
A Naive Bayes Classifier Plug-In for DataEnginetm

Christian Borgelt

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, D-39106 Magdeburg, Germany

e-mail: borgelt@iws.cs.uni-magdeburg.de

Abstract: Naive Bayes classifiers are an old and well-
known type of classifiers that can be seen as a special
type of probabilistic networks. They use a probabilis-
tic approach to assign a class to a case or an object
and can easily be induced from a dataset of sample
cases. In this paper I review this technique in order
to demonstrate its simplicity and its power to pro-
duce comprehensible results. Since the task to induce
a classifier from data turns up frequently in applica-
tions (e.g. credit assessment, disease detection etc.) a
commercial data analysis tool should provide an im-
plementation of this technique. Nevertheless, the well-
known data analysis program DataEnginetm has until
recently suffered from lacking such a module. This
drawback is now removed by a plug-in consisting of a
set of user-defined function blocks I implemented.

1 Introduction

Naive Bayes classifiers [3, 2, 4, 5] are an old and well-
known type of classifiers. Classifiers, in turn, are pro-
grams which automatically classify a case or an object,
i.e. assign it according to its features to one of several
predefined classes. For example, if the cases are pa-
tients in a hospital, the attributes are properties of
the patients (e.g. sex, age etc.) and their symptoms
(e.g. fever, high blood pressure etc.), the classes may
be diseases or drugs to administer.

Naive Bayes classifiers use a probabilistic approach
to assign the classes. That is, they try to compute the
conditional probabilities of the different classes given
the values of other attributes and then predict the class
with the highest conditional probability. Since it is
usually impossible to store or even to estimate these
conditional probabilities, they exploit Bayes rule and a
set of conditional independence statements to simplify
the task. A detailed description is given in section 2.

Due to the strong independence assumptions, but
also because some attributes may not be able to con-
tribute to the classification accuracy, it is not al-
ways advisable to use all available attributes. With
all attributes a naive Bayes classifier is more compli-
cated than necessary and sometimes even yields results

that can be improved upon by using fewer attributes.
Therefore a naive Bayes classifier should be simplified.
Two very simple methods to reduce the number of at-
tributes are discussed in section 3.

In section 4 I describe the plug-in I implemented for
the well-known data analysis tool DataEnginetm. This
plug-in consists of three function blocks: one to induce
(and simplify) a naive Bayes classifier, one to classify
new data, and one to compute a confusion matrix to
evaluate the quality of the induced classifier.

2 Naive Bayes Classifiers

As already mentioned in the introduction, naive Bayes
classifiers use a probabilistic approach to classify data:
They try to compute conditional class probabilities
and then predict the most probable class. To be more
precise, let C denote a class attribute with a finite
domain of m classes, i.e., dom(C) = {c1, . . . , cm},
and let A1, . . . , An be a set of other attributes used
to describe a case or an object of the universe of
discourse. These other attributes may be symbolic,
i.e., dom(Aj) = {a(j)

1 , . . . , a
(j)
mj}, or numeric, i.e.,

dom(Aj) = IR. For simplicity, I always use the no-
tation a

(j)
ij

for a value of an attribute Aj , indepen-
dent of whether it is a symbolic or a numeric one.1

With this notation, a case or an object can be de-
scribed by an instantiation ω = (a(1)

i1
, . . . , a

(n)
in

) of the
attributes A1, . . . , An and thus the universe of dis-
course is Ω = dom(A1) × . . . × dom(An).

For a given instantiation ω, a naive Bayes classifier
tries to compute the conditional probability

P (C = ci | ω) = P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

for all ci and then predicts the class for which this
probability is highest. Of course, it is usually impos-
sible to store all of these conditional probabilities ex-
plicitly, so that a simple lookup would be all that is

1To be able to use this notation for numeric attributes, one
simply has to choose an appropriate uncountably infinite index
set Ij , from which the index ij is to be taken.

needed to find the most probable class. If there are
numeric attributes, this is obvious (some parameter-
ized function is needed then). But even if all attributes
are symbolic, such an approach most often is infeasi-
ble: A class (or a class probability distribution) has
to be stored for each point of the Cartesian product
of the attribute domains, whose size grows exponen-
tially with the number of attributes. To circumvent
this problem, naive Bayes classifiers exploit—as their
name already indicates—Bayes rule and a set of condi-
tional independence assumptions. With Bayes rule the
conditional probabilities are inverted, i.e., naive Bayes
classifiers consider2

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

| C = ci) · P (C = ci)

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

Of course, for this inversion to be possible, the prob-
ability density function f(A1 = a

(1)
i1

, . . . , An = a
(n)
in

)
must be strictly positive.

There are two observations to be made about the
inversion carried out above. In the first place, the de-
nominator of the fraction on the right can be neglected,
since for a given case or object to be classified, it is
fixed and therefore does not have any influence on the
class ranking (which is all we are interested in). In
addition, its influence can always be restored by nor-
malizing the class distribution, i.e., we can exploit

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
m∑

i=1

f(A1 =a
(1)
i1

, . . . , An =a
(n)
in

| C =ci) · P (C = ci).

It follows that we only need to consider

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
1
S

f(A1 = a
(1)
i1

, . . . , An = a
(n)
in

| C = ci) · P (C = ci),

where S is a normalization constant.3

Secondly, we can see that just inverting the proba-
bilities does not buy us anything, since the probability
space is just as large as it was before the inversion.
However, here the second ingredient of naive Bayes
classifiers, which is responsible for the “naive” in their
name, comes in, namely the conditional independence
assumptions. To exploit them, we first apply the chain

2For simplicity, we always use a probability density func-
tion f , although this is strictly correct only, if there is at least
one numeric attribute. If all attributes are symbolic, this should
be a probability P . The only exception is the class attribute,
since it necessarily has a finite domain.

3Strictly speaking, the constant S is dependent on the instan-

tiation (a
(1)
i1

, . . . , a
(n)
in

). However, as already said above, when

classifying a given case or object, this instantiation is fixed and
hence we need to consider only one value S.

rule of probability:

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
1
S
· f(An = a

(n)
in

| An−1 = a
(n−1)
in−1

, . . . ,

A1 = a
(1)
i1

, C = ci)
. . .

· f(A2 = a
(2)
i2

| A1 = a
(1)
i1

, C = ci)

· f(A1 = a
(1)
i1

| C = ci) · P (C = ci).

Now we make the crucial assumption that given the
value of the class attribute, any attribute Aj is inde-
pendent of any other. That is, we assume that know-
ing the class is enough to determine the probability
(density) for a value a

(j)
ij

, i.e., that we need not know
the values of any other attributes. Of course, this is a
pretty strong assumption, which is very likely to fail.
However, it considerably simplifies the formula stated
above, since with it we can cancel all attributes Aj

appearing in the conditions:

P (C = ci | A1 = a
(1)
i1

, . . . , An = a
(n)
in

)

=
1
S
· f(A1 = a

(1)
i1

| C = ci)

· f(A2 = a
(2)
i2

| C = ci)
. . .

· f(An = a
(n)
in

| C = ci) · P (C = ci).

This is the fundamental formula underlying naive
Bayes classifiers. For a symbolic attribute Aj the con-
ditional probabilities P (Aj = a

(j)
ij

| C = ci) are stored
as a simple conditional probability table. This is fea-
sible now, since there is only one condition and hence
only m · mj probabilities have to be stored.4 For nu-
meric attributes it is usually assumed that the proba-
bility density is a Gaussian function (a normal distri-
bution) and hence only the expected values µj(ci) and
the variances σ2

j (ci) need to be stored in this case.
It should be noted that naive Bayes classifiers can

be seen as a special type of probabilistic networks, or,
to be more precise, of Bayesian networks [7]. Due
to the strong independence assumptions underlying
them, the corresponding network has a very simple
structure: It is star-like with the class attribute being
the source of all edges (see figure 1).

Naive Bayes classifiers can easily be induced from a
dataset of preclassified sample cases. All one has to do
is to estimate the conditional probabilities/probability
densities f(Aj = a

(j)
ij

| C = ci) using, for instance,

4Actually only m · (mj −1) probabilities are really necessary.
Since the probabilities have to add up to one, one value can be
discarded from each conditional distribution. However, in im-
plementations it is usually much easier to store all probabilities.

C�
����3 A1�
��
6

A2�
��
QQk

A3�
��
��+

A4�
��
· · ·

QQs
An�
��

Figure 1: A naive Bayes classifier is a Bayesian network
with a star-like structure.

maximum likelihood estimation. For symbolic at-
tributes, this yields

P̂ (Aj = a
(j)
ij

| C = ci) =
#(Aj = a

(j)
ij

, C = ci)

#(C = ci)
,

where #(C = ci) is the number of sample cases that
belong to the class ci and #(Aj = a

(j)
ij

, C = ci) is
the number of sample cases belonging to class ci and
having the value a

(j)
ij

for the attribute Aj . To ensure
that the probability is strictly positive (see above), it
is assumed that there is at least one example for each
class in the dataset. Otherwise the class is simply re-
moved from the domain of the class attribute. If an
attribute value does not occur given some class, its
probability is either set to 1

2N , where N is the number
of sample cases, or a uniform prior of, for example, 1

N
is always added to the estimated distribution, which is
then renormalized (Laplace correction).

For a numeric attribute Aj the standard maximum
likelihood estimation functions

µ̂j(ci) =
1

#(C = ci)

#(C=ci)∑
k=1

a
(j)
ij(k)

for the expected value, where a
(j)
ij(k) is the value of

the attribute Aj in the k-th sample case belonging to
class ci, and

σ̂2
j (ci) =

1
#(C = ci)

#(C=ci)∑
k=1

(
a
(j)
ij(k) − µ̂j(ci)

)2

for the variance can be used.
As an illustrative example, let us take a look at

the well-known iris data [6]. The problem is to pre-
dict the iris type (iris setosa, iris versicolor, or iris
virginica) from measurements of the sepal length and
width and the petal length and width. Due to the
limited number of dimensions of a sheet of paper we
confine ourselves to the latter two measures. The naive
Bayes classifier induced from these two measures and
all 150 cases is shown in table 1. It is easy to see
from this table how different petal lengths and widths
provide evidence for the different types of iris flowers.
The conditional probability density functions used by

iris type setosa versicolor virginica
prior prob. 0.333 0.333 0.333
petal length 1.46 ± 0.17 4.26 ± 0.46 5.55 ± 0.55
petal width 0.24 ± 0.11 1.33 ± 0.20 2.03 ± 0.27

Table 1: A naive Bayes classifier for the iris data. The
normal distributions are described by stating µ̂ ± σ̂.

6

-
petal length

petal width

�����
����������
������
�

�
�
��

�
����
�
��������
���

�
������

◦◦ ◦
◦

◦
◦
◦

◦
◦◦

◦

◦

◦

◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦◦ ◦
◦

◦

◦◦◦
◦

◦◦◦◦
◦◦◦ ◦
◦

◦
◦

◦◦◦◦◦
◦

?

?
?

?

?
?

?
??

?

?
?
?

?

?
?

?

?
?

?

?

? ?
?

?

???

?

?

?
?

?

?
?

?
?

??

?

?
?

?

?
?

?

?
?

?

?

ABC
� iris setosa
◦ iris versicolor
? iris virginica

Figure 2: Naive Bayes density functions for the iris
data. The ellipses are the 2σ-boundaries of the proba-
bility density functions.

this naive Bayes classifier to predict the iris type are
shown graphically in figure 2. The ellipses are the 2σ-
boundaries of the (bivariate) normal distribution. As
a consequence of the strong conditional independence
assumptions, these ellipses are axis-parallel: The nor-
mal distributions are estimated separately for each di-
mension and no covariance is taken into account.

3 Classifier Simplification

A naive Bayes classifier makes strong independence as-
sumptions (see above). It is not surprising that these
assumptions are likely to fail. If they fail, the classi-
fier may be worse than necessary. In addition, some
attributes may not contribute to the classification ac-
curacy, making the classifier more complicated than
necessary. To cope with these problems, simplification
methods may be used, for instance, simple greedy at-
tribute selection. With this procedure one can hope
to find a subset of attributes for which the strong as-
sumptions hold at least approximately.

I consider here two very simple, but effective at-
tribute selection methods: The first method starts
with a classifier that simply predicts the majority class
and does not use any attribute information. Then at-
tributes are added one by one. In each step that at-
tribute is selected which, if added, leads to the small-
est number of misclassifications on the training data.
The process stops when adding any of the remaining
attributes does not reduce the number of errors.

The second method is a reversal of the first. It starts
with a classifier that uses all available attributes and
then removes attributes step by step. In each step that
attribute is selected which, if removed, leads to the
smallest number of misclassifications on the training
data. The process stops when removing any of the
remaining attributes leads to a larger number of errors.

4 The DataEnginetm Plug-In

I implemented a naive Bayes classifier as a plug-in for
the well-known data analysis program DataEnginetm

in order to improve this esteemed tool even further. It
consists of three user-defined function blocks:

nbi — Naive Bayes classifier induction.
This function block receives as input a table of classi-
fied sample cases and induces a naive Bayes classifier.
The data types of the table columns (either symbolic
or numeric) can be stated in the unit fields of the ta-
ble columns, which can also be used to instruct the
algorithm to ignore certain columns. Although tables
passed to user-defined functions blocks may not con-
tain unknown values, this function block provides a fa-
cility to specify which table fields should be considered
as unknown: In the configuration dialog you may enter
a value for the lowest known value. All values below
this value are considered to be unknown. In addition
the configuration dialog lets you choose a simplification
method and you can specify the Laplace correction to
be used (as a multiple of the standard value 1

n , where n
is the number of tuples the classifier is induced from)
and the name of a file into which the induced naive
Bayes classifier should be saved.

nbc — Naive Bayes classification.
This function block receives as input an induced naive
Bayes classifier. It executes the naive Bayes classi-
fier for each tuple in the table and adds to it a new
column containing the class predicted by the classifier.
The configuration dialog lets you enter the name of the
classification column, the Laplace correction to be used
(again as a multiple of the standard value 1

n , where n is
the number of tuples the classifier was induced from),
and (just as described for the block above) a lowest
known value. In addition you can request an addi-
tional column into which a confidence value is written
for each classified tuple. This confidence value is the
probability of the predicted class as computed by the
classifier.

xmat — Compute a confusion matrix.
This function blocks receives as input a table. Its
configuration dialog lets you enter the names of two
columns for which a confusion matrix shall be deter-
mined. It generates a table containing the confusion
matrix (either with absolute or relative numbers) and

the sums over lines and columns (excluding the diag-
onal elements). This function block is identical to the
one I described last year for the decision tree plug-in
[1]. I include it here, since it is useful for evaluating
the quality of classifiers of arbitrary type.

All function blocks dealing directly with naive Bayes
classifiers (nbi and nbc) also comprise a viewer which
lets you inspect the constructed naive Bayes classifier
using the well-known MS Windows tree view control
(used, for example, in the MS Windows explorer to
visualize the hierarchic file system). Hence you need
not accept the classifier as a black box (as it is usually
the case for e.g. neural networks), but you can inspect
what evidence it exploits to arrive at its results.

5 Summary

In this paper I reviewed the well-known naive Bayes
classifier in order to demonstrate its simplicity and its
power to produce comprehensible results, which makes
it a useful tool for many data analysis task. I presented
an implementation of a naive Bayes classifier induction
algorithm as a plug-in for the well-known data-analysis
tool DataEnginetm. This implementation comprises a
simplification procedure to improve the quality of in-
duced classifiers and lets you choose freely the Laplace
correction to be used. Two other function blocks al-
low you to execute an induced naive Bayes classifier
to classify a set of cases and to compute a confusion
matrix to assess the quality of an induced classifier.

References

[1] C. Borgelt. A Decision Tree Plug-In for Data-
Enginetm. Proc. 2nd Data Analysis Symposium,
Aachen, Germany 1998

[2] R.O. Duda and P.E. Hart. Pattern Classification
and Scene Analysis. J. Wiley & Sons, New York,
NY, USA 1973

[3] I.J. Good. The Estimation of Probabilities: An
Essay on Modern Bayesian Methods. MIT Press,
MA, USA, 1965

[4] P. Langley, W. Iba, and K. Thompson. An Anal-
ysis of Bayesian Classifiers. Proc. 10th Nat. Conf.
on Artificial Intelligence, 223–228, AAAI Press
and MIT Press, USA 1992

[5] P. Langley and S. Sage. Induction of Selective
Bayesian Classifiers. Proc. 10th Conf. on Artificial
Intelligence, 1994

[6] P.M. Murphy and D. Aha, UCI Repository of Ma-
chine Learning Databases, ftp from ics.uci.edu, di-
rectory pub/machine-learning-databases, 1994

[7] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference (2nd
edition). Morgan Kaufman, New York 1992

