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Abstract. Since it is an unsupervised data analysis approach, cluster-
ing relies solely on the location of the data points in the data space or,
alternatively, on their relative distances or similarities. As a consequence,
clustering can suffer from the presence of noisy data points and outliers,
which can obscure the structure of the clusters in the data and thus
may drive clustering algorithms to yield suboptimal or even misleading
results. Fuzzy clustering is no exception in this respect, although it fea-
tures an aspect of robustness, due to which outliers and generally data
points that are atypical for the clusters in the data have a lesser influ-
ence on the cluster parameters. Starting from this aspect, we provide in
this paper an overview of different approaches with which fuzzy cluster-
ing can be made less sensitive to noise and outliers and categorize them
according to the component of standard fuzzy clustering they modify.

1 Introduction

In general, clustering [1–4] is a data analysis method that tries to group the
records, cases or generally data points of a data set in such a way that points in
the same group (or cluster) are as similar as possible, while points in different
groups are as dissimilar as possible. There is no predefined target attribute (like
a class label) that guides the analysis process and hence clustering belongs to
the so-called unsupervised methods (in contrast to supervised methods like, for
example, classifier construction): it relies solely on the location of the data points
in the data space or, alternatively, on their relative distance or similarity.

Unfortunately, due to this exclusive dependence on location and/or distance
information, clustering algorithms can suffer from noisy data points and outliers
that are present in the data. Such data points, which we may define informally
as points that do not conform (well) to the actual cluster structure of the data,
can obscure the true cluster structure and thus may lead clustering algorithms
to produce results that are far from optimal or even misleading.
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Fuzzy clustering [5–7, 4] is no exception in this respect, although it features
an aspect of robustness, due to which outliers and generally data points that
are atypical for the clusters in the data have a lesser influence on the cluster
parameters (like, for instance, the location of the cluster centers as well as shape
and size parameters that may be present). We emphasize this aspect in the next
section (Section 2), in which we briefly review standard fuzzy clustering.

Afterward we turn to methods that try to make fuzzy clustering (even more)
robust w.r.t. noise and outliers. Such approaches can be roughly categorized into
two classes: (1) approaches that modify the “(influence) weight” of the (atypical)
data points, either by changing how membership degrees are computed from the
(relative) data point distances to the clusters or by introducing and adapting
an explicit data point weight, and (2) approaches that rely on other distance
measures than the usually employed squared Euclidean distance or transform
the distance measure before computing membership degrees.

Among the approaches in the first class are the popular noise cluster ap-
proach [8–10] (Section 3), introducing and adapting an explicit data point weight
(outlier clustering) [11] (Section 4), possibilistic fuzzy clustering [12, 13] and its
variants that combine it with standard fuzzy clustering [14–18] (Section 5), as
well as using an alternative transformation of the membership degrees [19] (Sec-
tion 6). In the second class we find approaches based on squared and particularly
unsquared Minkowski distances [20–22] (Section 7) or transformed or otherwise
modified distance measures [23–26] (Section 8).

2 Fuzzy Clustering

In the clustering approaches we study in this paper, the similarity of data points
is formalized by a distance measure on the data space and the clusters are
described by prototypes that capture the location and possibly also the shape
and size of the clusters in the data space. With such an approach the general
objective of clustering can be reformulated as the task to find a set of cluster
prototypes together with an assignment of the data points to them, so that the
data points are as close as possible to their assigned prototypes. By formalizing
this approach, and using for the prototypes only points in the data space that
represent the cluster centers, one obtains immediately the objective function of
classical c-means clustering [27–29]: simply sum the squared distances of the
data points to the center of the cluster to which they are assigned. The c-means
clustering algorithm then strives to minimize this objective function.

Unfortunately, c-means clustering always partitions the data, that is, each
data point is assigned to one cluster and one cluster only. This is often inap-
propriate, as it can lead to somewhat arbitrary cluster boundaries and certainly
does not treat points properly that lie between two (or more) clusters without
belonging to any of them unambiguously. A solution to this problem consists
in employing one of the different “fuzzifications” of the classical crisp (or hard)
scheme (see, for instance, [5, 30, 6, 7, 4, 26]), which modify the objective function
of classical c-means clustering in order to obtain graded cluster memberships.
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In principle, there are two ways to do this, namely (1) by membership trans-
formation, which maps the memberships with a convex function, and (2) by
membership regularization, which adds a regularization term, usually derived
from an entropy measure, to the objective function to prevent crisp assignments
(see, for instance, [31] for a discussion). Here we focus on the first approach
(membership transformation), because it exhibits a certain robustness property
we are interested in. However, most of the approaches we study in Sections 3 to
8 can equally well be applied to fuzzy clustering by membership regularization.

Formally, we are given a data set X = {x1, . . . ,xn} with n data points, each
of which is an m-dimensional real-valued vector, that is, ∀j; 1 ≤ j ≤ n : xj =
(xj1, . . . , xjm) ∈ Rm. These data points are to be grouped into c clusters, each of
which is described by a prototype ci, i = 1, . . . , c. The set of all prototypes is de-
noted by C = {c1, . . . , cc}. We confine ourselves here to cluster prototypes that
consist only of a cluster center, that is, ∀i; 1 ≤ i ≤ c : ci = (ci1, . . . , cim) ∈ Rm,
although (most of) the approaches we study below may just as well be applied if
the cluster prototypes comprise shape and size parameters (like, for instance, in
[32, 33]). The assignment of the data points to the cluster centers is encoded as
a c× n matrix U = (uij)1≤i≤c;1≤j≤n, which is often called the partition matrix.
In the crisp case, a matrix element uij ∈ {0, 1} states whether data point xj
belongs to cluster ci (uij = 1) or not (uij = 0). In the fuzzy case, uij ∈ [0, 1]
states the degree to which xj belongs to ci (degree of membership).

Since we do not obtain graded memberships by merely allowing uij ∈ [0, 1]
(see, for example, [19, 31]), the membership degrees are transformed with a con-
vex mapping h : [0, 1]→ [0, 1]. This yields an objective function of the form [19]

J(X,C,U) =

c∑
i=1

n∑
j=1

h(uij) d
2
ij .

The clustering task now consists in finding for a given data set X and a user-
specified number of clusters c, cluster prototypes C and a partition matrix U
such that J(X,C,U) is minimized under the constraints

∀j; 1 ≤ j ≤ n :

c∑
i=1

uij = 1 and ∀i; 1 ≤ i ≤ c :

n∑
j=1

uij > 0.

Unfortunately, cluster prototypes C and a partition matrix U that minimize J
are difficult to find by analytic means. Therefore one takes refuge to an alter-
nating optimization scheme: starting from randomly chosen cluster centers (for
example, sampled from the data set X), one iterates (1) updating the partition
matrix for fixed cluster prototypes and (2) updating the cluster prototypes for
a fixed partition matrix until convergence. Convergence may be checked with a
limit for the change of the cluster parameters (e.g. center coordinates) or a limit
for the change of the membership degrees from one iteration to the next.

In order to derive the update rule for the partition matrix (and thus for the
membership degrees uij) we need to know the exact form of the function h.
The most common choice is h(uij) = u2ij , which leads to the standard objective
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function of fuzzy clustering [30]. The more general form h(uij) = uwij was intro-
duced in [6]. The exponent w, w > 1, is called the fuzzifier, since it controls the
“fuzziness” of the data point assignments: the higher w, the softer the bound-
aries between the clusters, while a crisp partition results in the limit for w → 1.
This leads to the commonly used objective function [6, 7, 4, 26]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij d
2
ij .

The update rule for the membership degrees is now derived by incorporating
the constraints ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1 with Lagrange multipliers into

the objective function. (The second set of constraints, that is, ∀i; 1 ≤ i ≤ c :∑n
j=1 uij > 0 can usually be neglected, because it is satisfied by the clustering

result anyway.) This yields the Lagrange function

L(X,U,C, Λ) =

c∑
i=1

n∑
j=1

uwij d
2
ij︸ ︷︷ ︸

=J(X,U,C)

+

n∑
j=1

λj

(
1−

c∑
i=1

uij

)
,

where Λ = (λ1, . . . , λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that

the partial derivatives w.r.t. the membership degrees vanish, we obtain

∂

∂ukl
L(X,U,C, Λ) = w uw−1kl d2kl − λl

!
= 0 and thus ukl =

(
λl
w d2kl

) 1
w−1

.

Summing these equations over the clusters (in order to be able to exploit the
corresponding constraints on the membership degrees, which are recovered from
the fact that it is a necessary condition for a minimum that the partial derivatives
of the Lagrange function w.r.t. the Lagrange multipliers vanish), we get

1 =

c∑
i=1

uij =

c∑
i=1

(
λj
w d2ij

) 1
w−1

and thus λj =

( c∑
i=1

(
w d2ij

) 1
1−w

)1−w
.

Therefore we finally have for the membership degrees ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

uij =
d

2
1−w
ij∑c

k=1 d
2

1−w
kj

and thus for w = 2: uij =
d−2ij∑c
k=1 d

−2
kj

.

This rule is fairly intuitive, as it updates the membership degrees according to
the relative inverse squared distances of the data points to the cluster centers.

In order to derive the update rule for the cluster centers, we need to know
the (squared) distances d2ij . The most common choice is the (squared) Euclidean

distance, that is, d2ij = (xj−ci)
>(xj−ci). With this choice, we can easily derive
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Fig. 1. “Influence weight” of a
data point between two cluster
centers for different values of the
fuzzifier w. The two cluster cen-
ters are at the left and the right
border of the diagram.

the update rule for the cluster centers, namely by exploiting that a necessary
condition for a minimum of the objective function J is that the partial derivatives
w.r.t. the cluster centers vanish. Therefore we have ∀k; 1 ≤ k ≤ c :

∇ckJ(X,C,U) = ∇ck

c∑
i=1

n∑
j=1

uwij (xj − ci)
>(xj − ci)

= −2

n∑
j=1

uwij(xj − ci)
!
= 0.

It follows immediately ∀i; 1 ≤ i ≤ c :

ci =

∑n
j=1 u

w
ijxj∑n

j=1 u
w
ij

.

For the topic of this paper it is important to note that this update rule draws
on the transformed membership degrees uwij rather than on uij directly. As a
consequence the effective “influence weight” of a data point on the cluster para-
meters is not 1 (as one may be led to believe by the constraints ∀j; 1 ≤ j ≤ n :∑c
i=1 uij = 1), but rather αj =

∑c
i=1 u

w
ij . It is αj = 1 only if the data point xj

coincides with a cluster center (or if w → 1); otherwise it is αj < 1.
As an illustration, Figure 1 shows, for c = 2 clusters, the influence weight of a

data point lying on a straight line connecting the two cluster centers: one cluster
center is at the left border of the diagram, the other at the right border. Clearly,
for a fuzzifier w > 1 the total influence weight αj =

∑c
i=1 u

w
ij of a data point

with a less ambiguous assignment (that is, close to the left or right border of the
diagram) is higher than that of a more ambiguously assigned data point (in the
middle of the diagram). Also, this influence weight is the lower, the larger the
fuzzifier. The minimum influence weight is always obtained for equal distances
(and thus equal membership degrees uij = 1/c) to all c clusters. In this case the
influence weight of the data point is α =

∑c
i=1(1/c)w = c · c−w = c1−w.

Note that a unit data point weight is obtained only at the cluster centers or
for the limiting case of crisp clustering (that is, for w → 1). This distinguishes
fuzzy clustering from classical (crisp) clustering, where each data point has a
unit influence (on exactly one cluster). It also distinguishes the membership
transformation approach to fuzzy clustering from an approach that relies on
membership regularization, since in the latter the update rule for the cluster
centers refers to untransformed membership degrees (see, for instance, [31]),
thus endowing each data point with a unit effective influence weight.
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Fig. 2. Effect of an outlier
on the location of a cluster
center that minimizes the
sum of the squared (left)
and unsquared Euclidean
distances (right).

Due to the reduced influence weight that ambiguously assigned data points
receive in the membership transformation approach, the locations of the cluster
centers depend more strongly on those data points that are “typical” for the
clusters. This effect can be desirable and is very much in the spirit of, for instance,
robust regression techniques, in which data points also receive a lower weight
if they are not fitted well by the regression function. This connection to robust
statistical methods was explored in more detail, for example, in [34, 35].

Despite this inherent robustness of fuzzy clustering, the influence of noisy
data points and outliers on the clustering result can still be too strong to yield
sufficiently good clustering results. A core reason for this is that the standard
objective function is defined in terms of sums of squared Euclidean distances.
Due to this squaring of distances, outliers can have an overly strong influence on
the cluster parameters. This is illustrated in Figure 2 on the left, which shows
six data points forming a cluster (light gray circles at the left bottom) and one
outlier (dark gray circle at the top right). Computing the mean vector of the six
data points forming the cluster—that is, computing the point that minimizes the
sum of the squared Euclidean distances to the data points—yields a center vector
that lies, as one would expect, in the middle of this group of data points (lower
left cross). However, if the outlier is included in this mean computation, the
cluster center is strongly pulled out of the cloud of the six data points towards
the outlier. The reason is, of course, that the large distance to the outlier becomes
even bigger by squaring and thus dominates the smaller (squared) distances to
the other six data points, producing an undesirable result.

Summarizing our discussion, we see that we can try to tackle noise and
outliers in fuzzy clustering in essentially two ways: (1) we can try to reduce the
influence weight of atypical data points even further than the membership trans-
formation already does (approaches based on this idea are studied in Sections 3
to 6) or (2) we can change or transform the distance measure in the objective
function to reduce or eliminate the deteriorating effect of the squared distances
(approaches based on this idea are studied in Sections 7 and 8).

3 Noise Clustering

The best known and most popular approach to handle noise and outliers in
fuzzy clustering is so-called noise clustering, which was first proposed in [8],
but received attention only after it was independently developed again in [9].
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The core idea of this method is to introduce a pseudo-cluster, called the noise
cluster, that has no specific location, but rather the same distance δ from all
data points in X. Thus data points that are far away from the actual clusters
(in particular: farther away than the noise distance δ), receive a high degree of
membership to the noise cluster. As a consequence, the influence of noisy data
points and outliers on the parameters of the actual clusters is reduced, since
the membership degrees to the actual clusters now sum to a value that is the
smaller, the higher the degree of membership to the noise cluster.

Formally, this leads to the objective function [8, 9]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij d
2
ij + δ2

n∑
j=1

uw0j ,

where the index i = 0 refers to the noise cluster. Of course, the first set of
constraints now includes the noise cluster in the sum, that is, ∀j; 1 ≤ j ≤ n :∑c
i=0 uij = 1. As a consequence, even the untransformed membership degrees

to the actual clusters do not sum to 1 anymore, but only to 1− u0j , where

∀j; 1 ≤ j ≤ n : u0j =
δ

2
1−w

δ
2

1−w +
∑c
i=1 d

2
1−w
ij

is the degree of membership of the data point xj to the noise cluster. Clearly,
this reduces the influence weight (in the sense of Section 2) of data points that
are atypical for the actual clusters and thus renders the result much more robust.

Of course, introducing a noise clusters raises the question of how to choose
the noise distance δ. If δ is (too) small, a large portion of the data set will receive
a high degree of membership to the noise cluster, possibly rendering the majority
of the data points noise and outliers. On the other hand, if δ is chosen (too) large,
membership degrees to the noise cluster will remain small, possibly rendering
its influence negligible [36]. A proper choice depends on many aspects [37]: the
amount of noise present in the data set, the employed distance measure, the size
of the feature space (in terms of the range of possible values for the distance
measure), the number c of clusters to the found etc. In [9] it was suggested to
compute the noise distance (in each iteration) from the (unweighted) average
distance of the data points to the cluster prototypes as

δ2 =
κ

nc

c∑
i=1

n∑
j=1

d2ij ,

where κ is user-specified factor that becomes the actual parameter.
An alternative to this basic approach consist in choosing the noise distance

as the (average) “cluster radius” that is derived from the requirement that the
sum of the hypervolumes of the clusters (as computed with this cluster radius)
should equal the size of the feature space (derived, for example, from the extreme
data points) [37]. A good value of the noise distance may also be determined
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by trying multiple values for δ (starting at a large value and halving δ in each
step), computing the fraction p of data points that have their highest degree of
membership to the noise cluster (and thus may be considered as being assigned to
the noise cluster), fitting the resulting points (δ, p) with a Pareto-curve p = qδ−s

and finding the point of this curve at which its slope is −1 [38]. Finally, a term
may be added to the objective function that controls what fraction of the data
points can be expected to be noise or outliers, thus rendering the method more
robust against bad choices of the noise distance δ [36].

4 Data Point Weights

As we have seen in the preceding section, noise clustering relaxes the constraints
∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1 somewhat by including the membership degree to

the noise cluster, due to which the membership degrees to the actual clusters
can sum to values less than 1. Alternatively, one may introduce an explicit data
point weight and adapt this weight in the optimization process [11], an approach
which is also referred to as outlier clustering. It permits that the membership
degrees effectively sum to values less than 1 (namely to the data point weights)
for atypical data points, while for very typical data points they may even sum
to values larger than 1, endowing them with a greater influence on the clusters.

Outlier clustering is based on the objective function [11]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij
vθj

d2ij ,

where vj is the weight of the data point xj and θ is a constant that acts on the
data point weights in an analogous way as the fuzzifier w acts on the membership
degrees. A typical choice is therefore θ = 2 (in analogy to the fuzzifier w).

To avoid the trivial solution in which all data point weights go to infinity and
thus the value of the objective function becomes zero, a constraint analogous to
the constraints of the membership degrees is introduced, namely [11]

n∑
j=1

vj = v.

With the natural choice v = n, the total weight n of the n data points is re-
distributed to capture the typicality of the data points for the clusters. As an
equally natural alternative, one may choose v = n(1 − ρ), where ρ is a user
estimate of the fraction of data points that are noise or outliers.

Note that the objective function contains (a function of) the reciprocal values
1/vj of the data point weights, which produces exactly the desired effect: in
order to minimize the objective function, large membership degrees will have to
be combined with large data point weights and small membership degrees with
small data point weights. Note also that with this approach the optimization
scheme has three steps: (1) optimize the data point weights for fixed membership
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degrees and cluster prototypes, (2) optimize the membership degrees for fixed
data point weights and cluster prototypes, and finally (3) optimize the cluster
prototypes for fixed data point weights and membership degrees. Finally, note
that for the last step the membership degrees uij and the data point weights vj
can be combined into membership degrees ũmij = umij/v

θ
j , since both values are

fixed in this step. As a consequence, the update rules for the cluster parameters
are not affected by using outlier clustering and hence it can also be used, for
example, with shape and size parameters for the clusters (like, for instance, in
[32, 33]) or other modifications of the cluster prototypes.

In order to derive the update rule for the data point weights vj , the same
approach is employed as it was demonstrated in Section 2 for the membership
degrees. The constraint

∑n
j=1 vj = v is incorporated into the objective function

with the help of a Lagrange multiplier. Then the fact is exploited that at the
minimum of the objective function the partial derivatives w.r.t. the data point
weights vj must vanish. In this way we easily obtain [11] ∀j; i ≤ j ≤ n :

vj = v ·
(∑c

i=1 u
w
ij d

2
ij

) 1
θ+1∑n

k=1 (
∑c
i=1 u

w
ik d

2
ik)

1
θ+1

,

which vanishes only if all clusters collapse to a single point. Using a threshold
for the data point weights vj one may finally identify data points as outliers.

5 Possibilistic Clustering

While the two approaches studied in Sections 3 and 4 merely relax the constraints
∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1, by (implicitly or explicitly) allowing the member-

ship degrees to sum to values less than 1 (because the membership degree to the
noise cluster is deducted or an adaptable data point weight is introduced), possi-
bilistic (fuzzy) clustering [12, 13] is more radical and abandons these constraints
altogether, allowing the membership degrees to sum to arbitrary values. However,
this permits the trivial solution ∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij = 0, which ob-
viously minimizes the objective function J(X,U,C) =

∑c
i=1

∑n
j=1 u

w
ij d

2
ij , but,

as is equally obvious, is entirely useless.
To fix this problem, a term is added to the objective function that drives the

membership degrees away from zero, leading to [12]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij d
2
ij +

c∑
i=1

ηi

n∑
j=1

(1− uij)w.

Here the ηi are suitable positive numbers (one per cluster ci, 1 ≤ i ≤ c) that
determine the (squared) distance at which the membership degree of a point to
a cluster is 0.5. They are usually initialized, based on the result of a preceding
run of standard fuzzy clustering, as the average fuzzy intra-cluster distance

ηi =

∑n
j=1 u

w
ijd

2
ij∑n

j=1 u
w
ij
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and may or may not be updated in each iteration of the optimization process [12].
The membership degrees are then computed as

uij =
(

1 +
(
d2ij/ηi

) 1
w−1

)−1
.

It should be noted that the above objective function is truly optimized only if all
clusters are identical [39], because the missing constraints decouple the clusters
(as can be seen from the computation of the membership degrees). Possibilistic
clustering thus actually requires that the optimization process gets stuck in a
local optimum in order to yield useful results, which is a somewhat strange
property. Although the missing constraints certainly help dealing with outliers,
this property limits the usefulness of a pure possibilistic approach, although the
problem may be mitigated by introducing cluster repulsion [39].

A first solution to this problem was suggested in [14], which combined possi-
bilistic and standard fuzzy clustering, where the latter is sometimes also called
probabilistic fuzzy clustering, because of the formal resemblance of the member-
ship degrees of a data point to probabilities, due to the constraints ∀j; 1 ≤ j ≤ n :∑c
i=1 uij = 1. This approach works with the objective function

J(X,U,C) =

c∑
i=1

n∑
j=1

(uwij + vκij) d
2
ij ,

with the usual constraint for the membership degrees uij , but the constraints
∀i; 1 ≤ i ≤ c :

∑n
j=1 vij = 1 for the possibilistic typicality values vij . However,

it turns out that the membership degrees dominate this approach and since the
typicality values depend on the number n of data points, they become very small
for large data sets. As an improvement, in [15, 16] the objective function

J(X,U,C) =

c∑
i=1

n∑
j=1

(auwij + bvκij) d
2
ij +

c∑
i=1

ηi

n∑
j=1

(1− vij)κ

was proposed, which contains a second term that is characteristic for possibilistic
clustering. This leads to the usual (probabilistic) update rule for the membership
degrees uij , while the possibilistic typicality values are updated with

vij =
(

1 +
(
bd2ij/ηi

) 1
κ−1

)−1
,

that is, like the membership degrees in possibilistic fuzzy clustering.
A fundamentally different solution is the graded possibilistic approach pre-

sented in [17], which allows for a smooth transition between possibilistic and
probabilistic fuzzy clustering. By drawing on an adequately relaxed form of the
constraints ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1, data points can have a lower total

influence weight (in the sense of Section 2), but the cluster prototypes are still
coupled and (thus) the trivial solution (that is, ∀i, j : uij = 0) is avoided.

The class of constraints suggested in [17] is ∀j; 1 ≤ j ≤ n :
∑c
i=1 u

[ξ]
ij = 1,

where [ξ] = [ξ∗, ξ
∗] is an interval variable, with the natural restrictions 0 ≤ ξ∗ ≤ 1
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and 1 ≤ ξ∗. These generalized constraints are satisfied if for each j there exists
a value ξj ∈ [ξ] such that

∑c
i=1 u

ξj
ij = 1. Note that standard probabilistic fuzzy

clustering results as a special case of this scheme for [ξ] = [1, 1] and possibilistic
fuzzy clustering for [ξ] = [0,∞]. Note also that we may choose ξ∗ = α and
ξ∗ = 1

α with a single parameter α ∈ [0, 1] as a natural simplification.
With this approach the membership degrees are computed as uij = uij,◦/κj ,

where uij,◦ is a “free” or “raw” or unnormalized membership degree, as it results
from standard possibilistic fuzzy clustering (see above) and [17]

κj =


(∑c

i=1 u
1/α
ij,◦
)α

if
∑c
i=1 u

1/α
ij,◦ > 1,(∑c

i=1 u
α
ij,◦
)1/α

if
∑c
i=1 u

α
ij,◦ < 1,

1 otherwise.

An extensive discussion of several formulations of this soft transition or graded
possibilistic approach to fuzzy clustering can be found in [18].

6 Alternative Transformation

A disadvantage of the standard membership transformation approach to fuzzy
clustering, which relies on h(uij) = uwij (see Section 2), is that it always produces
membership degrees. That is, regardless of how far away a data point is from
a cluster center, its membership degree never vanishes. This is one of the core
reasons for the negative influence of noise and outliers on fuzzy clustering results.

In order to allow some membership degrees to be zero, an alternative member-
ship transformation was suggested in [19]: h(uij) = αu2ij + (1−α)uij , α ∈ (0, 1],

or, with a more easily interpretable parametrization, h(uij) = 1−β
1+βu

2
ij + 2β

1+βuij ,

β ∈ [0, 1). It relies on the standard transformation h(uij) = u2ij and mixes it
with the identity to avoid a vanishing derivative at zero. The parameter β is,
for two clusters, the ratio of the smaller to the larger squared distance, at and
below which we get a crisp assignment [19]. It therefore takes the place of the
fuzzifier w: the smaller β, the softer the boundaries between the clusters.

The update rule for the membership degrees is derived in essentially the same
way as for h(uij) = uwij , although one has to pay attention to the fact that crisp
assignments are now possible and thus some membership degrees may vanish.
The detailed derivation, which we omit here, can be found in [19, 26]. It yields

uij =
u′ij∑c
k=1 u

′
kj

with u′ij = max

{
0, d−2ij −

β

1 + β(cj − 1)

cj∑
k=1

d−2ς(k)j

}
,

where ς : {1, . . . , c} → {1, . . . c} is a mapping function for the cluster indices
such that ∀i; 1 ≤ i < c : dς(i)j ≤ dς(i+1)j (that is, ς sorts the distances) and

cj = max

{
k

∣∣∣∣ d−2ς(k)j > β

1 + β(k − 1)

k∑
i=1

d−2ς(i)j

}
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is the number of clusters to which the data point xj has a non-vanishing mem-
bership. This update rule is fairly interpretable, as it still assigns membership
degrees essentially according to the relative inverse squared distances to the clus-
ters, but subtracts an offset from them, which makes crisp assignments possible.

7 Unsquared Distances

Up to now we considered how fuzzy clustering can be made more robust by
changing the way in which data points are assigned to the clusters. Now we turn
to the more fundamental approach of changing how distances between the data
points and the clusters are measured.1 As explained in Section 2, one of the core
reasons for outliers having a strong influence on the cluster parameters is the
use of squared Euclidean distances. If we used unsquared Euclidean distances
instead, the clustering algorithm would become much more robust w.r.t. noise
and outliers. This can be seen clearly in the right diagram of Figure 2: the outlier
in the top right of the diagram has a much weaker influence on the cluster center
if it is computed as the point that minimizes the sum of the unsquared Euclidean
distances to the data points. Although the center moves if the outlier is included
in the computations, it stays much closer to the center computed without the
outlier and remains inside the group of data points forming the cluster.

However, a disadvantage of unsquared Euclidean distances is that the stan-
dard approach of finding the cluster update rules as it was reviewed in Section 2
becomes problematic, since the square is essential for obtaining (simple) deriva-
tives. Several solutions have been suggested to solve or circumvent this problem.
In the first place, one may rely on a scheme as it was introduced for hard cluster-
ing with the c-medoids algorithm [40]: instead of computing c cluster centers in
the data space that minimize the sum of the distances, one selects those c data
points that have this property. This is achieved by starting with a random se-
lection of c data points as the initial cluster centers and assigning, as in c-means
clustering, each data point to the center that is closest to it. Then it is tried
to improve each cluster center in turn by replacing it with a data point that is
not currently a cluster center. The best replacement is chosen and then another
replacement is sought for improvement. The process stops if no replacement of
a cluster center reduces the sum of unsquared distances to the data points.

This c-medoids approach has been transferred to fuzzy clustering, for exam-
ple, in [41] under the name “relational fuzzy c-means clustering” (RFCM) and
in [3] under the name FANNY (Fuzzy Analysis). The difference between the two
approaches consists merely in the fuzzifier used, which is fixed to 2 in FANNY,
but can take any value greater than 1 in RFCM. An efficient version for large
data sets was proposed in [42]. A combination of this scheme with the noise
clustering approach studied in Section 3 was presented in [43].

The restriction that in the c-medoids approach only data points can become
cluster centers can be removed by using so-called c-medians clustering [2]. Again,

1 Note that this approach is not restricted to fuzzy clustering, but can be applied for
any clustering scheme, including classical c-means clustering.
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however, the problem consists in finding the c (geometric) medians that minimize
the sum of the distances to the data points. This is easy only if instead of
the Euclidean distance another member of the Minkowski family of distance
functions, namely the L1 distance, is used: dij =

∑m
k=1 |cik − xjk|. In this case

the medians can be determined separately in each of the m dimensions of the
data space, reducing the problem to trivial statistics in one dimension.2

For any other member Lp, p ≥ 1, of the Minkowski family, an iterative ma-
jorization scheme was suggested in [22]. This extends the core idea of [21], which
introduced an iterative majorization scheme for squared Minkowski distances
with 1 ≤ p ≤ 2, after the special cases of the L1 distance and the L∞ distance
had been studied, for example, in [20] and [44]. The approach in [22] is even more
general than merely allowing unsquared distances from the Minkowski family.
Rather it defines the objective function as [22]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij d
2λ
ij,p with d2λij,p =

( m∑
k=1

|cik − xjk|p
)2λ
p

,

where p ≥ 1 is the parameter that selects the member of the Minkowski family of
distance functions and the parameter λ, 0 ≤ λ ≤ 1, allows to make the clustering
algorithm robust by choosing a small value for λ. For example, p = 2 and λ = 1

2
specify the most interesting case of unsquared Euclidean distances.

Intuitively, the iterative majorization procedure consists in finding, for the
current state of the cluster prototypes, a sufficiently simple auxiliary function
majorizing the actual objective function. That is, this auxiliary function touches
the objective function at the current cluster prototypes and is nowhere smaller
than the objective function. Furthermore, it should be easy to find the optimum
of this majorizing function, so that one can jump to this optimum in a single step,
obtaining new cluster prototypes. Then a new majorizing function is constructed
for the new prototypes and the process is iterated until convergence. Presenting
mathematical details of this scheme is beyond of the scope of this paper, though.
An interested reader is referred to [22], which provides an extensive treatment.

8 Transformed Distances

Instead of using one of the approaches discussed in the preceding section, one
may also stick with the (squared or unsquared) Euclidean distance and modify
the distance computation or transform the distance measure before computing
the membership degrees to increase robustness. One of the most straightforward
approaches in this direction is to use an ε-insensitive distance function [24]. It
contains the c-medians approach that was mentioned in the preceding section as

2 Note that computing the membership degrees remains unchanged, regardless of the
distance measure and whether it is squared or not, because for this computation the
cluster prototypes are fixed and thus the distances are effectively constants.
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a special case (for ε = 0), because it employs the objective function [24]

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij dij,ε with dij,ε =

p∑
k=1

max{0, |xjk − cik| − ε},

where ε is the user-specified insensitivity parameter. The update rules for the
membership degrees and the cluster centers can be derived in a fairly standard
fashion from this objective function (using Lagrange multipliers to incorporate
the constraints and partial derivatives), but as the result is mathematically some-
what involved, we do not reproduce it here, but refer an interested reader to [24].

Note that the idea of an ε-insensitive distance function is essentially to give a
larger weight to typical data points, since the points in the ε-vicinity of a cluster
center are assigned crisply (i.e. uij = 1) to this cluster center, unless such a
data point has a vanishing ε-insensitive distance from multiple cluster centers,
in which case each equal membership degrees to all of these clusters are chosen.
Together with the employed unsquared Manhattan distance, this considerably
increases the robustness of the algorithm w.r.t. noise and outliers. This effect is
particularly pronounced if a larger fuzzifier is employed (compare Figure 1, even
though this figure refers to squared Euclidean distances).

A more general alternative consist in exploiting the idea of robust estimators
(especially M-estimators, cf. [45]) as in [25], which uses the objective function

J(X,U,C) =

c∑
i=1

n∑
j=1

uwij ρi(dij),

where the ρi, 1 ≤ i ≤ c, are robust symmetric positive definite functions hav-
ing their minimum at 0 (with ρi(dij) = dwij as a special case). In [25] the same
function ρ is used for all clusters, which is derived from Tukey’s bisquare func-
tion [45]. This leads to update rules for the membership degrees, in which merely
the distances are replaced by ρ(dij), while the cluster centers are updated with

ci =

∑n
j=1 u

w
ijfijxj∑n

j=1 u
w
ijfij

where fij =
dρ(dij)

d dij
.

An even more general, but closely related approach is the alternating cluster
estimation (ACE) scheme that was proposed in [23] (see also [4]). The idea of
this approach is to abandon the requirement of an objective function that is
to be optimized and from which the update rules can be derived. Rather the
alternating optimization scheme is taken as the core algorithmic component, for
which plausible update rules are chosen for the two steps of recomputing the
membership degrees and recomputing the cluster parameters.

In its most common form, such an approach first transform the distances dij
with a radial function r : R → [0, 1] to obtain “free” or “raw” membership
degrees r(dij) to the clusters. These raw membership degrees may then be nor-
malized using, for instance, the constraints ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1. Typical

choices for the radial functions (the name of which stems from the fact that they
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Fig. 3. Radial functions that may be used in alternating cluster estimation (ACE) [23].

are defined on a ray—latin: radius—from the cluster center), are shown in Fig-
ure 3. Especially those radial functions that have a finite support (that is, for
which exists x0 ∈ R+ with ∀x > x0 : r(x0) = 0) are well suited for handling
noise and outliers, because data points with a distance outside the support of
the radial function have a vanishing influence on the corresponding cluster.

The update rules for this scheme are simply (assuming merely cluster centers)

uij =
r(dij)∑c
k=1 r(dkj)

and ci =

∑n
j=1 u

w
ijxj∑n

j=1 u
w
ij

.

Generally, these update rules cannot be derived from an objective function (as
shown in Section 2 for the standard case), but are merely transferred from the
standard approach. It should be noted, though, that for certain radial functions,
for example, the (generalized) Gaussian and the Cauchy function

rGauss(x) = e−
1
2 r
a

and rCauchy(x) =
1

xa + b
,

where a and b are parameters to be specified by a user, a formulation with the
help of an objective function is possible, so that the needed update rules can
be obtained in the usual way (using Lagrange multipliers to incorporate the
constraints and setting partial derivatives equal to 0, see [26] for details).

A noteworthy alternative, which also relies on an ACE scheme instead of
deriving the update equations for the membership degrees and cluster param-
eters from an objective function, is to compute the membership degrees as
uij = ((maxk dik)− dij)/maxk dik [46]. In this way the degree of membership of
the data point that is farthest from a cluster center always vanishes, which has
the additional advantage that it renders the membership degrees independent of
the scale of the data set. Note that it is closely related to a possibilistic approach,
because it is usually not ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1.

9 Summary

In this paper we reviewed several approaches to make fuzzy clustering (even)
more robust against noise and outliers. The studied approaches fall into two
categories: (1) reduce the “influence weight” of atypical data points and outliers
on the cluster parameters by changing how membership degrees are computed
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from the distances, and (2) change the distance function or transform it before
the membership computation in order to reduce the degrees of memberships of
atypical data points and outliers. Approaches in the former category are usually
easier to handle, because in them the update rules are fairly easily obtained from
an objective function using standard tools. Changing the distance measure causes
more problems in this respect and thus often either a majorization approach has
to be called upon or the rooting in an objective function is abandoned as in
alternating cluster estimation (ACE). However, all of these approaches have
the desired effect of making fuzzy clustering (even) more robust. Our personal
favorites are noise clustering (see Section 3) and using an alternative membership
transformation (see Section 6). However, this should not be interpreted as a
recommendation against any of the other approaches.
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