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Abstract: Data Mining, also called Knowledge Discovery in Databases, is a
young area of research, which has emerged in response to the flood of data we
are faced with nowadays. It has taken up the challenge to develop techniques
that can help humans discover useful patterns in their data. One such
technique—which certainly is among the most important, as it can be used
for frequent data mining tasks like classifier construction and dependence
analysis—are graphical models and especially learning such models from a
dataset of sample cases. In this paper we review the basic ideas of graphical
modeling, with a focus on possibilistic networks, and study the principles of
learning such graphical models from a dataset of sample cases.

1 Introduction

Today electronic information processing systems are used by almost every company,
in departments like production, marketing, stockkeeping, or personnel. These systems
were developed, because it turned out to be very important to be able to find certain
information, for example the address of a customer, in a fast and reliable way. Today,
however, due to increasingly powerful computers and advances in database and software
technology, we may also think about using such collections of data not only for retrieving
specific information that is needed at a given moment, but also to search for more
general knowledge that is hidden in them. If, for instance, a supermarket analyzes
the receipts of its customers (which are easily collectible with scanner cashiers) and
thus discovers that certain products are frequently bought together, turnover of these
products may be increased by properly arranging them on the shelves of the market.

Unfortunately, in order to find such hidden knowledge, the retrieval capacities of
standard database systems and the methods of classical data analysis are rarely suffi-
cient. These only allow us to retrieve individual data items as well as to compute simple
aggregations like average regional sales. We may also test hypotheses like whether the
day of the week has any influence on the production quality. More general patterns,
structures, or regularities, however, go undetected. But often knowing these patterns
would make it possible, for example, to increase turnover or product quality. Con-
sequently, in recent years we have seen the emergence of a new research area—often
called “Knowledge Discovery in Databases” (KDD) or “Data Mining” (DM)—which
focuses on automatically generating and testing hypotheses and models that describe
the regularities in a given (large) dataset. Hypotheses and models found in this way
are then used to make predictions and to justify decisions.



In this paper we concentrate on a single data mining method, namely the automatic
construction of graphical models from a dataset of sample cases. This method is very
important, because it can be used to tackle such frequent data mining tasks as classifier
construction and dependence analysis. Our exposition focuses on possibilistic graphical
models, which are introduced as fuzzyfications of relational graphical models.

2 Graphical Models: A Simple Example

The idea underlying graphical modeling is most easily explained with a simple example,
which we study first in the relational and then in the possibilistic setting. The relational
case has the advantage that we can neglect degrees of possibility, which may obscure the
very simple structure. Possibilistic graphical models are then introduced as straightfor-
ward generalizations of relational models and are thus somewhat easier to understand
than their probabilistic counterparts, although the basic structure is identical.

Our example domain consists of a set of geometrical objects, as shown in Figure 1.
These objects are characterized by three attributes: color (or hatching), shape, and size.
As already indicated, we neglect degrees of possibility for the time being and consider
only whether a certain state, i.e., a certain combination of attribute values, is possible
or not. This enables us to represent the objects as a simple relation, which is shown in
the table in Figure 1.

Suppose that an object of the set is chosen at random, but let us assume that not all
attributes of the object can be observed. We may imagine, for example, that the object
is drawn from a box at some distance, so that we can see the color, but cannot discern
the shape or the size. We know, however, that there are only ten objects with certain
values of the three attributes. How can we use this information to draw inferences
about the unobserved properties?

Problems of this kind frequently occur in applications, for instance, in medical
diagnosis: From textbooks and experience a physician knows about the dependences
between diseases and symptoms, perhaps in the context of other properties of the
patient, like age or sex. But he can only observe or ask for symptoms as well as age,
sex, the patient’s history etc. Which disease or diseases are present he has to infer with
the help of his medical knowledge.

In our illustrative example the solution is, of course, trivial: Simply traverse the
table and discard from it all objects with a different color than the one observed, then
collect the possible shapes and sizes from the rest. However, this is possible only,
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Figure 1: A set of simple geometrical objects and the corresponding relation.
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Figure 2: The reasoning space
of the simple geometrical ob-
jects example shown in Fig-
ure 1. Each cube represents
one tuple of the relation.
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Figure 3: Reasoning in the
space as a whole consists in
restricting the relation to the
“slice” that corresponds to the
observation made.

because we have merely ten objects and three attributes. In medical diagnosis this
procedure is inapplicable, because the table we had to construct would be much too
large to process. Therefore we have to structure the medical knowledge of the physician
appropriately, for example, by decomposing it into dependences between few attributes.

Although our example is considerably simpler than the complex domains we have to
handle in practice, it can be used to demonstrate how voluminous (tabular) knowledge
can be decomposed, so that it becomes manageable. The table describing the geometri-
cal objects can be decomposed, without loss, into two smaller tables, from which it can
be reconstructed. We illustrate this by representing the domain as a three-dimensional
space, each dimension of which we associate with an attribute. In this way each possible
combination of attribute values can be represented by a cube in this space, see Figure 2.

Let us assume that the randomly chosen object is grey. In the representation just
described, the naive way of reasoning consists in cutting out the “slice” that is associated
with the color grey, as shown in Figure 3. In this way we infer that the object cannot
be a circle, but must be square or a triangle, and that it cannot be small, but must be
medium or large. However, this inference can also be drawn in a different way, since
the knowledge about the objects can be decomposed into so-called projections to two-
dimensional subspaces. All possible such projections are shown in Figure 4. They result
as shadows thrown by the cubes if light sources are imagined (in sufficient distance) in
front, to the right, and above the reasoning space shown in Figure 1.

The relation can be decomposed into the projections to the back plane and to the
left plane of the reasoning space, because it can be reconstructed from them. This is
demonstrated in Figure 5: First we form the so-called cylindrical extensions of the two
projections. that is, we add all values of the missing dimensions. (The name “cylindrical
extension” for this operation is derived from the common practice to sketch sets as cir-
cles: Adding a dimension to a circle yields a cylinder.) The resulting three-dimensional
relations are intersected, i.e., only cubes contained in both are kept. The result is shown
in Figure 5. Obviously it coincides with the original relation (cf. Figure 2).

The advantage of relational decomposition is that it can be exploited to draw infer-
ences, without having to reconstruct the three-dimensional representation first. This
is demonstrated in Figure 6. First the observation that the object is grey is extended
cylindrically to the subspace color×shape (hatched column) and intersected with the
projection of the relation to this subspace (grey fields). The result is projected to the
shape dimension. From this projection we read, just as we found out above, that the
object cannot be a circle, but must be a square or a triangle. Analogously this result is
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Figure 4: Projections of the re-
lation shown in Figure 1 to the
three possible two-dimensional
subspaces. They are the shad-
ows thrown by the cubes if
light sources are imagined in
front, to the left, and above the
reasoning space.
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Figure 5: Cylindrical exten-
sions of two projections of the
relation depicted in Figure 1
and their intersection. This
demonstrates that the relation
can be decomposed into two
two-dimensional projections.
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Figure 6: Propagating the evi-
dence that the object is grey.
It is not necessary to recon-
struct the original relation: We
can work with the projections
directly.

color shape size Figure 7: Network representation

extended cylindrically to the subspace shape×size (hatched row), intersected with the
projection of the relation to this subspace (grey fields), and finally projected to the size
dimension. This yields that the object cannot be small, but must be medium or large.

This reasoning procedure suggests to represent the reasoning space as a graph or
network, as shown in Figure 7. Each node of this network stands for an attribute
and the edges indicate which projections are needed. It should be noted, though,
that the subspaces are not always two-dimensional as in this very simple example. In
applications the subspaces may have three, four, or more dimensions. Accordingly, the
edges in the corresponding network then connect more than two nodes (thus forming
the hyperedges of so-called hypergraphs).

Furthermore it should be noted that the projections have to be chosen carefully:
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Figure 8: Not all choices of
two projections are decompo-
sitions. If the wrong projec-
tions are selected, the intersec-
tion of their cylindrical exten-
sions can contain many addi-
tional tuples.
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Figure 9: It is not always possi-
ble to decompose a relation. In
this case approximations may
have to be accepted.

Not just any two projections will do. This is demonstrated in Figure 8, where instead
of the projection to the back plane we use the projection to the bottom plane. The
intersection of the cylindrical extensions of these two projections, which is shown on the
bottom left in Figure 8 differs considerably from the original relation, which is shown
again on the top right.

But not only have the projections to be chosen with care, sometimes it is not even
possible to find a decomposition. To see this consider Figure 9, in which two cubes are
marked. Suppose first that the cube marked 1 is removed. It is easily verified that the
resulting relation can no longer be decomposed into two projections to two subspaces.
However, it is still possible to reconstruct the original relation be using all three possible
two-dimensional projections: The intersection with the third projection (to the bottom
plane) removes the superfluous cube 1. If, however, the cube marked 2 is removed, the
relation cannot be decomposed any more. Removing this cube does not change any of
the projections: In all three directions there is still another cube throwing the shadow.
Hence the cube marked 2 is contained in all intersections of projections to subspaces.

Such situations are common in practice. But since in applications it is usually
impossible to manage the domains under consideration without decomposition, ap-
proximations have to be accepted. That is, if no (exact) decomposition is possible, it is
tried to find a set of subspaces of limited size so that the intersection of the cylindrical
extensions of the projections to these subspaces contains as few additional tuples as
possible (obviously, an approximate decomposition can contain only additional tuples).

The idea underlying relational graphical models is easily generalized to probabilistic
and possibilistic graphical models. Here we confine to the possibilistic case, though.
(Details about probabilistic graphical models can be found, for instance, in [Pearl 1988,
Jensen 1996, Lauritzen 1996, Castillo et al. 1997].) In the possibilistic setting the
(binary) information whether a combination of attribute values is possible or not is
replaced by a degree of possibility [Dubois and Prade 1988], the semantics of which we
consider in more detail below.
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Figure 10: A simple possi-
bility distribution that can
be decomposed, just like
the relation studied above,
into the marginal distribu-
tions on two subspaces.
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Figure 11: Propagation of
the evidence that the ob-
ject is grey, using only the
two marginal distributions.

As an example consider the three-dimensional possibility distribution shown in Fig-
ure 10, which is defined on the same space as the relation considered above. The only
difference is that tuples that were contained in the relation now have a high degree of
possibility, while tuples that were missing have a low degree of possibility. The marginal
distributions, which take the place of the shadow projections, are computed by taking
the maximum over the dimension along which the projection is carried out.

Like the relation studied above, this possibility distribution can be decomposed
into the marginal distributions on the two subspaces color×shape and shape×size.
From these marginal distributions the original three-dimensional distribution can be
reconstructed by computing the minimum of corresponding marginals. For instance,
the value 20 for small black triangles is computed as the minimum of the value 40 for
black triangles and the value 20 for small triangles.

As in the relational case the possibility to decompose the distribution enables us
to draw inferences using only the marginal distributions that form the decomposi-
tion without having to reconstruct the original three-dimensional distribution. This
is demonstrated in Figure 11, assuming again that the randomly chosen object is ob-
served to be green. The reasoning procedure is exactly the same as in the relational
case (cf. Figure 6): The evidence that the object is green is extended cylindrically to
the subspace color×shape (setting all values in the same colum to the marginal value)
and intersected with the marginal distribution on this space (upper numbers) by taking
the minimum. This yields the new distribution (lower numbers), which is projected
to the shape dimension to obtain the degrees of possibility of the different shapes by
taking the maximum over rows. The second step is analogous. The shape information
is extended cylindrically to the subspace shape×size and intersected with the marginal



distribution on this space (upper numbers) by taking the minimum. The resulting dis-
tribution (lower numbers) is projected to the size dimension by taking the maximum,
thus yielding degrees of possibility for the different sizes.

3 Graphical Models: General Characterization

Based on the intuition conveyed with the simple examples of the preceding section, we
now turn to a more formal characterization of graphical models.

3.1 Decomposition

The decomposition underlying relational graphical models is, of course, well-known
from the theory of relational databases [Ullman 1988] and actually relational database
theory is strongly connected to the theory of graphical models. The connection is
brought about by the notion of the join-decomposability of a relation, which in relational
databases is exploited to store a high-dimensional relation with less redundancy and,
obviously, using less storage space.

The idea underlying join-decomposability is that often a relation can be recon-
structed from certain projections of it by forming their so-called natural join. Formally,
this can be described as follows: Let U = {A1, . . . , An} be a set of attributes and let
dom(Ai) be their respective domains. Furthermore, let rU be a relation over U . We
represent this relation by its indicator function, which assigns a value of 1 to all tuples
contained in the relation and a value of 0 to all tuples not contained in it. The tuples
themselves are represented as conjunctions

∧
Ai∈U Ai = ai, which state a value for each

of the attributes. Using an indicator function a projection rM of the relation rU to a
subset M of the attributes in U can easily be defined by

rM

( ∧
Ai∈M

Ai = ai

)
= max

∀Aj∈U−M :
ai∈dom(Aj)

rU

( ∧
Ai∈U

Ai = ai

)
,

where the somewhat sloppy notation w.r.t. the maximum is meant to indicate that the
maximum has to be taken over all values of all attributes in U −M . With this notation
a relation rU is called join-decomposable w.r.t. a family M = {M1, . . . ,Mm} of subsets
of U iff

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

rU

( ∧
Ai∈U

Ai = ai

)
= min

M∈M
rM

( ∧
Ai∈M

Ai = ai

)
.

Note that the minimum operation used here is equivalent to the natural join of relational
algebra. It is obvious that in such a situation it suffices to store the projections rM in
order to capture all information contained in the relation rU , because we can always
reconstruct the original relation.

The decomposition scheme we just outlined for the relational case is easily trans-
ferred to the possibilistic case: We only have to extend the range of values of the
indicator function to the real interval [0, 1], i.e., we use possibility distributions instead,
thus “fuzzifying” relational graphical models. In this way a gradual possibility of a
tuple is modeled. The decomposition formula is identical:

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

πU

( ∧
Ai∈U

Ai = ai

)
= min

M∈M
πM

( ∧
Ai∈M

Ai = ai

)
.



To define semantics of degrees of possibility we rely on the context model [Gebhardt and
Kruse 1993]: Suppose that for a description of the modeled domain we can distinguish
between a set C = {c1, . . . , ck} of contexts. These contexts may be given, for example,
by physical or observation-related frame conditions. Furthermore, suppose that we
can describe the relative importance or frequency of occurrence of these contexts by
assigning a probability P (c) to each of them. Finally, suppose that we can state for each
context c a set Γ(c) of possible states—described by tuples—the modeled domain may
be in under the physical or observation-related frame conditions that characterize the
context. We assume each set Γ(c) to be the most specific correct set-valued specification
of the state t0 of the modeled domain, which we can give for the context c. By “most
specific set-valued specification” we mean that we can guarantee that Γ(c) contains
t0, but that we cannot guarantee that a proper subset of Γ(c) contains t0. Given these
ingredients, we define the degree of possibility that a tuple t describes the actual state t0
of the modeled section of the world as the weight (probability) of all contexts in which
t is possible.

Formally, the above description results in a random set [Nguyen 1978, Hestir et
al. 1991] (i.e., a set-valued random variable) Γ : C → 2T as an imperfect (i.e., imprecise
and uncertain) specification of the actual state t0 of the modeled section of the world.
From it we derive a possibility distribution by simply computing its one-point coverage

πΓ : T → [0, 1], πΓ(t) = P ({c ∈ C | t ∈ Γ(c)}) .

With this interpretation a possibility distribution represents uncertain and imprecise
knowledge as can be seen by comparing it to a probability distribution and to a relation.
A probability distribution covers uncertain, but precise knowledge. This becomes ob-
vious if one notices that a possibility distribution in the interpretation described above
reduces to a probability distribution if ∀c ∈ C : |Γ(c)| = 1, i.e., if for all contexts
the specification of t0 is precise. On the other hand, a relation represents imprecise,
but certain knowledge. Thus, not surprisingly, a relation can also be seen as a special
case of a possibility distribution in the interpretation given above, namely if there is
only one context. Hence the context-dependent specifications are responsible for the
imprecision, the contexts for the uncertainty.

3.2 Graphical Representation

Graphs (in the sense of graph theory) are a very convenient tool to describe decom-
positions if we identify each attribute with a node. In the first place, graphs can be
used to specify the sets M of attributes underlying the decomposition. How this is
done depends on whether the graph is directed or undirected. If it is undirected, the
sets M are the maximal cliques of the graph, where a clique is a complete subgraph
and it is maximal if it is not contained in another complete subgraph. If the graph
is directed, we can be more explicit about the distributions in the decomposition: We
can use conditional distributions, since we may use the direction of the edges to specify
which is the conditioned attribute and which are the conditions. Note, however, that
this does not make much of a difference in the relational and the possibilistic case, since
here conditional distributions are simple identified with the corresponding marginal
distributions, i.e.,

π
(
Aj = aj

∣∣∣ ∧
Ai∈M

Ai = ai

)
= π

(
Aj = aj ∧

∧
Ai∈M

Ai = ai

)
.



Secondly, graphs can be used to describe (conditional) dependence and independence
relations between attributes via the concept of separation of nodes. What is to be un-
derstood by “separation” depends again on whether the graph is directed or undirected.
If it is undirected, separation is defined as follows: If X, Y , and Z are three disjoint
subsets of nodes in an undirected graph, then Z separates X from Y iff after removing
the nodes in Z and their associated edges from the graph there is no path, i.e., no
sequence of consecutive edges, from a node in X to a node in Y . Or, in other words, Z
separates X from Y iff all paths from a node in X to a node in Y contain a node in Z.

For directed graphs, which have to be acyclic, the so-called d-separation criterion is
used [Pearl 1988, Verma and Pearl 1990]: If X, Y , and Z are three disjoint subsets of
nodes, then Z is said to d-separate X from Y iff there is no path, i.e., no sequence of
consecutive edges (of any directionality), from a node in X to a node in Y along which
the following two conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,
2. every other node is not in Z.

These separation criteria are used to define conditional independence graphs: A graph
is a conditional independence graph w.r.t. a given multi-dimensional distribution if it
captures by node separation only correct conditional independences between sets of
attributes. Conditional independence means (for three attributes A, B, and C with A
independent of C given B) that

π(A = a, B = b, C = c) = min{π(A = a | B = b), π(C = c | B = b)}.

This formula indicates the close connection of conditional independence and decompos-
ability. Formally, this connection between conditional independence graphs and graphs
that describe decompositions is established by theorems that a distribution is decom-
posable w.r.t. a given graph if and only if this graph is a conditional independence graph
of the distribution. For the probabilistic setting, this theorem is usually attributed to
[Hammersley and Clifford 1971], who proved it for the discrete case, although (accord-
ing to [Lauritzen 1996]) this result seems to have been discovered in various forms by
several authors. In the possibilistic setting similar theorems hold, although certain
restrictions have to be introduced [Gebhardt 1997, Borgelt and Kruse 2002].

Finally, the graph underlying a graphical model is very useful to derive evidence
propagation algorithms, since evidence propagation can be reduced to simple compu-
tations of node processors that communicate by passing messages along the edges of
a properly adapted graph. A detailed account can be found, for instance, in [Jensen
1996, Castillo et al. 1997].

4 Learning From Data: A Simple Example

Having reviewed the ideas underlying graphical models, we now turn to the problem how
we can find a decomposition if there is one and how we can find a good approximation
otherwise. If there is a human expert of the modeled application domain, we may
ask him to specify an appropriate conditional independence graph together with the
necessary distributions. However, we may also try to find a decomposition automatically
by analyzing a dataset of example cases. In the following we study the basic ideas
underlying such learning from data using again our simple geometrical objects example.

Suppose that we are given the table shown in Figure 1 and that we desire to find
a(n approximate) relational decomposition, maybe satisfying certain complexity con-
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Table 1: Selection criteria for
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spaces with the smallest (sec-
ond column) or highest (third
column) values yields the de-
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Figure 12: The selection crite-
ria are only heuristics that not
always find a possible decom-
position: The relation in this
figure is decomposable into the
projection to the back plane
and the projection to the bot-
tom plane. However, the selec-
tion criteria do not yield this
decomposition.

straints. Of course, we could check all possible graphical models and count the addi-
tional tuples. However, such an approach, though feasible for our simple example, is
prohibitive in practice due to the very high number of possible graph structures. It
would be convenient if we could read from a projection (marginal distribution) whether
we need it in a decomposition or not. Fortunately, there is indeed a simple heuristic
criterion, which can be used for such local assessments and provides good chances to
find an appropriate decomposition.

The basic idea is very simple: The intersection of the cylindrical extensions of the
projections should contain as few additional tuples as possible, in order to be as close as
possible to the relation to decompose. It is surely plausible that the intersection contains
few combinations of attribute values if this holds already for the cylindrical extensions.
However, the number of combinations in the cylindrical extensions depends directly
on the number of possible combinations of attribute values in the projections (forming
the cylindrical extension only adds all values of the missing dimensions). Therefore we
should select such projections, which contain as few combinations of attribute values
as possible.

In doing so we should take into account the size of the subspace projected to. The
larger this subspace is, the larger the number of combinations will be, although this is
not relevant for finding a good decomposition. Therefore we should consider not the
absolute, but the relative number of value combinations. For our simple example the
values of this criterion are shown in Table 1. It is easy to verify that choosing the
subspaces with the smallest number of possible value combinations leads to the correct
decomposition. The third column lists the binary logarithm of the reciprocal value of
the relative numbers, which is also known as Hartley information gain. It is discussed
in more detail below.

Although this simple selection criterion works quite nicely in our simple example, it
should be noted that it is not guaranteed to yield the best choice of projections. To see
this consider Figure 12, which shows another three-dimensional relation together with



the three possible projections to two-dimensional subspaces. Although this relation can
be decomposed into the projections to the back plane and to the bottom plane, the
selection criterion just studied does not find this decomposition, but selects the back
plane and the left plane.

5 Learning From Data: General Characterization

In general, there are three main approaches to learn a graphical model:

• Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the subsets of attributes
to be used to compute the (candidate) decomposition of the given distribution.

• Find an conditional independence graph by conditional independence tests.

This approach exploits the theorems mentioned in the preceding section, which
connect conditional independence graphs and graphs that describe decomposi-
tions. It has the advantage that by a single conditional independence test, if it
fails, several candidate graphs can be excluded.

• Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on the
frequently valid assumption that in a conditional independence graph an attribute
is more strongly dependent on adjacent attributes than on attributes that are not
directly connected to it.

Note that none of these methods is perfect. The first approach suffers from the usually
huge number of candidate graphs. The second often needs the strong assumption that
there is a perfect map (a conditional independence graph that captures all conditional
independences by node separation). In addition, if it is not restricted to certain types
of graphs (for example, polytrees), one has to test conditional independences of high
order (i.e., with a large number of conditioning attributes), which tend to be unreliable
unless the amount of data is enormous. The heuristic character of the third approach is
obvious. A relational example in which it fails has been studied in the previous section
(cf. Figure 12) and similar ones can be found for the possibilistic setting.

A (computationally feasible) analytical method to construct optimal graphical mod-
els from a database of sample cases has not been found yet. Therefore an algorithm for
learning a graphical model from data usually consists of

1. an evaluation measure (to assess the quality of a given network) and

2. a search method (to traverse the space of possible networks).

It should be noted, though, that restrictions of the search space introduced by an
algorithm and special properties of the evaluation measure sometimes disguise the fact
that a search through the space of possible network structures is carried out. For
example, by conditional independence tests all graphs missing certain edges can be
excluded without inspecting these graphs explicitly. Greedy approaches try to find
good edges or subnetworks and combine them in order to construct an overall model
and thus may not appear to be searching. Nevertheless the above characterization is
apt, since an algorithm that does not explicitly search the space of possible networks



usually searches (heuristically) on a different level, guided by an evaluation measure.
For example, some greedy approaches search for the best set of parents of an attribute by
measuring the strength of dependence on candidate parents; conditional independence
test approaches search the space of all possible conditional independence statements.

5.1 Computing Projections

A basic operation needed to learn a graphical model from a dataset of sample cases
is a method to determine the marginal or conditional distributions of a candidate de-
composition. Such an operation is necessary, because these distributions are needed to
assess the quality of a given candidate graphical model.

If the dataset is precise, i.e., if in all tuples there is exactly one value for each
attribute, then computing a projection is trivial, since it consists in counting tuples and
computing relative frequencies. However, if the data is imprecise, i.e., contains missing
values or set-valued information, things are slightly more complicated. Fortunately,
with the context model interpretation of a degree of possibility, we have direct means
to handle imprecise values: We simply interpret each imprecise tuple as a description
of the set Γ(c) of states of the world that are possible in some context c. We can do
so, because an imprecise tuple can be rewritten as a set of tuples, namely the set of all
precise tuples compatible with it.

Nevertheless, we face some problems, because we can no longer apply naive methods
to determine the marginal distributions (a detailed explanation can be found in [Borgelt
and Kruse 2002]). However, there is a simple preprocessing operation by which the
database to learn from can be transformed, so that computing maximum projections
becomes trivial. This operation is based on the notion of closure under tuple intersec-
tion. That is, we add (possibly imprecise) tuples to the database in order to achieve
a situation, in which for any two tuples from the database their intersection (i.e., the
intersection of the represented sets of precise tuples) is also contained in the database.
Details can be found in [Borgelt and Kruse 1998, Borgelt and Kruse 2002].

5.2 Evaluation Measures

An evaluation measure serves to assess the quality of a given candidate graphical model
w.r.t. a given database of sample cases, so that it can be determined which of a set of
candidate graphical models best fits the given data. A desirable property of an evalu-
ation measure is decomposability, i.e., the total network quality should be computable
as an aggregate (e.g. sum or product) of local scores, for example a score for a maximal
clique of the graph to be assessed or a score for a single edge.

Most such evaluation measures are based on measures of dependence, since for both
the second and the third basic approach listed above it is necessary to measure the
strength of dependence of two or more variables, either in order to test for conditional
independence or in order to find the strongest dependences. Here we confine ourselves
to measures that assess the strength of dependence of two variables in the possibilistic
case. The transfer to conditional tests (by computing a weighted sum of the results
for the different instantiations of the conditions) and to more than two variables is
straightforward.

Possibilistic evaluation measures can easily be derived by exploiting the close con-
nection of possibilistic networks to relational networks (see above). The idea is to draw
on the α-cut view of a possibility distribution. This concept is transferred from the



Hartley information needed to determine
coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1

Figure 13: Computation of Hartley information gain.
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Figure 14: Illustration of the idea of specificity gain.

theory of fuzzy sets [Kruse et al. 1994]. In the α-cut view a possibility distribution is
seen as a set of relations with one relation for each degree of possibility α. The indicator
function of such a relation is defined by simply assigning a value of 1 to all tuples for
which the degree of possibility is no less than α and a value of 0 to all other tuples.
It is easy to see that a possibility distribution is decomposable if and only if each of
the α-cut relations is decomposable. Thus we may derive a measure for the strength of
possibilistic dependence of two variables by integrating a measure for the strength of
relational dependence over all degrees of possibility α.

To make this clearer, we reconsider the simple example studied above. Figure 13
shows the projection to the back plane of our example reasoning space, i.e., to the
subspace color×shape. We can measure the strength of dependence of color and shape
by computing the Hartley information gain [Hartley 1928]

I
(Hartley)
gain (C, S) = log2

( ∑
c∈dom(C)

rC(C = c)
)

+ log2

( ∑
s∈dom(S)

rS(S = s)
)

− log2

( ∑
c∈dom(C)

∑
s∈dom(S)

rCS(C = c, S = s)
)

= log2

(∑
c∈dom(C) rC(C = c)

) (∑
s∈dom(S) rS(S = s)

)
∑

c∈dom(C)

∑
s∈dom(S) rCS(C = c, S = s)

,

where C stands for the color and S for the size of an object. The idea underlying
this measure is as follows: Suppose we want to determine the actual values of the
two attributes C and S. Obviously, there are two possible ways to do this: In the
first place, we could determine the value of each attribute separately, thus trying to
find the “coordinates” of the value combination. Or we may exploit the fact that the
value combination is restricted by the relation shown in Figure 13 and try to determine
the value combination directly. In the former case we need the Hartley information
of the set of values of C plus the Hartley information of the set of values of S, i.e.



log2 4 + log2 3 ≈ 3.58 bits. In the latter case we need the Hartley information of the
possible tuples, i.e. log2 6 ≈ 2.58 bit, and thus gain one bit. Since it is plausible that we
gain the more bits, the more strongly dependent the two attributes are (because in this
case a value of one of the attributes leaves fewer choices for the value of the other), we
may use the Hartley information gain as a direct indication of the strength of relational
dependence of the two attributes.

The Hartley information gain is generalized to the specificity gain [Gebhardt and
Kruse 1996, Borgelt and Kruse 1997, Borgelt and Kruse 2002] as shown in Figure 14:
It is integrated over all α-cuts of a given (two-dimensional) possibility distribution and
thus measures the average strength of relational dependence on the different α-levels.

Sgain(A, B) =
∫ sup π

0
log2

( ∑
a∈dom(A)

[π]α(A = a)
)

+ log2

( ∑
b∈dom(B)

[π]α(B = b)
)

− log2

( ∑
a∈dom(A)

∑
b∈dom(B)

[π]α(A = a, B = b)
)

dα

Surveys of other evaluation measures—which include probabilistic measures—can be
found in [Borgelt and Kruse 1997, Borgelt and Kruse 2002].

5.3 Search Methods

As already indicated above, a search method determines which graphs are considered
in order to find a good graphical model. Since an exhaustive search is impossible due to

the huge number of graphs (there are 2(n
2) possible undirected graphs over n attributes),

heuristic search methods have to be used. Usually these heuristic methods introduce
strong restrictions w.r.t. the graphs considered and exploit the value of the chosen
evaluation measure to guide the search. In addition they are often greedy w.r.t. the
model quality.

The simplest instance of such a search method is, of course, the Kruskal algorithm
[Kruskal 1956], which determines an optimum weight spanning tree for given edge
weights. This algorithm has been used very early in the probabilistic setting by [Chow
and Liu 1968], who used the Shannon information gain (also called mutual information
or cross entropy) of the connected attributes as edge weights. In the possibilistic setting,
we may simply replace the Shannon information gain by the specificity gain in order to
arrive at an analogous algorithm [Gebhardt and Kruse 1996, Borgelt and Kruse 2002].

A natural extension of the Kruskal algorithm is a greedy parent selection for directed
graphs, which is often carried out on a topological order of the attributes that is fixed
in advance1: At the beginning the value of an evaluation measure is computed for
a parentless child attribute. Then in turn each of the parent candidates (i.e. the
attributes preceding the child in the topological order) is temporarily added and the
evaluation measure is recomputed. The parent candidate yielding the highest value of
the evaluation measure is selected as a first parent and permanently added. In the
third step each remaining parent candidate is added temporarily as a second parent

1A topological order is an order of the nodes of a graph such that all parent nodes of a given node
precede it in the order. That is, there cannot be an edge from a node to a node, which precedes it in
the topological order. By fixing a topological order in advance, the set of possible graphs is severely
restricted and it is ensured that the resulting graph is acyclic.
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The grey nodes correspond to observable attributes.

Figure 15: Domain expert designed network for the Danish Jersey cattle blood type
determination example.

and again the evaluation measure is recomputed. As before, the parent candidate that
yields the highest value is permanently added. The process stops if either no more
parent candidates are available, a given maximal number of parents is reached, or none
of the parent candidates, if added, yields a value of the evaluation measure exceeding
the best value of the preceding step.

This search method has been used by [Cooper and Herskovits 1992] in the well-
known K2 algorithm. As an evaluation measure they used what has become known as
the K2 metric. This measure has later been generalized by [Heckerman et al. 1995] to
the Bayesian-Dirichlet metric. Of course, in the possibilistic setting we may also apply
this search method, again relying on the specificity gain as the evaluation measure. In
order to handle multiple parent attributes with it, we simply combine all parents into
one pseudo-attribute and compute the specificity gain for this pseudo-attribute and the
child attribute.

A more extensive discussion of search methods for learning graphical models from
data, which includes a simulated annealing approach, can be found, for example, in
[Borgelt and Kruse 2002].

6 An Example Application

As an example of an application we consider the problem of blood group determination
of Danish Jersey cattle in the F-blood group system [Rasmussen 1992]. For this problem
there is a Bayesian network (a probabilistic graphical model based on a directed acyclic
graph) designed by human domain experts, which serves the purpose to verify parentage
for pedigree registration.

The world section modeled in this example comprises 21 attributes, eight of which
are observable. The size of the domains of these attributes ranges from two to eight
values. The total reasoning space has 26 · 310 · 6 · 84 = 92 876 046 336 possible states.
This number makes it obvious that the knowledge about this world section must be
decomposed in order to make reasoning feasible, since it is clearly impossible to store a
probability or a degree of possibility for each state. Figure 15 lists the attributes and
shows the conditional independence graph of the Bayesian network.



sire true sire stated sire ph.gr. 1
correct ph.gr. 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

Table 2: An example of a con-
ditional probability distribution
that is associated with the condi-
tional independence graph shown
in Figure 15.

n y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6
n y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7
n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0
n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0
n y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7
n y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0
n y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5
n y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7

Table 3: An extract from the Danish Jersey cattle database.

As described above, a conditional independence graph enables us to decompose the
joint distribution into a set of marginal or conditional distributions. In the Danish Jer-
sey cattle example, this decomposition leads to a considerable simplification: Only 308
conditional probabilities have to be specified. An example of a conditional probability
table, which is part of the decomposition, is shown in Table 2. It states the conditional
probabilities of the phenogroup 1 of the stated sire of a given calf conditioned on the
phenogroup 1 of the true sire and whether the sire was correctly identified. The num-
bers in this table are derived from statistical data and the experience of human domain
experts.

Besides the domain expert designed reference structure there is a database of 500
real world sample cases (an extract of this database is shown in Table 3). This database
can be used to test learning algorithms for graphical models, because the quality of the
learning result can be determined by comparing the constructed graph to the reference
structure. However, there is a problem connected with this database, namely that it
contains a fairly large number of unknown values—only a little over half of the tuples
are complete. (This can already be guessed from the extract shown in Table 3: the
stars denote missing values.)

Missing values and set-valued information make it difficult to learn a Bayesian net-
work, because an unknown value can be seen as representing imprecise information:
It states that all values contained in the domain of the corresponding attribute are
possible, without any known preferences between them. Nevertheless it is still feasible
to learn a Bayesian network from the database in this case, since the dependencies
are rather strong and thus the small number of complete tuples is still sufficient to
recover the underlying structure. However, learning a possibilistic network from the
same dataset is much easier, since possibility theory was especially designed to handle
imprecise information (see above). Hence no discarding or special treatment of tuples
with missing values or set-valued information is necessary.



In order to check this conjecture, we implemented the learning methods discussed
above (together with their probabilistic counterparts) in a prototype program called
INES (Induction of NEtwork Structures) [Borgelt and Kruse 2002]. The networks in-
duced with different evaluation measures are very similar to the domain expert designed
reference structure, even though the reference structure is a Bayesian network, which
may differ from the corresponding possibilistic network, since it employs a different
notion of conditional independence. Evaluations of the learned networks show that
their quality is comparable to that of learned probabilistic networks and the reference
structure w.r.t. reasoning.

7 Conclusion

In this paper we reviewed possibilistic graphical models and discussed approaches to
learn them from a database of sample cases. Based on the context model interpretation
of a degree of possibility imprecise data are easily handled in such a possibilistic ap-
proach. W.r.t. learning algorithms a lot of work done in the probabilistic counterpart of
this research area can be transferred: All search methods are directly usable, only the
evaluation measures have to be adapted. Experiments carried out with an example ap-
plication show that learning possibilistic networks from data is a noteworthy alternative
to the established probabilistic methods if the data to learn from is imprecise.
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