that such operations
cannot discover broader structures or general patterns that are present in the
data. This, obviously, is a waste of information, since knowing such patterns can
give a company a decisive competitive edge. Therefore from recent research a
new area called “Data Mining” has emerged, which aims at finding “knowledge
nuggets” that are hidden in huge volumes of data. It is the operational core
of a process called “Knowledge Discovery in Databases”, which (in addition to
data mining) comprises data selection, data preprocessing, data transformation,
visualization, and result evaluation and documentation [9].

Data mining itself can be characterized best by a set of tasks like classi-
fication, clustering (segmentation), prediction, etc. In this paper we focus on
dependency analysis, i.e. the task to find dependencies between the attributes
that are used to describe a domain of interest. A popular method for this task is
the automatic induction of inference networks, also called graphical models [36,
20], from a set of sample cases.

Graphical models are best known in their probabilistic form, i.e. as Bayesian
networks [26] or Markov networks [22]. Efficient implementations of inference
systems based on them include HUGIN [1] and PATHFINDER [16]. They are



learned from data by searching for the most appropriate decomposition of the
multivariate probability distribution induced by a given dataset [6, 17].

Unfortunately probabilistic graphical models suffer from severe difficulties to
deal with imprecise, i.e. set-valued, information in the database to learn from.
However, the incorporation of imprecise information is more and more recog-
nized as being indispensable for industrial practice. Therefore graphical models
are studied also with respect to other uncertainty calculi, either based on a gen-
eralization of the modeling technique to so-called valuation-based networks [30,
31], implemented e.g. in PULCINELLA [28], or based on a specific derivation of
possibilistic networks, implemented e.g. in POSSINFER [13, 21]. Recently learn-
ing possibilistic networks from data has also been studied [12, 14, 2, 3].

2 Notation and Presuppositions

Notation. Let V = {A(1), . . . , A(m)} be a finite set of attributes A(k), which
are used to describe the section of the world under consideration. We assume
the domains dom(A(k)) = {a(k)

1 , . . . , a
(k)
nk } of these attributes to be finite sets

of categorical values (i.e. we confine to the important case of discrete graphical
models.) With these presuppositions the reasoning space in which all inferences
take place is the joint domain Ω = dom(A(1)) × · · · × dom(A(m)), which is
sometimes called the universe of discourse. Each possible state of the world
is described by a tuple ω = (a(1)

i1
, . . . , a

(m)
im

) containing the values which the
attributes in V assume for this state. For simplicity (and because states with
identical describing tuples cannot be distinguished) we identify each ω ∈ Ω with
a possible state of the world.

Several times we need to refer to subspaces of Ω and projections of tuples ω
to these subspaces. A subspace ΩW ⊆ Ω is the joint domain of a subset W ⊆ V
of attributes, i.e. ΩW = ×A∈W dom(A). A projection of a tuple ω ∈ Ω to this
subspace is a tuple projVW (ω) = ωW ∈ ΩW , which contains only the values of
the attributes in W .

Presuppositions. Graphical models are concerned with drawing inferences
from observations. For a situation in which we are about to draw inferences,
we assume that the considered section of the world is in a specific state, whose
description ω0 ∈ Ω we do not know or do not know completely. The inferences
to be drawn aim at identifying this state, i.e. at determining the values in ω0.

To be able to carry out such inferences, generic knowledge about dependen-
cies between the values of different attributes must be available. This knowledge
is represented as a distribution D on Ω, which assigns to each tuple ω ∈ Ω a
value dω, which expresses the probability or (degree of) possibility of the com-
bination of values present in ω. Depending on the values dω can have and the
interpretation of these values we distinguish between probability and possibility
distributions (details are given below). Generic knowledge may be obtained from
experts, textbooks, databases etc. Since we are concerned with “data mining”,
we focus on learning generic knowledge from data.



In addition to generic knowledge we need knowledge to start the inferences
from — also called evidential knowledge —, which consists in restrictions on the
possible values of some of the attributes. This knowledge could be obtained e.g.
from observations made about the current state ω0. From the evidential knowl-
edge about the values of some attributes we infer, using the generic knowledge,
restrictions about the values of other attributes, thus narrowing the set of states
that have to be considered possible or likely for ω0.

It is obvious that storing the generic knowledge directly, i.e. the distribution
D, would make reasoning very simple, since then we only have to select all
ω ∈ Ω compatible with the given evidential knowledge and to combine the
corresponding values dω appropriately. But, unfortunately, if there are more
than only very few attributes, the number of values dω to be stored in this case
would exceed any reasonable limit. Hence other ways of representing the generic
knowledge have to be found. One of them is to use a graphical model, which we
discuss in the next section.

3 Graphical Models

In graphical modeling a directed or undirected (hyper)graph is used to represent
the generic knowledge about the domain in which the inferences take place.
Each vertex corresponds to an attribute, each edge to a dependence between
attributes. The edges are the paths along which knowledge about the values of
one attribute can be transferred to other attributes, i.e. along which inferences
can be drawn. This is understandable, since no information can be transferred
from an attribute to another, which is independent of the first.

But even if attributes are dependent, they are sometimes unconnected in a
graphical model. The idea underlying this is that an inference need not be direct.
If the dependence between two attributes is captured completely by the consec-
utive dependences on a path connecting the two attributes via other attributes,
a direct connection is not necessary. All inferences from one of the attributes to
the other can then be carried out along this path.

Conditional independence. Such situations can be characterized by the no-
tion of conditional independence [7, 26]. If two attributes get independent, if
certain other attributes are fixed, their dependence is not genuine, but only me-
diated through other attributes. Therefore they need not be connected directly
in the graph. Thus the topology of the graph is used to represent an indepen-
dence model, i.e. a set of conditional independence statements, of the domain
under consideration [26].

Of course, not just any notion of conditional independence will do, since, as
stated above, the aim is to replace an inference along a direct connection between
attributes by an indirect inference. In order to allow such a replacement, the
used notion of conditional independence has to satisfy certain axioms, which are
known as the semi-graphoid axioms [7, 25]. If we denote the independence of a
set of attributes X from a set of attributes Y given a set of attributes Z as
X ⊥⊥ Y | Z, they can be written as



symmetry: (X ⊥⊥ Y | Z) =⇒ (Y ⊥⊥ X | Z)

decomposition: (W ∪X ⊥⊥ Y | Z) =⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)

weak union: (W ∪X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y | Z ∪W )

contraction: (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z ∪W ) =⇒ (W ∪X ⊥⊥ Y | Z)

The symmetry axiom states that in any state of knowledge Z, if Y tells us
nothing new about X, then X tells us nothing new about Y . The decomposition
axiom asserts that if two combined items of information are judged irrelevant to
X, then each separate item is irrelevant as well. The weak union axiom states
that learning irrelevant information W cannot help the irrelevant information
Y become relevant to X. The contraction axiom states that if we judge W
irrelevant to X after learning some irrelevant information Y , then W must have
been irrelevant before we learned Y . Together the weak union and contraction
properties mean that irrelevant information should not alter the relevance of
other propositions in the system; what was relevant remains relevant, and what
was irrelevant remains irrelevant [26]. It is plausible that any reasonable notion
of conditional independence should satisfy these axioms.

Independence graphs. Given an appropriate notion of conditional indepen-
dence an independence graph can be defined. In such a graph the conditional
independence of two attribute sets given a third is expressed by separation of
the corresponding node sets by the nodes corresponding to the third set.

What is to be understood by “separation” depends on whether the graph is
directed or undirected. If it is undirected, separation is defined as follows: If X,
Y , and Z are three disjoint subsets of nodes, then Z separates X from Y , iff
after removing the nodes in Z and their associated edges from the graph there
is no path, i.e. no sequence of consecutive edges, from a node in X to a node in
Y . Or, in other words, Z separates X from Y , iff all paths from a node in X to
a node in Y contain a node in Z.

For directed graphs, which have to be acyclic, the so-called d-separation cri-
terion is used [26]: If X, Y , and Z are three disjoint subsets of nodes, then Z is
said to d-separate X from Y , iff there is no path, i.e. no sequence of consecutive
edges (of any directionality), from a node in X to a node in Y along which the
following two conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,
2. every other node is not in Z.

With these notions we can define the Markov properties of graphs [36]:

pairwise: Attributes, whose nodes are non-adjacent in the graph, are indepen-
dent conditional on all remaining attributes.

local: Conditional on the attributes corresponding to the adjacent nodes, an
attribute is independent of all remaining attributes.

global: Any two subsets of attributes, whose corresponding node sets are sep-
arated by a third node set, are independent conditionally only on the
attributes corresponding to the nodes in the third set.



Note that the local Markov property is contained in the global, and the pairwise
Markov property in the local.

Since the pairwise Markov property refers to the independence of only two
attributes, it would be most natural (at least for undirected graphs) to use it
to define an independence graph: If two attributes are dependent given all other
attributes, there is an edge between their corresponding nodes, otherwise there
is no edge [36]. But, unfortunately, the three types of Markov properties are not
equivalent in general, and it is obvious that we need the global Markov property
for inferences from multiple observations. However, the above definition can be
used, if — in addition to the semi-graphoid axioms — the following axiom holds:
intersection: (W ⊥⊥ Y | Z ∪X) ∧ (X ⊥⊥ Y | Z ∪W ) =⇒ (W ∪X ⊥⊥ Y | Z)
The semi-graphoid axioms together with this one are called the graphoid axioms
[7, 25]. If they hold for a given notion of conditional independence, an inde-
pendence graph can be defined via the pairwise Markov condition, since the
intersection axiom allows us to infer the global Markov property from the pair-
wise. If the intersection axiom does not hold, the global Markov property has to
be used to define an independence graph.

It is obvious that an independence graph for a given domain is easy to find.
For example, the complete undirected graph, i.e. the graph in which every node
is connected directly to every other, always is an independence graph. But a
complete graph would not reduce the amount of data to be stored (see below).
Therefore, in graphical modeling, we have to add the condition that the inde-
pendence graph has to be sparse or even minimal, i.e. should contain as few
edges as possible.

Note that directed acyclic graphs and undirected graphs represent conditional
independence relations in fundamentally different ways. In particular, there are
undirected graphs that represent a conditional independence that cannot be
represented by a single directed acyclic graph, and vice versa.

The quantitative part of a graphical model. The independence graph is also
called the qualitative part of a graphical model, since it specifies which attributes
are dependent and which are independent, but not the details of the dependences.
How the latter information, which is called the quantitative part of a graphical
model, is described, depends again on the type of the graph. In a directed acyclic
graph, it is represented as a set of conditional distributions: one for each attribute
conditional on all of its parents in the graph. If an attribute does not have any
parents, its associated distribution simplifies to an unconditional distribution.

For an undirected graph, the quantitative part is represented as a set of
marginal distributions: one for each maximal clique of the independence graph,
where a maximal clique is a fully connected subgraph that is not contained in
another fully connected subgraph. Because of this representation an undirected
hypergraph is often used instead of a normal undirected graph. The nodes of each
maximal clique of the normal graph are then connected by one hyperedge in the
hypergraph. Unfortunately, this approach suffers from the fact that the resulting
hypergraph can have cycles. This causes problems, because during an inference
process the same information can travel along more than one path and thus may



be used several times to update the knowledge about an attribute. If the inference
mechanism is not idempotent, i.e. if a second incorporation of already included
information changes the result, this can invalidate the conclusions drawn.

In order to avoid these problems, the discussion is usually restricted to tri-
angulated undirected graphs, i.e. to graphs in which each cycle of length four or
larger contains a chord, where a chord is an edge between two non-consecutive
nodes in the cycle. It can be shown that the maximal clique hypergraph of a
triangulated undirected graph is always a hypertree, i.e. does not contain any cy-
cles. In addition, this type of graphs is important, because it can be shown that
a triangulated undirected graph is isomorphic to a directed acyclic graph. Thus,
with the restriction to triangulated graphs, the difference between directed and
undirected graphs vanishes.

It is worth noting that especially the representation using undirected graphs
suggests to view graphical modeling as a decomposition method: The (global)
distribution D is decomposed into a set of (local) distributions {DX1 , . . . ,DXn

}
on subspaces, which are the cross-products of the domains of the attributes in
a maximal clique. Because of this decomposition, global reasoning, i.e. drawing
inferences using D, can be replaced by local reasoning, which involves only the
distributions DXk

.

Reasoning in graphical models. The reasoning process, which we describe
here exemplary for an undirected graph, basically is this: Information obtained
e.g. by observations about the values of an attribute is extended to the distribu-
tions on all hyperedges containing the attribute and then projected to the inter-
sections of these hyperedges with other hyperedges. From there it is extended
and projected again etc. until the information is distributed to all attributes.

A general local propagation algorithm for hypertrees has been developed for
so-called valuation-based systems [30]. The axiomatic framework of a valuation-
based system [32] can represent various uncertainty calculi such as probability
theory, Dempster-Shafer theory, and possibility theory.

Learning graphical models from data. When we consider learning graphi-
cal models from data, problems arise from the fact that various kinds of prior
information can be available, expert knowledge as well as a database of sample
cases, both of which should be considered in a unified framework. However, since
our focus is on “data mining”, we restrict ourselves to a purely data-oriented
approach, i.e. we assume only a database of observations to be given.

Since constructive methods are rarely available, data oriented learning meth-
ods nearly always consist of two parts: a search method and an evaluation mea-
sure. The evaluation measure estimates the quality of a given (hyper)graph and
the search method governs which (hyper)graphs are inspected. Often the search
is guided by the value of the evaluation measure, since it is usually the goal to
maximize (or to minimize) its value. Commonly used search methods include op-
timum weight spanning tree construction [5] (for undirected graphs) and greedy
parent selection [6] (for directed graphs). Evaluation measures depend on the
underlying uncertainty calculus and are considered below.



4 Probabilistic Graphical Models

In purely probabilistic approaches quantitative knowledge about the dependen-
cies between the attributes in V is described by a probability distribution P on
Ω. P (ω) = p ∈ [0, 1] means that the combination of attribute values in ω has
the probability p. A conditional probability distribution is defined in the usual
way, i.e. as

P (ωX | ωY ) =
P (ωX∪Y )
P (ωY )

.

Conditional independence is defined in accordance with the usual notion of
stochastic independence as follows: Let X, Y , and Z be three disjoint subsets
of attributes in V . X is called conditionally independent of Y given Z w.r.t. P ,
abbreviated X ⊥⊥P Y | Z, iff

∀ω ∈ Ω : P (ωX∪Y | ωZ) = P (ωX | ωZ) · P (ωY | ωZ)

whenever P (ωZ) > 0.

Bayesian networks. The most popular kind of probabilistic graphical models
in artificial intelligence is the Bayesian network, also called belief network [26].
A Bayesian network consists of a directed acyclic graph and a set of conditional
probability distributions P (ωA | ωparents(A)), A ∈ V , where parents(A) is the set
of attributes corresponding to the parents of the attribute A in the graph.

A Bayesian network describes a decomposition of a joint probability distribu-
tion P on Ω into a set of conditional probability distributions: A strictly positive
probability distribution P on Ω factorizes w.r.t. a directed acyclic graph, if

∀ω ∈ Ω : P (ω) =
∏

A∈V

P (ωA | ωparents(A)).

In this case P satisfies the global Markov property (cf. section 3). It follows, that
a Bayesian network can be seen as a graphical representation of a Markov chain.

Since a Bayesian network is a directed graph, it is well-suited to represent
direct causal dependencies between variables. In many cases this is quite natu-
ral for knowledge representation, e.g. in expert systems designed for diagnostic
reasoning (abductive inference) in medical applications.

Markov networks. An alternative type of probabilistic graphical models uses
undirected graphs and is called a Markov network [22]. Similar to a Bayesian
network it describes a decomposition of the joint probability distribution P on Ω,
but it uses a potential representation: A strictly positive probability distribution
P on Ω factorizes w.r.t. an undirected graph, if

∀X ∈ cliques(G) : ∃φX : ∀ω ∈ Ω : P (ω) =
∏

X∈cliques(G)

φX(ωX),

where cliques(G) is the set of all maximal cliques, each of which is represented
by the set of attributes whose corresponding nodes are contained in it. The φX

are strictly positive functions defined on ΩX , X ⊆ V .



Learning probabilistic networks from data. When learning probabilistic
networks from data, we have to distinguish between quantitative and qualitative
network induction.

Quantitative network induction for a given network structure consists in esti-
mating the joint probability distribution P , where P is selected from a family of
parameterized probability distributions. A lot of approaches have been developed
in this field, using methods such as maximum likelihood, maximum penalized
likelihood, or fully Bayesian approaches, which involve different computational
techniques of probabilistic inference such as the expectation maximization (EM)
algorithm, Gibbs sampling, Laplace approximation, and Monte Carlo methods.
For an overview, see e.g. [34].

Qualitative network induction consists in learning a network structure from
a database of sample cases. In principle one could use the factorization property
of a probabilistic network to evaluate its quality by comparing for each ω ∈ Ω
the probability computed from the network with the relative frequency found in
the database to learn from. But this approach is usually much too costly. Other
methods include the extensive testing of conditional independences (CI tests)
[35] and a Bayesian approach [6]. Unfortunately, CI tests tend to be unreliable
unless the volume of data is enormous, and with an increasing number of ver-
tices they soon become computationally intractable. Bayesian learning requires
debatable prior assumptions (for example, default uniform priors on distribu-
tions, uniform priors on the possible graphs) and also tends to be inefficient
unless greedy search methods are used. Nevertheless, several network induction
algorithms have successfully been applied. The oldest example is an algorithm to
decompose a multi-variate probability distribution into a tree of two-dimensional
distributions [5]. It uses mutual information as the evaluation measure and opti-
mum weight spanning tree construction as the search method. Another example
is the K2 algorithm [6], which uses a greedy parent search and a Bayesian evalu-
ation measure. Its drawback, which consists in the fact that it needs a topological
order of the attributes, can be overcome by a hybrid algorithm [33], which com-
bines CI tests (to find a topological order) and K2 (to construct the Bayesian
network with respect to this topological order). Several evaluation measures,
which can be used with optimum weight spanning tree construction and greedy
parent search as well as other search methods, are surveyed in [2, 3].

5 Possibilistic Graphical Models

Possibility distributions. A possibility distribution π on a universe of discourse
Ω is a mapping from Ω into the unit interval, i.e. π : Ω → [0, 1] [38, 8]. From an
intuitive point of view, π(ω) quantifies the degree of possibility that ω = ω0 is
true, where ω0 is the actual state of the world (cf. section 2): π(ω) = 0 means
that ω = ω0 is impossible, π(ω) = 1 means that ω = ω0 is possible without
any restrictions, and π(ω) ∈ (0, 1) means that ω = ω0 is possible only with
restrictions, i.e. that there is evidence that supports ω = ω0 as well as evidence
that contradicts ω = ω0.



Several suggestions have been made for semantics of a theory of possibility as
a framework for reasoning with uncertain and imprecise data. The interpretation
of a degree of possibility we prefer is based on the context model [11, 21]. In this
model possibility distributions are seen as information-compressed representa-
tions of (not necessarily nested) random sets and a degree of possibility as the
one-point coverage of a random set [23].

To be more precise: Let ω0 be the actual, but unknown state of a domain
of interest, which is contained in a set Ω of possible states. Let (C, 2C , P ),
C = {c1, c2, . . . , cm}, be a finite probability space and γ : C → 2Ω a set-valued
mapping. C is seen as a set of contexts that have to be distinguished for a
set-valued specification of ω0. The contexts are supposed to describe different
physical and observation-related frame conditions. P ({c}) is the (subjective)
probability of the (occurrence or selection of the) context c.

A set γ(c) is assumed to be the most specific correct set-valued specification of
ω0, which is implied by the frame conditions that characterize the context c. By
“most specific set-valued specification” we mean that ω0 ∈ γ(c) is guaranteed
to be true for γ(c), but is not guaranteed for any proper subset of γ(c). The
resulting random set Γ = (γ, P ) is an imperfect (i.e. imprecise and uncertain)
specification of ω0. Let πΓ denote the one-point coverage of Γ (the possibility
distribution induced by Γ ), which is defined as

πΓ : Ω → [0, 1], πΓ (ω) = P ({c ∈ C | ω ∈ γ(c)}) .

In a complete model the contexts in C must be specified in detail to make the
relationships between all contexts cj and their corresponding specifications γ(cj)
explicit. But if the contexts are unknown or ignored, then πΓ (ω) is the total mass
of all contexts c that provide a specification γ(c) in which ω0 is contained, and
this quantifies the possibility of truth of the statement “ω = ω0” [11, 13].

That in this interpretation a possibility distribution represents uncertain and
imprecise knowledge can be understood best by comparing it to a probability
distribution and to a relation. A probability distribution covers uncertain, but
precise knowledge. This becomes obvious, if one notices that a possibility distri-
bution in the interpretation described above reduces to a probability distribution,
if ∀cj ∈ C : |γ(cj)| = 1, i.e. if for all contexts the specification of ω0 is precise.
On the other hand, a relation represents imprecise, but certain knowledge about
dependencies between attributes. Thus, not surprisingly, a relation can also be
seen as a special case of a possibility distribution, namely if there is only one
context. Hence the context-dependent specifications are responsible for the im-
precision, the contexts for the uncertainty in the imperfect knowledge expressed
by a possibility distribution.

Possibilistic networks. Although well-known for a couple of years [18], a
unique concept of possibilistic independence has not been fixed yet. In our opin-
ion, the problem is that possibility theory is a calculus for uncertain and impre-
cise reasoning, the first of which is related to probability theory, the latter to
relational theory (see above). But these two theories employ different notions of
independence, namely stochastic independence and lossless join decomposability.



Stochastic independence is an uncertainty-based type of independence, whereas
lossless join decomposability is an imprecision-based type of independence. Since
possibility theory addresses both kinds of imperfect knowledge, notions of pos-
sibilistic independence can be uncertainty-based or imprecision-based.

W.r.t. this consideration two definitions of possibilistic independence have
been justified [4], namely uncertainty-based possibilistic independence, which
is derived from Dempster’s rule of conditioning [29] adapted to possibility mea-
sures, and imprecision-based possibilistic independence, which coincides with the
well-known concept of possibilistic non-interactivity [8]. The latter can be seen
as a generalization of lossless join decomposability to the possibilistic setting,
since it treats each α-cut of a possibility distribution like a relation.

Because of its consistency with the extension principle [37], we confine to
possibilistic non-interactivity. As a concept of possibilistic independence it can
be defined as follows: Let X, Y , and Z be three disjoint subsets of variables in V .
Then X is called conditionally independent of Y given Z w.r.t. π, abbreviated
X ⊥⊥π Y | Z, iff

∀ω ∈ Ω : π(ωX∪Y | ωZ) = min{π(ωX | ωZ), π(ωY | ωZ)}

whenever π(ωZ) > 0, where π(· | ·) is a non-normalized conditional possibility
distribution, i.e.

π(ωX | ωZ) = max{π(ω′) | ω′ ∈ Ω ∧ proj V
X(ω) = ωX ∧ proj V

Z (ω) = ωZ}.

Both mentioned types of possibilistic independence satisfy the semi-graphoid
axioms (see section 3). Possibilistic independence based on Dempster’s rule in
addition satisfies the intersection axiom and thus can be used within the frame-
work of the valuation-based systems already mentioned above [30]. However,
the intersection axiom is related to uncertainty-based independence. Relational
independence does not satisfy this axiom, and therefore it cannot be satisfied
by possibilistic non-interactivity as a more general type of imprecision-based
independence.

Similar to probabilistic networks, a possibilistic network can be seen as a
decomposition of a multi-variate possibility distribution. The factorization for-
mulae can be derived from the corresponding probabilistic factorization formulae
(for Markov networks) by replacing the product by the minimum.

Learning possibilistic networks from data. Just as for probabilistic net-
works, it is possible in principle to estimate the quality of a given possibilistic
network by exploiting its factorization property. For each ω ∈ Ω the degree of
possibility computed from the network is compared to the degree of possibility
derived from the database to learn from. But again this approach can be costly.

Contrary to probabilistic networks, the induction of possibilistic networks
from data has been studied much less extensively. A first result, which consists
in an algorithm that is closely related to the K2 algorithm for the induction
of Bayesian networks, was presented in [12]. Instead of the Bayesian evaluation
measure used in K2, it relies on a measure derived from the nonspecificity of a



possibility distribution. Roughly speaking, the notion of nonspecificity plays the
same role in possibility theory that the notion of entropy plays in probability
theory. Based on the connection of the imprecision part of a possibility distribu-
tion to relations, the nonspecificity of a possibility distribution can also be seen
as a generalization of Hartley information [15] to the possibilistic setting.

In [14] a rigid foundation of a learning algorithm for possibilistic networks is
given. It starts from a comparison of the nonspecificity of a given multi-variate
possibility distribution to the distribution represented by a possibilistic network,
thus measuring the loss of specificity, if the multi-variate possibility distribution
is represented by the network. In order to arrive at an efficient algorithm, an
approximation for this loss of specificity is derived, which can be computed
locally on the hyperedges of the network. As the search method a generalization
of the optimum weight spanning tree algorithm to hypergraphs is used. Several
other heuristic local evaluation measures, which can be used with different search
methods, are presented in [2, 3].

It should be emphasized, that, as already discussed above, an essential ad-
vantage of possibilistic networks over probabilistic ones is their ability to deal
with imprecision, i.e. multi-valued, information. When learning possibilistic net-
works from data, this leads to the convenient situation that missing values in an
observation or a set of values for an attribute, all of which have to be considered
possible, do not pose any problems.

6 Application

Although a good theory may be the most practical thing to have, all theory must
hold its own in a test against reality. As a test case we chose the Danish Jersey
cattle blood group determination problem [27], for which a Bayesian network
designed by domain experts (cf. figure 1) and a database of 500 real world sample
cases exists (an extract of this database is shown in table 1). The problem with
this database is that it contains a pretty large number of unknown values —
only a little over half of the tuples are complete (This can already be guessed
from the extract shown in table 1: the stars denote missing values).

As already indicated above, missing values can make it difficult to learn a
Bayesian network, since an unknown value can be seen as representing imprecise
information: It states that all values contained in the domain of the correspond-
ing attribute are possible. Nevertheless it is still feasible to learn a Bayesian
network — similar to the expert designed one — from the database in this case,
since the dependencies are rather strong and thus the remaining small number of
tuples is still sufficient to recover the underlying structure. However, learning a
possibilistic network from the same dataset is much easier, since possibility the-
ory was especially designed to handle imprecise information. Hence no discarding
or special treatment of tuples is necessary. An evaluation of the learned network
showed that it was of comparable quality. Thus we can conclude that learning
possibilistic networks from data is an important alternative to the established
probabilistic methods.
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1 – parental error 12 – offspring ph.gr. 1
2 – dam correct? 13 – offspring ph.gr. 2
3 – sire correct? 14 – offspring genotype
4 – stated dam ph.gr. 1 15 – factor 40
5 – stated dam ph.gr. 2 16 – factor 41
6 – stated sire ph.gr. 1 17 – factor 42
7 – stated sire ph.gr. 2 18 – factor 43
8 – true dam ph.gr. 1 19 – lysis 40
9 – true dam ph.gr. 2 20 – lysis 41

10 – true sire ph.gr. 1 21 – lysis 42
11 – true sire ph.gr. 2 22 – lysis 43

The grey nodes correspond to observable attributes.
Node 1 can be removed to simplify constructing the
clique tree for propagation.

Fig. 1. Domain expert designed network for the Danish Jersey cattle blood type de-
termination example

n y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6

n y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7

n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0

n y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7

n y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0

n y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5

n y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7

Table 1. An extract from the Danish Jersey cattle blood group determination
database.

7 Conclusions

In this paper we reviewed, although briefly, the ideas underlying probabilistic
networks and provided an equally brief introduction to possibilistic networks.
The main advantage of the latter is that they can handle directly imprecise, i.e.
set-valued, information. This is especially useful, if an inference network is to
be learned from data and the database to learn from contains a considerable
amount of missing values. Whereas in order to learn a probabilistic network
these tuples have to be discarded or treated in some complicated manner, possi-
bilistic network learning can easily take them into account and can thus, without
problem, make use of all available information. These considerations proved to
be well-founded in an application on a real-world database.
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