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Abstract—1In many applications the objects to cluster are
described by quantitative as well as qualitative features. A variety
of algorithms has been proposed for unsupervised classification
if fuzzy partitions and descriptive cluster prototypes are desired.
However, most of these methods are designed for data sets with
variables measured in the same scale type (only categorical, or
only metric). We propose a new fuzzy clustering approach based
on a probabilistic distance measure. Thus a major drawback of
present methods can be avoided which lies in the vulnerability
to favor one type of attributes.

I. INTRODUCTION

Clustering mixed feature-type data sets is a task frequently
encountered in data analysis. It may occur, for instance, in
the field of user modeling when mining descriptive user seg-
ments is aimed at grouping users according to their particular
interests and behavior. Little work has been done in defining
and comparing algorithms that form expressive descriptions
(prototypes) of fuzzy clusters from data described by a mix
of quantitative and qualitative features. Ismail and El-Sonbaty
were the first who applied the concept of fuzziness when
partitioning datasets of symbolic objects [1]. Their symbolic
fuzzy c-means approach can handle a wide variety of different
attribute types including ordinal variables and intervals while
forming expressive cluster prototypes. For instance, these
prototypes can contain the weighted frequencies of modalities
in the cluster. They applied Diday’s dissimilarity measure
for symbolic objects [2]. Although this measure allows for
the calculation of dissimilarity also for continuous attributes,
the cluster centers they construct are not appropriate for this
quantitative type. Thus the symbolic fuzzy c-means algorithm
is not suitable for mixture-type data sets. Yang, Hwang, and
Chen overcome this limitation by modifying and extending the
dissimilarity measure as well as the construction of cluster
prototypes [3]. Their approach is able to cluster symbolic
and fuzzy feature components. Values of continuous attributes
can be embodied in their respective parameterizations of
trapezoidal fuzzy numbers. That way, all attributes of mixed-
type objects are utilized for finding clusters. Results of the
method on toy data sets are provided.

Other related methods place more restrictions on the set
of allowed attribute types. The fuzzy k-modes algorithm is

restricted to categorical variables and finds the fuzzy cluster
modes when using the simple matching dissimilarity measure
for categories [4]. An extension called k-prototypes algorithm
for dealing with both metric and categorical features has been
proposed for the hard k-modes algorithm. Dissimilarity is then
computed separately for the respective types of feature com-
ponents. In the aggregated dissimilarity a weight parameter
controls the influence of the nominal features on the total
value [5]. Another approach that limits itself to categorical
variables is a fuzzy-statistical algorithm [6]. As explained
in [7], however, the (“pure”) prototypes are assumed only
for theoretical substantiation but they are not constructed.
Similarly, all relational clustering algorithms are suitable to
perform the classification task for mixed-type objects. These
algorithms require a distance matrix as input, do not reference
the actual input data, and as result they yield the indices
of the most typical objects in the clusters. In this way,
cluster prototypes are not constructed which were useful for
characterizing the clusters. With our approach we want to
overcome the following limitations of the present methods:

Problem 1: Formation of representative cluster proto-
types. In the literature this issue is often motivated only,
because the weighted mean equations for calculating new
cluster centers do not work for symbols. Certainly this problem
arises when alternately improving a clustering solution. Our
motivation for prototypes which are able to represent the
clusters’ characteristics lies in the requirement that they should
also be informative for a user, since prototypes are the result of
data analysis. This is a major research objective in the presence
of heterogenous feature and data types [8].

Problem 2: Calculation of dissimilarity. In our problem
setting the Euclidean distance is inappropriate for determining
the membership degrees of objects to clusters. For the cal-
culation of dissimilarity between cluster centers and objects a
variety of dissimilarity measures is available [2], [9]. However,
special care has to be taken when the distances regarding the
qualitative and quantitative features are computed separately
first and aggregated to a total dissimilarity later. Then it has
to be ensured that the qualitative and quantitative components
are commensurable in order to avoid favoring one type of
attributes. This can be achieved by standardizing numeric



data and/or introducing weights into the distance measure.
However, weight parameters are always problematic, since the
objective choice of values is often difficult [5]. Further, the
classification results are easily distorted or can be manipulated
when weights are chosen by the user [9].

II. Fuzzy CLUSTERING

Most fuzzy clustering algorithms are objective function
based: they determine an optimal (fuzzy) partition of a given
data set X = {Z; | j =1,...,n} into clusters by minimizing
an objective function
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where u;; € [0,1] is the membership degree of datum Z;
to cluster ¢ and d;; is the distance between datum z; and
cluster 4. The ¢ x n matrix U = (u;;) is called the fuzzy
partition matrix and C describes the set of clusters by stating
location parameters (i.e. the cluster center) and maybe size and
shape parameters for each cluster. The parameter m, m > 1,
is called the fuzzifier or weighting exponent. It determines
the “fuzziness” of the classification: with higher values for
m the boundaries between the clusters become softer, with
lower values they get harder. Usually m = 2 is chosen.

Constraint (2) guarantees that no cluster is empty and
constraint (3) ensures that the membership degrees of a datum
to the clusters sum up to 1 and thus that each datum has the
same total influence. Because of the second constraint this
approach is usually called probabilistic fuzzy clustering, since
with it the membership degrees for a datum formally resemble
the probabilities of its being a member of the corresponding
clusters. The partitioning property of a probabilistic clustering
algorithm, which “distributes” the weight of a datum to the
different clusters, is due to this constraint.

Unfortunately, the objective function J cannot be minimized
directly. Therefore an iterative algorithm is used, which alter-
nately optimizes the membership degrees and the cluster pa-
rameters. That is, first the membership degrees are optimized
for fixed cluster parameters, then the cluster parameters are
optimized for fixed membership degrees. The main advantage
of this scheme is that in each of the two steps the optimum
can be computed directly. By iterating the two steps the joint
optimum is approached (although it cannot be guaranteed that
the global optimum will be reached—the algorithm may get
stuck in a local minimum of the objective function .J).

The update formulae are derived by simply setting the
derivative of the objective function J w.r.t. the parameters to
optimize equal to zero (necessary condition for a minimum).

Independent of the chosen distance measure we thus obtain the
following update formula for the membership degrees [10]:
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The update formulae for the cluster parameters depend, of

course, on what parameters are used to describe a cluster

(location, shape, size) and on the chosen distance measure.

Therefore a general update formula cannot be given.

The approach we develop in this paper is based on a
mixture model for the process that generated the data and
from this model assumption we derive a distance measure
that is inversely proportional to the probability that a datum
was generated by a cluster, similar to the idea underlying
fuzzy maximum likelihood estimation (FMLE) [11]. Details
are derived in the next two sections.

III. MIXTURE MODELS

In a mixture model it is assumed that a given data set
X ={Z;|j=1,...,n} has been drawn from a population
of ¢ clusters. Each cluster is characterized by a k-variate prob-
ability distribution, which is described by a prior probability
of the cluster and a conditional probability density function
(cpdf). The data generation process may then be imagined
as follows: first a cluster 4, ¢ € {1,...,c}, is chosen for an
example, indicating the cpdf to be used, and then the example
is sampled from this cpdf. Consequently the probability of
occurrence of a data point Z can be computed as
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where C' is a random variable describing the cluster 4 chosen
in the first step, X is a random vector describing the attribute
values of the data point, and © = {O4,...,0.} with each ©;,
1 =1,...,c, containing the parameters for one cluster (that
is, its prior probability and the parameters of the cpdf) [12].

Here we consider a model in which the cpdf for each cluster
consists of two parts, one for the numeric and one for the
nominal attributes. We use the following notation: let I and
K be the sets of indices of the numeric and the nominal
attributes, respectively. The projection of the random vector
X to the numeric attributes is denoted by X [I], the projection
of a data point Z by Z[I]. For the nominal part, X [K] denotes
the projection of the random vector to the nominal attributes,
X;, I € K, denotes the random variable describing the [-th
nominal attribute, the domain of which is a set of s; categories,
coded by their indices, i.e. dom(X;) = {1,...,s;}. Finally,
x; denotes the value of the attribute X; in a data point .

We assume that the numeric attributes are conditionally
independent of the nominal ones given the cluster, so that
their joint cpdf can be computed as a product of two terms,
one for the numeric and one for the nominal attributes, i.e.

P1c(@i;:0:) = P o (@i ©5) - Py o (TN ©5).



Furthermore we assume that the joint cpdf of the numeric
attributes is a multivariate normal distribution, i.e.
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where [i; is the mean vector and 3J; the covariance matrix of
the normal distribution, : = 1,...,c.

Finally we assume that the nominal attributes are condition-
ally independent given the class, so that the joint probability of
a combination of nominal attribute values (i.e. the probability
of a vector Z[K]) can be computed as a product of conditional
probabilities, one for each attribute, i.e.
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where the gl‘i, [ € K, are vectors
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stating the conditional probabilities of the different categories
of the attribute X in the i-th cluster.
Consequently the parameters ©; of the i-th cluster are

70l‘K‘|’i}7

where 6; is the prior probability of the i-th cluster and it is
Vr,s;0 < rs < |K|:lls € KA(r<s— 1, <ly),ie.
the vectors holding the cluster-spe01ﬁc conditional probability
distributions are sorted w.r.t. the attribute index.

Assuming that the examples in a data set are independent
and are drawn from the same distribution (i.e., that the distribu-
tions of their underlying random vectors X ; are identical), we
can compute the probability of occurrence of the data set X as
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Note that we do not know the value the random variable C},
which indicates the cluster, has for each example case ;.
However, given the data point, we can compute the posterior
probability that a data point has been sampled from the cpdf
of the ¢-th cluster using Bayes’ rule as
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This posterior probability may be used to complete the data
set w.r.t. the cluster, namely by splitting each example &; into
c examples, one for each cluster, which are weighted with the
posterior probability pc, ¢, (1|Z;; ©). This idea is used in the
well known expectation maximization (EM) algorithm [13].
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IV. THE PROPOSED ALGORITHM

The mixture model provides the means to define the similar-
ity measure for mixed-feature types data sets and it also allows
for the formation of expressive cluster prototypes. We define
the distance d;; between the datum Z; and cluster ¢ as the
reciprocal of the probability that the datum &; occurred and
that it was generated by the component distribution underlying
the cluster <. Then a high probability results in a small distance
value, whereas a low probability that the datum was created
by the distribution of cluster 7 indicates a large distance.
Constructed in this intuitive way the distance measure is
the reciprocal of the numerator in eqn. (5) of the posterior
probabilities. We obtain
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This definition has another interesting property: Inserted into
the update equation for the membership degrees (4) it yields
membership degrees that are equal to the posterior probabil-
ities of the data points provided the fuzzifier m = 2 (see
eqn. (5)). Only for this value of the weighting exponent the
partial assignments u;; of the data points to the clusters
are their posterior probabilities [14]. Defining the distance
measure in analogy to the posterior probabilities has been done
first by Gath and Geva in [11].

Given the update equations for the membership degrees
and the similarity measure as above, we still need to find
expressions for re-calculating the parameters. Unfortunately,
an updating scheme for the cluster parameters ©; cannot be
derived by minimizing the objective function. Inserting the
distance measure into eqn. (1) and setting its derivative w.r.t.
the parameters equal to zero does not lead to analytically
solvable expressions for the minimizing parameter values.

Using the mixture model, however, we can calculate the
probability of occurrence of the data set for fixed assignments
of data to clusters. After the membership degrees have been
determined, we take into account that the partition of the data
set is fuzzy. That is, each generated instance has a certain case
weight in each cluster, which is discussed in more detail later.
For now, let w;; be the weight of example ¥; with which it
is generated by the cpdf underlying cluster 7. The probability
of the data to occur is then given by
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Since the w;; are fixed during the re-estimation of the pro-
totype parameters, we can determine those parameter values
that maximize the above probability. By doing so we obtain
the maximum likelihood estimates of the cpdf parameters
in ©;. Instead of maximizing eqn. (6) directly, we take
the logarithm of this formula (which leaves the maximum
unchanged, because the logarithm is monotonous) and get the



following function of the parameters O;:
F(©) = logP(X;0)
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Since the terms containing the different parameters in O,
are not related, they can be maximized independently. The
generalized estimators for the prior probabilities 6; as well
as the estimators for fi; and X; in the normally distributed
continuous features are obtained by maximizing terms (7)
and (8), respectively. The well-known maximum likelihood
estimators are [15]:
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In order to obtain estimators for the parameters of the multi-
nomial distributions we optimize term (9). We intr(lduce La-
grange multipliers \;; for the constraints that 3" 9”2-[7:] =1
and set the derivative of this term w.r.t. the parameters 6;;[r],

r=1,...,s, to zero (necessary condition for a maximum):
o Zzww S lo Gyl + A <1 _Ze,lz )
aft[b J=1i=1 lEK
Xn: 5 L o L0 (13)
= WtjO0x;0,b =7 — Aa|t — >
j=1 ’ Oae[0]
where d,, 3 is the Kronecker symbol,
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From expression (13) we get s; equations (for b =1,...,s)
for each value of ¢, t=1,...,c:
a|t = (14)

Summing these equations over b ylelds
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Inserting this into eqn. (14) we obtain the maximum likelihood
estimator for the probabilities of category r of the nominal
attribute X; given cluster ¢:
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Summarizing, the weighted relative frequencies of the attribute
categories in the clusters are used as estimates for their
conditional probabilities. They are stored in the corresponding

prototypes.

In order to completely describe the proposed algorithm
the case weights w;; have to be specified. We do so in
analogy to the well-known objective function based algorithm
of Gustafson and Kessel [16]. In this algorithm the formulae
for updating the cluster means and the implicitly calculated
covariance matrices for detecting hyper-ellipsoidal clusters are
as follows [10]:
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Apparently, they look very similar to the estimators with un-
specified case weights as derived above (eqn. 11 and 12). The
results of Gustafson and Kessel suggest to choose w;; = w7
to arrive at analogous equations. This has been done first in
the Fuzzy Maximum Likelihood Estimation (FMLE) algorithm
as described in detail in [10]. We refer to our approach as
extended FMLE, since this method is developed to cluster
data sets which can also contain nominal attributes and since
it employs the same weighting of instances.

Discussion: Fuzzy Maximum Likelihood Estimation is
very similar to the well known Expectation Maximization
(EM) algorithm applied to mixture decomposition under the
assumption of a hidden variable indicating the class member-
ship [13]. The relatedness of the methods is intimated by the
almost identical derivation of the estimators. The differences,
however, are made explicit in the different choice of the
instance weights w;; in both algorithms.

The EM algorithm maximizes the probability of the data
set to occur by first calculating the posterior probabilities that
a data point was created by the cpdfs of the clusters. This
is done for fixed model parameters and yields the partial
weights with which a data point belongs to the clusters
(see eqn. (5)). Then these weighted assignments to clusters
are used as instance weights in the estimators in order to
optimize the likelihood. Thus, in the EM algorithm the partial
assignments of a datum to the clusters are identical to the
instance weight that is used when estimating the parameters,
such that w;; = pC|X(i|f; 0).

In Fuzzy Maximum Likelihood Estimation, on the other
hand, the partial assignments, namely the membership de-
grees u;;, are different from the instance weights that are used
when re-estimating the parameters, which are u;7. Even in
the case m = 2, where the calculated membership degrees



TABLE I
THE PROBABILISTIC MODEL USED TO GENERATE THE DATA.

TABLE I
THE RESULT OF (EXTENDED) FMLE ON ALL ATTRIBUTES.

Aq Az As As Aq Az Az Az
cluster | u o2 | p o2 1 2 3 1 2 3 cluster | pu o2 u o2 1 2 3 1 2 3
1 4 1 5 1 01 02 07]07 01 02 1 38 12 (50 08| .06 21 .74 | .80 .01 .20
2 3 1 3 1 02 07 01101 02 07 2 29 10|28 10| .23 70 .07 .05 22 .72
3 6 1 3 1 107 01 0202 07 0.1 3 61 10|31 11].76 .06 .18 | .25 .62 .14

Fig. 1. The data points with classes.

u;; correspond to the posterior probabilities (due to the
special definition of the distance measure that is used in this
approach), the case weights w;; = u;} < u;;.

There is no choice of m such that the FMLE algorithm
becomes identical to the EM algorithm, because m also
appears in formula (4) for computing the membership degrees,
which rules out the choice m = 1. It is the coupling of the
exponents m and —— that distinguishes FMLE from EM.

V. EXPERIMENTS

Since our clustering approach is based on an explicit prob-
abilistic model, real world data sets are not well suited for
experiments, because for such data sets the underlying model
is not known and thus an assessment whether it was recovered
well is difficult, if possible at all. Therefore we relied on
artificial data sets, which we generated with Monte Carlo
simulation from a naive Bayes classifier. We used three classes
and four attributes, two of them numeric and two nominal.

We ran several experiments using different models (i.e.
naive Bayes classifiers) and different seed values for the data
generator. From the generated data sets we selected one that
shows the effects of using symbolic attributes in clustering as
well as the differences to standard expectation maximization.
The underlying model is shown in Table 1. Attributes A; and
Ag are numeric and assumed to be conditionally independent
given the cluster and normally distributed. Their columns state
their mean values  and variances o2. Attributes Az and A,
are nominal with three values each and their columns state the
conditional probabilities of these values given the cluster.

From this model we generated 300 data points randomly.
The numeric part of this data set, i.e. the values of A; and
Ao, with the color of the data points indicating the cluster
that generated them, is shown in Figure 1. Obviously there is

no clear cluster structure, so that a clustering approach that
uses only the numeric attributes is not likely to recover the
underlying model. However, the relative frequencies of the
nominal attributes’ values, which are close to the conditional
probabilities in Table I, fairly clearly indicate the generating
cluster and thus it can be expected that using them in the
clustering process helps recovering the underlying model.
The results of processing this data set with the different
algorithms are shown in Figures 2 to 7, which depict the
numeric subspace of the data. Figures 2 and 3 show the
generating model and a naive Bayes classifier induced from the
data set. These are the reference models with which the results
of the clustering algorithms are to be compared, because they
show the “true” cluster structure. Figures 4 and 5 show the
results of the EM algorithm using only the numeric or all
attributes, respectively. Using only the numeric attributes there
is a considerable difference in cluster shape to the reference,
which is clearly reduced if the nominal attributes are taken
into account. The same holds, in an even more pronounced
way, for the (extended) FMLE algorithm, the results of which
on only the numeric or on all attributes are shown in Figure 6
and 7, respectively. With the help of the nominal attributes
the cluster structure is much better recovered. The result of
the (extended) FMLE algorithm on all attributes, represented
in the same way as the generating model, is shown in Table II.
From these and other experiments we can also report the
following: EM proved to be the much more stable algorithm.
FMLE tends to reduce the prior probability of one or more
clusters to (almost) zero—as can already be guessed from
the fact that in Figure 6 the blue (left) cluster is driven
far to left, thus covering fewer data points than the other
clusters. Sometimes this becomes extreme, with one cluster
being driven completely out of the bulk of the data points. This
tendency is even more pronounced if FMLE is not initialized
with the result of the fuzzy c-means algorithm, while EM
can be run directly without problems (initialized with Latin
hypercube sampling). Using all attributes, (extended) FMLE
becomes more stable, but only if the nominal attributes provide
clear information about the cluster structure. However, even
in the above example there are two possible results for the
FMLE on all attributes, which occur about equally often and
of which the better is shown in Figure 7. On the other hand, if
there is a fairly clear structure in the numeric part of the data,
using uninformative nominal attributes does not deteriorate
the results, neither for EM nor for FMLE, so that we can
conjecture that taking nominal attributes into account does not
do any harm (this has to be confirmed by more tests, though).



Fig. 2. The generating model.

Fig. 3.

Induced naive Bayes classifier.

Fig. 5.

VI. CONCLUSIONS

In this paper we gave a brief overview of present approaches
for fuzzy clustering mixed-type data. Our new approach is
based on a probabilistic model and thus circumvents the
problems of weighting dissimilarity components that can result
from separately computing distances regarding the different
attribute types. The formed cluster prototypes contain the
weighted means and covariance matrices of the numeric
attributes and weighted frequencies of the categories of the
nominal attributes in the cluster. Being the results of the
mining process, they are more informative than the prototypes
of present approaches [4]. Our experiments show that nominal
attributes help the clustering algorithm to find a good partition.
However, the extended FMLE seems to be inferior to the
classical EM algorithm, because it is less stable and fairly
sensitive to the initialization of the cluster prototypes.
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