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Summary. Mining graph databases for frequent subgraphs has recently developed
into an area of intensive research. Its main goals are to reduce the execution time
of the existing basic algorithms and to enhance their capability to find meaning-
ful graph fragments. Here we present a method to achieve the former, namely an
improvement of what we called “perfect extension pruning” in an earlier paper [4].
With this method the number of generated fragments and visited search tree nodes
can be reduced, often considerably, thus accelerating the search. We describe the
method in detail and present experimental results that demonstrate its usefulness.

1 Introduction

In recent years the problem how to find common subgraphs in a database
of (attributed) graphs, that is, subgraphs that appear with a user-specified
minimum frequency, has gained intense and still growing attention. For this
task—which has useful applications in, for example, biochemistry, web min-
ing, and program flow analysis—several algorithms have been proposed. Some
of them rely on principles from inductive logic programming and describe the
graph structure by logical expressions [7]. However, the vast majority trans-
fers techniques developed originally for frequent item set mining. Examples
include MolFea [11], FSG [12], MoSS/MoFa [3] , gSpan [16], Closegraph [17],
FFSM [9], and Gaston [14]. A related, but slightly different approach, which
is strongly geared towards graph compression, is used in Subdue [5].

The basic idea of these approaches is to grow subgraphs into the graphs
of the database, adding an edge and maybe a node in each step, counting
the number of graphs containing each grown subgraph, and eliminating infre-
quent subgraphs. Unfortunately, with this method the same subgraph can be
constructed in several ways, adding its nodes and edges in different orders.
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The predominant method to avoid the ensuing redundant search is to define
a canonical form of a graph that uniquely identifies it up to automorphisms:
together with a specific way of growing the subgraphs it enables us to de-
termine whether a given subgraph can be pruned from the search tree (see,
for example, [1] for a family of such canonical forms and details of the proce-
dure). As the properties of canonical forms and code words are widely used
throughout this chapter, we briefly review them in Section 4.

To further improve the algorithms one may restrict the search to so-called
closed graph fragments (Section 2), which capture all information about the
set of all frequent subgraphs, but lead to considerably smaller output (in
terms of the number of reported fragments). This restriction also enables us
to employ additional pruning techniques, one of which is perfect extension
pruning, as we called it in [4], or equivalent occurrence pruning, as it is called
in [17]. Unfortunately, neither of these approaches, in the form in which they
were originally described in these papers, works correctly, as they can miss
certain fragments. This flaw we fix in this paper (Section 3).

In addition, the approach in [4] avoided redundant search with the help of
a repository of found fragments instead of using the more elegant approach
of canonical form pruning. As a consequence, perfect extension pruning was
easier to perform, since it was not necessary to pay attention to the canonical
form. With canonical form pruning, part of perfect extension pruning is easy
to achieve, namely pruning the search tree branches to the right of the perfect
extension (Section 5). This was first shown in Closegraph [17]. In this paper
we show how one may also prune the search tree branches to the left of the
perfect extension by introducing a (strictly limited) code word reorganization
(Section 6). We demonstrate the usefulness of the enhanced approach with
experiments on two molecular data sets (Section 7).

2 Mining Closed Graph Fragments

The notion of a closed fragment is derived from the corresponding notion
of a closed item set, which is defined as an item set no superset of which
has the same support, i.e., is contained in the same number of transactions.
Analogously, a closed graph fragment is a fragment no superstructure of which
has the same support, i.e., is contained in the same number of database graphs.

As an example consider the molecules (no chemical meaning attached—
they were constructed merely for demonstration purposes) shown in Figure 1
as the given database of attributed graphs. A corresponding search tree (start-
ing from sulfur as a seed and with fragments being extended only if they ap-
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Fig. 1. Three simple example molecules.



Full Perfect Extension Pruning for Frequent Subgraph Mining 3

S

S C S O

O S C S C N S C O

O S C N S C N
O

S F

O S C
O

S C N C

O S C N
O

S C N C
O

3

1 3 2

2 3 2

2 1
2

1

1 1

Fig. 2. Search tree for the three molecules in Fig. 1; infrequent fragments (contained
in only one molecule) are drawn in gray/light colors, closed fragments are encircled.

pear in at least two molecules) is shown in Figure 2 (how the extensions of
fragments are chosen and ordered is explained below). The numbers below
or to the left/right of the fragments state their support, i.e., the number of
molecules a fragment is contained in. Infrequent fragments (i.e. with a sup-
port less than two molecules) are drawn in gray/light colors. The encircled
fragments are closed and thus constitute the output of the search (for a min-
imum support of two molecules). Note that, for example, the fragment O-S-C
is not closed, since the fragment O-S-C-N, which contains O-S-C as a proper
subgraph, has the same support (namely two molecules).

As for item sets, restricting the search for molecular fragments to closed
fragments does not lose any information: all frequent fragments (drawn in
black/dark color in Figure 2) can be constructed from the closed ones by sim-
ply forming all substructures of closed fragments that are not closed fragments
themselves. Knowledge of the support of any non-closed frequent fragment is
also preserved: its support is simply the maximum of the support values of
those closed fragments of which it is a substructure. Consequently, restricting
the search to closed fragments is a very convenient and lossless way to reduce
the size of the output of a frequent subgraph mining algorithm.

3 Perfect Extensions

Perfect extension pruning is based on the observation that sometimes there
is a fairly large common fragment in all currently considered database graphs
(that is, in all graphs considered in a given branch of the search tree). From the
definition of a closed fragment it is clear that in such a situation, if the current
fragment is only a part of the common substructure, then any extension that
does not grow the current fragment towards the maximal common one can
be postponed until this maximal common fragment has been reached. That
is, as long as the search has not grown a fragment to the maximal common
one, it is not necessary to branch in the search tree. The reason is, obviously,
that the maximal common fragment is part of all closed fragments that can
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Fig. 3. Example of an imperfect extension.

be found in the currently considered set of molecules. Consequently, it suffices
to follow only one path in the search tree that leads to this maximal common
fragment and to start branching only from there.

As an example consider again the simple set of molecules shown in Figure 1.
If the search is seeded with a single sulfur atom, considering extensions by a
single bond starting at the sulfur atom and leading to an oxygen atom can
be postponed until the structure S-C-N common to all molecules has been
grown (provided that the extensions of this maximal common fragment are
not restricted in any way—a requirement we discuss in detail below).

Technically, the search tree pruning is based on the notion of a perfect
extension. An extension of a fragment, consisting of an edge and possibly a
node (if the edge does not close a ring), is called perfect if all of its embeddings
(that is, occurrences of the fragment in the database graphs) can be extended
in exactly the same way by this edge and node. (Note that there may be several
ways of extending an embedding by this edge and node; then all embeddings
of a fragment must be extendable in the same number of ways.) Obviously,
if there is a perfect extension, all closed super-fragments of a given fragment
can, in principle, be found by searching only the corresponding branch.

Note that one has to be careful when identifying perfect extensions. In the
first place, it does not suffice to check whether the number of embeddings of
the extended fragment is equal to or a multiple of the number of embeddings
of the base fragment (as one may be tempted to think at first sight). This
is only a necessary, but not a sufficient condition, as the example shown in
Figure 3 demonstrates. Even though the total number of embeddings in the
right branch is the same as for the root, the extension is not perfect, because
the extension can be done only once in the left molecule, but three times in
the right. The extension in the left branch is not perfect, because the number
of extended embeddings, even though the same for each parent embedding,
is reduced from the number of extensions of its parents. Such a reduction,
which also occurs in the right branch for the left molecule, indicates that
some symmetry has been destroyed by the extension, which therefore cannot
be perfect. As a consequence, a test for perfect extension actually has to count
and compare the number of embeddings per database graph.

A second problem (which was overlooked in both [17] as well as in [4]) is the
behavior of rings (cycles) in the search, as we demonstrate with the example
molecules shown in Figure 4. A search tree for these molecules (with only
such fragments that are contained in both molecules) is shown in Figure 5.
Here almost all extensions are perfect in the sense that they can be made
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Fig. 5. Search tree for the two molecules in Figure 4; closed fragments are encircled.

in the same way in all molecules. However, the problem becomes clear when
one considers adding a bond from the nitrogen atom to a carbon atom. This
extension rules out certain ways of reaching the carbon atom via the oxygen
atom and the rest of the ring. Hence the bond leading to the carbon atom
is only “locally” perfect, but not “globally”, that is, when the ring structure
is taken into account. As a consequence we cannot restrict the search to the
corresponding branch, since we would lose fragments. This can be seen clearly
from the location of the closed fragments in the search tree shown in Figure 5:
there are three closed fragments (for a minimum support of 2, encircled in
gray), but we cannot reach all of them if we see adding an edge from the
nitrogen atom to a carbon atom as a perfect extension (even after the oxygen
atom has been added, which could actually be seen as a perfect extension).

Obviously, the problem is that there are two ways of reaching the carbon
atom that is directly connected to the nitrogen atom. Even though only one of
them is possible in both molecules, both have to be considered, because part of
the second possibility is the same in both molecules, thus leading to a relevant
frequent fragment. Unfortunately there is no way to determine this locally,
that is, by looking only at the grown fragment and its direct extension. In
order to cope with this problem, we require that a perfect extension edge must
be a bridge3 (that is, the extension edge must be a bridge in all embeddings
of the extended fragment). This is surely a safe (i.e. sufficient) condition as
it rules out any possibility that the destination of the perfect extension edge
can be reached in any other way, and thus fixes the flaw mentioned above.
3 An edge in an undirected graph is called a bridge if its removal increases the

number of connected components of the graph.
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However, this requirement is not a necessary condition. As a closer inspection
easily reveals, extensions closing a ring (that is, extensions by an edge leading
to a node that is already in the base fragment) are also safe and thus can
be allowed as candidates for perfect extensions: since the destination node is
already in the fragment, there cannot be a problem with multiple ways of
reaching it. Hence we can slightly relax the constraints.

Note, however, that these relaxed constraints are still only sufficient, but
not necessary. There are other situations in which an extension can be consid-
ered perfect, even though it does not meet the abovementioned requirements.
For example, if an edge leads to a new node and is part of rings of the same
size and composition in all supporting graphs, it is harmless and thus can be
considered a perfect extension. Even the extension by a bond from the nitro-
gen atom to the oxygen atom in Figure 5 can be considered a safe perfect
extension, despite the fact that the rings have different size. Unfortunately,
checking necessary and sufficient conditions for (safe) perfect extensions is
complicated and costly and thus we confine ourselves to the rule that an ex-
tension edge must either be a bridge in all database graphs or must close a
ring (cycle) in all database graphs in order to be considered perfect.

4 Canonical Codes for Graphs

As we already mentioned in the introduction, perfect extension pruning, as it
was described in the previous section, is not a problem unless canonical forms
are used to identify redundant fragments. However, since canonical forms are
a lot more elegant than, for example, a repository of already processed frag-
ments, need less memory and make it easier to parallelize the search, it is
desirable to be able to use perfect extension pruning together with canonical
form pruning. In this section we briefly review some fundamentals of canon-
ical forms for (attributed) graphs, which are necessary to know in order to
understand the code word reorganization we describe in Section 6.

The core idea of canonical forms of graphs is to describe an (attributed)
graph by a code word, which uniquely identifies it up to automorphisms, and
from which the graph can be reconstructed. The letters of such a code word
describe the edges of the graph and which nodes they connect as well as
the node and edge attributes (or labels). In order to capture the connection
structure, the nodes are numbered (or, more generally, endowed with unique
labels), since the node attributes are not enough to identify them uniquely:
the same attribute may be assigned to several nodes in a graph. Of course,
there are several possible ways of numbering the nodes, each of which gives
rise to a different code word. In principle, all of these code words are taken
into account and the lexicographically smallest (or greatest) code word is
then defined to be the canonical code word. Note, however, that due to the
way in which code words are used in the search (see below), the possible
node numberings (and thus the possible code words) one has to consider can
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actually be restricted to those compatible with traversals of spanning trees of
the considered graphs/fragments (see [1] for more extensive explanations).

Canonical code words are used in the search as follows: during the mining
process fragments are grown by adding an edge in each step. This edge is
characterized by the node from which it starts, by its attribute, and by the
node it leads to. (Note that this does not imply directed edges; the “source”
and “destination” node are solely defined by how the extension is done: the
node that is extended is the “source” and the other node, the extension edge
is incident to, is the “destination”.) In addition, the nodes are numbered in
the order in which they are added to the fragment. Hence the search process
naturally constructs a code word for each grown fragment, namely by simply
concatenating the descriptions of the edge extensions that led to it.

Of course, there are many possible ways of building a fragment by adding
edges, each of which leads to a different code word. However, there is obviously
only one way that leads to the canonical code word (since a code word fixes
a specific order of the extensions). Hence we may choose to extend only those
fragments further that have been built in such a way that their code word is
canonical. Eliminating all other fragments is called canonical form pruning,
which obviously eliminates all redundant search: each fragment is considered
at most once. Note that the way in which the search process builds code words
also explains why we can confine ourselves to node numberings (and thus code
words) compatible with traversals of spanning trees (as mentioned above):
no other code words can be constructed by the search.

For the rest of this paper we focus on code words resulting from node
numberings that are obtained by breadth-first traversals of spanning trees,
that is, the canonical form that is used in MoSS/MoFa [3]. Note, however,
that the described approach is also applicable for code words resulting from
node numberings that are obtained from depth-first traversals of spanning
trees, that is, the canonical form that is used in gSpan [16] or Closegraph [17].
The necessary adaptations of the procedure are straightforward and thus not
described in detail (they mainly concern the form of edge descriptions).

A breadth-first code word has the general form a (is b a id)m, where a is
node attribute, b an edge attribute, is the index (or number) of the source
node of an edge, and id the index (or number) of the destination node of an
edge (by definition, it is always is < id). The letter m denotes the number of
edges of the fragment. Each parenthesized expression describes one edge.

As an example, consider the left molecule shown in Figure 1. If this
molecule is built from left to right, that is, if we choose the left oxygen atom
as the root of a spanning tree, a possible code is O 0-S1 1-C2 2=O3 2-N4.
As can be seen from this code word, the bond added first is the one from the
oxygen atom (index 0) to the sulfur atom (index 1), the bond added last is the
one from the carbon atom (index 2) to the nitrogen atom (index 4). However,
there is another possibility of building the same fragment, which leads to the
code word O 0-S1 1-C2 2-N3 2=O4 (that is, the last two bonds are added in
inverse order). If these two code words are compared lexicographically, the lat-
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ter is smaller than the former (assuming that single bonds are “smaller” than
double bonds, that is, - < =). Therefore we can conclude that the first code
word is not the canonical code word, but neither is the second. The canonical
code word for this molecule is actually S 0-C1 0-O2 1-N3 1=O4 (if we use
the element order S < C < N < O and the bond order - < =, as we also do for
all following examples in order to avoid confusion).

Note, however, that the canonical code word is C 0-N1 0-S2 0=O3 2-O4
if we use the order of the periodic table of elements (that is, C < N < O < S,
together with - < =), showing that which code word is the canonical one also
depends on the order we choose for the node and edge attributes. Empiri-
cal evidence suggests that it is recommendable to use an order that reflects
the frequency of the attributes in the graph database to mine (less frequent
attributes should precede more frequent ones), as this usually leads to fewer
generated fragments and thus shorter search times.

Note also that (canonical) code words for graph fragments provide a nat-
ural way of ordering the fragments in the search tree: the children of a search
tree node are listed from left to right in the order of lexicographically increas-
ing code words. This makes precise what we mean by “to the left” and “to
the right” of a search tree branch: “to the left” are fragments with smaller,
“to the right” are fragments with greater (canonical) code words.

Checking whether a given code word is canonical usually requires testing
all possible code words for a fragment (at least w.r.t. all possible node num-
berings resulting from traversals of spanning trees) and thus has essentially
the same complexity as a graph isomorphism test. (Pseudo-code for such a
canonical form check can be found, for example, in [1].) Nevertheless, canon-
ical code words are very effective in pruning the search tree, because they
use “global” information in contrast to only “local” rules, as they were used
originally in [3]. These “local” or “simple” rules, however, can still be applied
to support canonical form pruning, as they specify necessary (though not suf-
ficient) prerequisites for code words to be canonical, which can be tested very
efficiently and help to avoid a costly canonical form test in many cases.

For example, if we use a breadth-first (spanning tree traversal) canonical
form (as it was described above), one may not extend a node that has an
index smaller than another node in the fragment, which has already been
extended (maximum source extension: only nodes with an index no less than
the maximum source index may be extended). The reason is that an extension
violating this rule necessarily leads to a non-canonical code word, as can easily
be checked with a spanning tree rooted at the same node.

As an example consider the fragment S-C-N in the search tree in Figure 2:
this fragment may not be extended by an edge from the sulfur atom (index 0)
to an oxygen atom, because an atom with a higher index, namely the car-
bon atom (index 1), has already been extended (by attaching the nitrogen
atom). Indeed, if we add such an edge, the code word of the resulting frag-
ment is S 0-C1 1-N2 0-O3, while the canonical code word for this fragment
is S 0-C1 0-O2 1-N3 (using again the element order S < C < N < O).
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Fig. 6. Search tree for the three molecules in Figure 1 with partial perfect extension
pruning (crossed out branches are pruned).

More details on canonical forms and the “local” or “simple” rules, which re-
sult from them and restrict the possible extensions of a fragment, can be found
in [1]. Of course, there are “local” or “simple” rules not only for breadth-first,
but also for depth-first (spanning tree traversal) code words, which specify a
restricted set of extensions known as rightmost path extensions. However, for
the discussion in this paper it suffices to know that, regardless of the canonical
form used, the “local” or “simple” rules basically state that extensions that
generated the sibling nodes to the left of a search tree branch may not be
done in this search tree branch itself or in branches to the right of it.

5 Partial Perfect Extension Pruning

If one wants to combine perfect extension pruning with canonical form pruning
as it was described above, the following problem has to be solved: growing the
maximal common fragment can interfere with canonical form pruning and in
particular with the extension restrictions resulting from it (note that this was
no problem in [4] due to the use of a repository of found fragments to avoid
redundant search). Obviously, perfect extensions should not lead to such a
restriction, because otherwise search results may be lost. The fact that the
code word of a fragment, as it is built by the search, is not canonical is
no longer sufficient to prune it, since preferring perfect extensions may have
changed the order of the extensions by which a fragment is built.

As an example consider again the search tree shown in Figure 2. If we
simply confined the search to the sub-tree rooted at the fragment S-C-N, we
would lose the fragment O-S-C-N in the leftmost branch. The reason is that
the extension of S-C to S-C-N, due to canonical form restricted extensions,
prevents an extension of the sulfur atom in this sub-tree (as described in the
preceding section), because an atom with a higher number, namely the carbon
atom, has already been extended in the preceding step.

Fortunately, this only affects search tree branches to the left of the per-
fect extension branch, since the corresponding extensions are ruled out by the
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Fig. 7. Search tree for the three molecules in Figure 1 with full perfect extension
pruning (crossed out branches are pruned).

perfect extension and the “local” or “simple” rules (see above). All extensions
corresponding to branches to the right of the perfect extension are still possi-
ble for the fragment reached by the perfect extension. Therefore branches to
the right can be pruned immediately without any loss: they cannot contain
any closed fragment, because the perfect extension cannot be done in them
without violating the canonical form, but has to be done in order to reach a
closed fragment. This type of pruning we call partial perfect extension pruning
(because it prunes only part of the branches aside from the perfect extension
one). Note that Closegraph [17] uses only this form of pruning.

How partial perfect extension pruning changes the search tree for the
molecules in Figure 1 is shown in Figure 6. Note that only non-closed frag-
ments are removed from the search tree (compare to Figure 2, in which the
closed fragments are highlighted). The gains consist in the fact that the two
pruned fragments need not be processed: neither do they have to be checked
for canonical form nor do we have to consider possible extensions of them.

6 Full Perfect Extension Pruning

Although partial perfect extension pruning is already highly effective, it is
desirable to prune also the search tree branches to the left of the perfect
extension, thus completing partial perfect extension pruning into full perfect
extension pruning. In order to do so, we must not restrict the extensions of
the fragment that resulted from a perfect extension as it would be required
by canonical form pruning (with or without the “local” or “simple” rules).
Otherwise we could lose (closed) frequent fragments, as we demonstrated
above. In other words, we would like to have a search tree like the one shown
in Figure 7 for the molecules shown in Figure 1.

The core problem with this is how we can avoid that the fragment O-S-C-N
is pruned as non-canonical. The breadth-first search canonical code word for
this fragment is S 0-C1 0-O2 1-N3. However, with the search tree in Figure 7
it is assigned the code word S 0-C1 1-N2 0-O3, because this reflects the order
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1. Base fragment: S-C-N canonical code: S 0-C1 1-N2

2. Extension to O-S-C-N code: S 0-C1 1-N2 0-O3 (not canonical!)
3. Shift the non-perfect extension code: S 0-C1 0-O3 1-N2

4. Renumber nodes canonical code: S 0-C1 0-O2 1-N3

Fig. 8. Fixing a fragment’s code word by shifting a non-canonical extension over
perfect extensions (marked in gray) to the proper place and renumbering the nodes.

in which the bonds have been added. Since this code word is not canonical,
the fragment would be pruned and neither extended nor reported.

In order to avoid this, we allow for a (strictly limited) reorganization of
code words as they result from a search tree, which takes care of the fact that
perfect extension edges may have been added earlier than required by the
canonical form. Technically, we split the code word into two parts: the first,
fixed part consists of the (possibly empty) prefix up to and including the last
edge that was added by a non-perfect extension or by a perfect extension with
no search tree branches to the left of it. The second, volatile part consists of the
remaining suffix of the code word, which is made up only of perfect extensions
edges, which had search tree branches to the left of it.

Note that we can check for the existence of branches to the left of a perfect
extension branch after minimum support pruning, that is, after eliminating
all fragments that occur in less than the user-specified minimum number of
database graphs. The reason is that we can be sure that extensions leading
to infrequent fragments in branches to the left will also lead to infrequent
fragments in the perfect extension branch or in branches to the right of it and
thus need not be considered in these branches.

The construction of the code word for an extended fragment is modified as
follows: instead of always simply appending the description of the extension
edge to the end of a code word, the description of the new edge may now be
inserted anywhere in or even before the volatile part, but not in the fixed part.
We may imagine this as first appending the new edge description and then
shifting it to the left, as long as this makes the code word lexicographically
smaller, but the new edge description does not enter the fixed part.

Note, however, that “shifting” an edge in the code word can make it neces-
sary to renumber the nodes. For example, if in the fragment O-S-C-N the bond
added last in the search (that is, the bond from the sulfur atom to the oxygen
atom) is shifted left past the perfect extension bond (that is, the bond from
the carbon atom to the nitrogen atom), the oxygen and the nitrogen atom
get new indices. The reason is that the nodes must be numbered in the order
in which they would be added if the edges were added in the order in which
their descriptions are listed in the (reorganized) code word (see Figure 8).

Technically, we achieve this renumbering as follows: instead of actually
shifting the extension edge from right to left, we rebuild the code word from
left to right. First we traverse the fixed part, numbering all nodes in the order
in which they are met. Then we continue with the volatile part until at least
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one of the two nodes incident to the new edge is numbered. Note that this
may already be the case before the first edge in the volatile part is considered.
In this case no edge of the volatile part is processed in this step.

Finally we traverse the (remaining) volatile part edge by edge, each time
comparing the next edge to the new edge. If the new edge (w.r.t. source and
– possibly still to be assigned – destination index as well as edge attribute
and destination node attribute) is lexicographically smaller, it is inserted at
the current position in the volatile part and the rest of the volatile part is
appended (renumbering nodes as needed). Otherwise any unnumbered node
incident to the current volatile edge is numbered and the next volatile edge is
considered. If all volatile edges have been traversed and the new edge has not
been inserted, it is simply appended at the end of the code word.

To make the process clearer, we execute it step by step for the example
shown in Figure 8. The root node (here the sulfur atom) is, of course, always
in the fixed part. Hence it receives the initial node index, that is, 0. Since the
next edge is already in the volatile part, this finishes processing the fixed part.
Since by assigning the index 0 to the sulfur atom, one node incident to the new
edge (sulfur to oxygen) is already numbered, we have to start immediately to
compare edge descriptions. We compare two possibilities, namely appending
the description of the new edge, which assigns the node index 1 to the oxygen
atom, or appending the already present first perfect extension edge (sulfur
to carbon), which assigns the node index 1 to the carbon atom. This yields
two possible code word prefixes, namely S 0-O1 and S 0-C1. Since the latter
is smaller (as C < O), it is fixed (that is, the new edge is not yet inserted)
and we move to the next position. Here we compare the code word prefixes
S 0-C1 0-O2 and S 0-C1 1-N2. Since the former is smaller (as O < N), the
position of the new edge has been found and we fix the first prefix. In a
final step, the remaining perfect extension edge is appended, assigning the
node index 3 to the nitrogen atom. Note that the fixed part of the resulting
code word now contains not only the root atom, but two bonds: the first
perfect extension bond, which is rendered fixed by the fact that a non-perfect
extension was inserted after it, and the new bond, which is fixed, simply
because it is not a perfect extension. The volatile part contains only the second
perfect extension (the bond from the carbon to the nitrogen atom).

Note that generally, provided the new edge is not a perfect extension itself,
this edge is recorded for the restricted extensions as required by the “local” or
“simple” rules of maximum source extensions (that is, extensions preceding
this edge are ruled out). In other words, if the new edge is not a perfect
extension, the place at which it is inserted is the new end of the fixed part of
the code word (as described above). Note also that the resulting code word
still has to be checked for canonical form. Since the reorganization is strictly
limited, the resulting code word may not be canonical. For example, the new
edge may actually have to be inserted into the fixed part in order to make the
code word canonical. In this case the fragment must not be adapted, so that
the code word becomes canonical, but has to be pruned.
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Fig. 9. Example molecule used to demonstrate full perfect extension pruning.

To further illustrate the process, we study another complete example,
which also shows the different cases that can occur. Consider the molecule
shown in Figure 9. Our goal is to build this molecule using full perfect exten-
sion pruning.4 As the order of the elements we use again S < C < O, which is
in line with the order used in all preceding examples. As a consequence the
search has to start at the sulfur atom, because all other starting points obvi-
ously lead to non-canonical code words (as even their first letter is greater).

Three extensions of this one-node fragment (code word: S) are possible:
we may add one of the two ring bonds to carbon atoms (which lead to the
same fragment S-C) or we may add the bond to the oxygen atom. Without
perfect extension pruning, both child fragments (i.e. S-C and S-O) would have
to be considered. However, the bond to the oxygen atom is a bridge, occurs
in all molecules (only one in this example), and the number of embeddings
of the extended fragment is the same as for the single sulfur atom. Hence
adding this bond is a perfect extension, while the bond to a carbon atom is
not eligible as a perfect extension, since it is a ring bond (and thus no bridge,
see Section 3). This leads to the code word S 0-O1 . The extension is marked
as perfect, and the volatile part of the code word starts directly after the
sulfur atom (as is indicated by a gray background).

Note that the other extension (leading to the fragment S-C) would have
to be considered if we only used partial perfect extension pruning, since its
code word, that is, S 0-C1, is smaller than S 0-O1. Only full perfect extension
pruning allows us to eliminate this fragment from the search.

In the next step, all possible extensions are considered (no restriction by
“local” or “simple” rules, because the preceding extension was perfect), which
are the two ring bonds (again leading to the same fragment, now O-S-C) and
the bond from the oxygen atom to the next carbon atom in the chain. The
latter is a perfect extension and thus the other two extensions are pruned,
resulting in the code word S 0-O1 1-C2 . Since the new edge is a perfect
extension, the volatile part grows to two edge descriptions (gray background).

In the third step, the two ring bonds incident to the sulfur atom are again
eliminated due to the perfect extension to the next carbon atom in the chain,
which is in the left ring: S 0-O1 1-C2 2-C3 . Now there are no perfect exten-
sions left, because all remaining bonds are part of rings (and thus no bridges).

It should be noted that the maximum source index is still 0 (sulfur atom),
because all extensions made so far were perfect and thus their source indices
4 Mining only one molecule is, of course, not very useful in practice, but it keeps

the example simple, and the process, at least w.r.t. pruning, is exactly the same
as when mining a larger number of molecules.



14 Christian Borgelt and Thorsten Meinl

are not counted for the “local” or “simple” rules characterizing maximum
source extensions. Without this special handling, we would not be allowed
to add any of the bonds of the right ring. But since the sulfur atom is still
extendable, we add, in the next step, one of the two ring bonds to it, which
results in the code word S 0-O1 1-C2 2-C3 0-C4. As one can immediately
see from the source index 0 in the last bond, this code word is not canonical.
Therefore we have to start the process of rebuilding the code word.

First, the sulfur atom is numbered 0 and this already determines three of
the four parts of the description of the newly added bond from the sulfur to
the carbon atom, namely 0-C? (the still to be assigned destination index is
replaced by a question mark; alternatively it may be set to the next free node
index, which is 1 in this case, as we did it before). This “incomplete” exten-
sion is compared to the first perfect extension in the volatile part. Since the
incomplete description 0-O? of this extension is greater (as carbon precedes
oxygen), the position of the new edge has been found and the description of
this edge is appended. Therefore we have as a code word prefix S 0-C1, which
forms the new fixed part of the code word. The three perfect extensions in
the volatile part are renumbered accordingly (the indices of the destination
nodes are increased by one) and their descriptions are appended, yielding the
code word S 0-C1 0-O2 2-C3 3-C4 (as before, the gray part is volatile).

The next extension adds the other (ring) bond from the sulfur atom
to a carbon atom: we reorganize from S 0-C1 0-O2 2-C3 3-C4 0-C5 to
S 0-C1 0-C2 0-O3 3-C4 4-C5 . The sixth extension adds another ring bond,
yielding the code word S 0-C1 0-C2 0-O3 3-C4 4-C5 1-C6 (before reorga-
nization). This time, the new edge is not inserted before all perfect extensions,
but after the first, because its source node index is greater than that of the
first perfect extension: S 0-C1 0-C2 0-O3 1-C4 3-C5 5-C6 . This has two
effects: in the first place, the volatile part now consists of only the last two
perfect extensions (as the insertion of a non-perfect extension edge after it
renders the first perfect extension edge fixed). Secondly, the atom with the
maximum source index (from which on extensions are still allowed) is now the
one with index 1, namely the source atom of the added edge.

The next edge that is added is another ring bond and it is inserted before
the volatile part, since its source index is smaller than the source index of the
next perfect extension bond: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 6-C7 .

The next edge closes the right ring and it is inserted in the middle of
the volatile part: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 (since its
source node index is larger than that of the first perfect extension bond in the
volatile part, but smaller than that of the second perfect extension).

The last three edges, that is, the three bonds of the left ring (3 carbons),
are added in the normal order (after the volatile part, or actually simply
by appending to a fixed code word, since adding the first bond of the left
ring renders the last perfect extension fixed). No code word reorganization is
necessary in any of these steps. The final (canonical) code word is:
S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 7-C8 7-C9 8-C9.
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Fig. 10. Experimental results on the IC93 data without ring mining (extensions
add only single bonds, both in rings and outside rings).
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Fig. 11. Experimental results on the IC93 data with ring mining (extensions add
single bonds that are not part of rings or complete rings).
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Fig. 12. Experimental results on the steroids data with ring mining (extensions add
single bonds that are not part of rings or complete rings).

7 Experiments

In order to test full perfect extension pruning, we implemented it as an exten-
sion of the MoSS program5, which is written in Java. As test datasets we used a
well-known subset of the Index Chemicus 1993 [10] (IC93) and a small dataset
of 17 steroids. The results on these datasets with different search modes are
shown in Figures 10 to Figure 12, which display the number of search tree
nodes (left), created fragments (middle), and created embeddings (right). The
horizontal axis shows the minimal support in percent (IC93) or as an absolute
number (steroids). For the experiments of Figure 11 and Figure 12 we used
ring mining, which means that rings in a user-defined size range (here: 5 to
6 bonds) are not built edge by edge, but added in one step. The technique

5 MoSS is available for free download under the GNU Lesser (Library) Public Li-
cense at http://www.borgelt.net/moss.html.
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underlying such ring mining was introduced in [8] for a repository of processed
fragments to avoid redundant search, but later extended in [2] to work with
canonical form pruning (using a code word reorganization technique that is
similar to the one presented in this paper, but more complex).

In each diagram the dashed gray line refers to the basic algorithm without
any perfect extension pruning, the gray solid line to partial perfect exten-
sion pruning and the black solid line to full perfect extension pruning. These
results show that full perfect extension pruning indeed leads to some non-
negligible gains (in the order of about 5 to 10%) over partial perfect extension
pruning, even though the main gains clearly result from partial perfect exten-
sion pruning. Tests we ran during the development of the program indicated
that relaxing the constraints for perfect extensions (that is, also edges clos-
ing rings/cycles are allowed as perfect extensions instead of only bridges)
improved performance by up to an additional 3%.

8 Conclusions

In this paper we fixed the flaw of the original descriptions of perfect extension
pruning by requiring that perfect extensions must be bridges, but still allowing
edges that close rings/cycles apart from bridges. In addition, we introduced
full perfect extension pruning, which consists in pruning not only the search
tree branches to the right (partial perfect extension pruning as it is used in
Closegraph [17]), but also those to the left of the perfect extension branch. To
make this possible in combination with canonical form pruning, we allowed
for a (strictly limited) reorganization of code words as they result from the
search. The experimental results show that this method can actually further
reduce the complexity of the search, although the main improvement comes
from partial perfect extension pruning. Future work is directed at combining
sibling perfect extensions into one extension, so that perfect extensions, once
found, need not be rediscovered and reprocessed.
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