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Abstract Fuzzy clustering comprises a family of prototype-based clustering meth-
ods that can be formulated as the problem of minimizing an objective function.
These methods can be seen as “fuzzifications” of, for example, the classical c-means
algorithm, which strives to minimize the sum of the (squared) distances between the
data points and the cluster centers to which they are assigned. However, it is well
known that in order to “fuzzify” such a crisp clustering approach, it is not enough to
merely allow values from the unit interval for the variables encoding the assignments
of the data points to the clusters (that is, for the elements of the partition matrix):
the minimum is still obtained for a crisp data point assignment. As a consequence,
additional means have to be employed in the objective function in order to obtain
actual degrees of membership. This paper surveys the most common fuzzification
means and examines and compares their properties.

1 Introduction

The general objective of clustering or cluster analysis [14, 23, 26, 20] is to group
given objects in such a way that objects from the same cluster are as similar as
possible, while objects from different clusters are as dissimilar as possible. In order
to formalize the notion of similarity, so that it becomes mathematically treatable, it is
usually expressed as a distance measure between points (or vectors) representing the
objects in a metric space, usually Rm. Two objects are then seen as the more similar,
the smaller the distance between the data points that represent them.

A common approach to describe the clusters is to use prototypes that capture the
location and possibly also the shape and size of the clusters in the data space. With
such an approach the general objective of clustering can be reformulated as the task
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to find a set of cluster prototypes together with an assignment of the data points to
them, so that the data points are as close as possible to their assigned prototypes. By
formalizing this approach, and using for the prototypes only points in the data space
that represent the cluster centers, one obtains immediately the objective function
of classical c-means clustering [1, 19, 32]: simply sum the (squared) distances of
the data points to the center of the cluster to which they are assigned. The c-means
algorithm then strives to minimize this objective function.

Unfortunately, c-means clustering always partitions the data, that is, each data
point is assigned to one cluster and one cluster only. This is often inappropriate,
as it can lead to somewhat arbitrary cluster boundaries and certainly does not treat
points properly that lie between two (or more) clusters without belonging to any of
them unambiguously. Solutions to this problem consist in either using a probabilistic
approach, like applying the expectation maximization (EM) algorithm to a mixture
of Gaussians (see, for example, [11, 15, 6]), or to employ one of the different “fuzzi-
fications” of the classical crisp scheme (see, for instance, [37, 13, 2, 4, 20, 7]).

In this paper I focus on the latter approach, that is, on how the objective function
of classical c-means clustering can be modified in order to obtain graded cluster
memberships. I survey different methods that have been suggested in the literature
and examine and compare their properties. The remainder of this paper is organized
as follows: Section 2 introduces the presuppositions made and the notation used
in this paper. Section 3 briefly reviews the formal basis of the classical c-means
algorithm. The following two sections discuss the main classes of “fuzzification”
approaches: Section 4 explores membership transformation and Section 5 examines
membership regularization as tools to obtain graded memberships from a modified
objective function. Finally, Section 6 draws conclusions from the discussion.

2 Presuppositions and Notation

We are given a data set X = {x1, . . . ,xn} with n data points, each of which is an
m-dimensional real-valued vector, that is, ∀ j;1 ≤ j ≤ n : x j = (x j1, . . . ,x jm) ∈ Rm.
These data points are to be grouped into c clusters, each of which is described by
a prototype ci, i = 1, . . . ,c. The set of all prototypes is denoted by C = {c1, . . . ,cc}.
I confine myself here to cluster prototypes that consist merely of a cluster center,
that is, ∀i;1 ≤ i ≤ c : ci = (ci1, . . . ,cim) ∈ Rm. The assignment of the data points to
the cluster centers is encoded as a c×n matrix U = (ui j)1≤i≤c;1≤ j≤n, which is often
called the partition matrix. In the crisp case, a matrix element ui j ∈ {0,1} states
whether data point x j belongs to cluster ci or not. In the fuzzy case, ui j ∈ [0,1]
states the degree to which x j belongs to ci (degree of membership).

In this paper I also confine myself to the (squared) Euclidean distance as the
measure for the distance between a data point x j and a cluster center ci, that is,

d2
i j = d2(ci,x j) = (x j− ci)

>(x j− ci) =
m

∑
k=1

(x jk− cik)
2.
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A common alternative is the (squared) Mahalanobis distance with a cluster specific
covariance matrix Σi [18, 17], that is, d2

i j = (x j− ci)
>Σ
−1
i (x j− ci). However, this

choice adds at least a shape parameter and in some approaches also a size parame-
ter to the cluster prototypes (see, for example, [4, 20, 7]). Nevertheless, extending
the approaches to this distance measure is usually fairly straightforward. An exten-
sion to the L1-distance [24], that is, to di j = ∑

m
k=1 |x jk− cik|, or to other Minkowski

metrics is less simple to achieve, but certainly beyond the scope of this paper.

3 Classical c-Means Clustering

As already stated, classical c-means clustering strives to find, for a given data set X,
a set C of cluster centers and a partition matrix U, such that the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui j d2
i j

is minimized under the constraints ∀i;1 ≤ i ≤ c : ∀ j;1 ≤ j ≤ n : ui j ∈ {0,1} and
∀ j;1≤ j≤ n : ∑

c
i=1 ui j = 1. These constraints ensure that each data point is assigned

to one cluster and to one cluster only (crisp partition of the data set).
Since the minimum cannot be found directly using analytical means, an alternat-

ing optimization scheme is employed. At the beginning the cluster centers are ini-
tialized randomly, for example, by selecting c data points arbitrarily or by sampling
c points from some distribution on the data space. Then the two steps of partition
matrix update (data point assignment) and cluster center update are iterated until
convergence, that is, until the cluster centers do not change anymore.

In the partition matrix update each data point x j is assigned to the cluster ci, the
center of which is closest to it, that is, the partition matrix is updated according to

ui j =

{
1, if i = argminc

i=1 d2
i j,

0, otherwise.

In the cluster center update each cluster center is recomputed as the mean of the data
points that were assigned to it (hence the name c-means clustering), that is,

ci =
∑

n
j=1 ui j x2

j

∑
n
j=1 ui j

.

This update process is guaranteed to converge and usually does so after fairly few
steps. However, it is fairly sensitive to the initial conditions (i.e. the initial cluster
centers), due to which it can yield undesired results, which are caused by local
minima of the objective function. In order to handle this drawback, it is usually
recommended to execute the clustering algorithm multiple times and take the best
result, that is, the result that yields the smallest value of the objective function.
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In order to obtain degrees of membership, it may seem, at first sight, to be suf-
ficient to simply extend the allowed range of values of the ui j from the set {0,1}
to the real interval [0,1], but to make no changes to the objective function itself.
However, this is not the case: the optimum of the objective function is obtained for
a crisp assignment, regardless of whether we enforce a crisp assignment or not.

This can easily be demonstrated as follows: let k j = argminc
i=1 d2

i j, that is, let k j
be the index of the cluster center closest to the data point x j. Then it is

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui j d2
i j ≥

c

∑
i=1

n

∑
j=1

ui j d2
k j j =

n

∑
j=1

d2
k j j

c

∑
i=1

ui j︸ ︷︷ ︸
=1 (due to the constraints)

=
n

∑
j=1

(
1 ·d2

k j j +
c

∑
i=1
i6=k j

0 ·d2
i j

)
.

Therefore it is best to set ∀ j;1 ≤ j ≤ n : uk j j = 1 and ui j = 0 for 1 ≤ i ≤ c, i 6= k j.
In other words: the objective function is minimized by assigning each data point
crisply to the closest cluster, even though we allowed for degrees of membership.

4 Fuzzification by Membership Transformation

Since we cannot obtain degrees of membership by merely expanding the range of
values of the ui j, we have to modify the objective function if we desire graded
assignments. The most common approach is to apply a transformation to the mem-
bership degrees, that is, to use an objective function of the form

J(X,C,U) =
c

∑
i=1

n

∑
j=1

h(ui j)d2
i j,

where h is a convex function on the real interval [0,1]. This general form was
first studied in [27], where the convexity of h was derived as follows: for sim-
plicity, we confine ourselves to two clusters c1 and c2 and consider the terms of
the objective function that refer to a single data point x j. That is, we consider
J(x j,c1,c2,u1 j,u2 j) = h(u1 j)d2

1 j +h(u2 j)d2
2 j and study how it behaves for different

values u1 j and u2 j. Note that a crisp assignment should not be ruled out categori-
cally, namely if the distances d1 j and d2 j differ significantly. Hence we assume that
d1 j and d2 j differ only slightly, so that a graded assignment is actually desired.

J(x j,c1,c2,u1 j,u2 j) is minimized by choosing u1 j and u2 j appropriately. Exploit-
ing ∑

c
i=1 ui j = 1 yields J(x j,c1,c2,u1 j) = h(u1 j)d2

1 j + h(1− u1 j)d2
2 j. A necessary

condition for a minimum is ∂

∂u1 j
J(x j,c1,c2,u1 j) = h′(u1 j)d2

1 j−h′(1−u1 j)d2
2 j = 0,

where ′ denotes taking the derivative w.r.t. the argument of the function. This leads
to h′(u1 j)d2

1 j = h′(1− u1 j)d2
2 j, which yields another argument that a graded as-
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signment cannot be optimal without any function h: if h is the identity, we have
h′(u1 j) = h′(1−u1 j) = 1 and thus the equation cannot hold if the distances differ.

For the further analysis let us assume, without loss of generality, that d1 j < d2 j,
which implies h′(u1 j)> h′(1−u1 j). In addition, we know that u1 j > u2 j = 1−u1 j,
because the degree of membership should be higher for the cluster that is closer.
In other words, the function h must be the steeper, the greater its argument. There-
fore it must be a convex function on the unit interval [27].

Since we confine ourselves to the Euclidean distance (see Section 2), we can
already derive the update rule for the cluster centers, namely by exploiting that a
necessary condition for a minimum of the objective function J is that the partial
derivatives w.r.t. the cluster centers vanish. Therefore we have ∀k;1≤ k ≤ c :

∇ck J(X,C,U) = ∇ck

c

∑
i=1

n

∑
j=1

h(ui j)(x j− ci)
>(x j− ci) =−2

n

∑
j=1

h(ui j)(x j− ci)
!
= 0.

Independent of the function h, it follows immediately

ci =
∑

n
j=1 h(ui j)x j

∑
n
j=1 h(ui j)

.

This update rule already shows one of the core drawbacks of a fuzzification by
membership transformation, namely that the transformation function enters the up-
date of the cluster centers. It would be more intuitive to use the membership degrees
directly as the weights for the mean computation, which would also ensure that all
data points enter with the same total unit weight (since ∑

c
i=1 ui j = 1 by definition).

However, the weights are rather the transformed membership degrees h(ui j), which
gives unequal weight to the data points as they need not sum to 1.

It may be argued, though, that this effect can actually be desirable: due to the
convexity of the function h the total weight ∑

c
i=1 h(ui j) of data points x j with a less

ambiguous assignment is higher than that of more ambiguously assigned data points.
Hence in this scheme the locations of the cluster centers depend more strongly on
the data points that are “typical” for the clusters. Such an effect is very much in the
spirit of, for instance, robust regression techniques, in which data points receive a
lower weight if they do not fit well to the regression function. This connection to
robust statistical methods was explored in more detail, for example, in [10].

In order to derive the update rule for the partition matrix (and thus for the mem-
bership degrees ui j) we need to know the exact form of the function h. The most
common choice is h(ui j) = u2

i j, which leads to the standard objective function of
fuzzy clustering [13]. The more general form h(ui j) = uw

i j was introduced in [2].
The exponent w, w > 1, is called the fuzzifier, since it controls the “fuzziness” of the
data point assignments: the higher w, the softer the boundaries between the clusters.
This leads to the commonly used objective function [2, 4, 20, 7]

J(X,U,C) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j.
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The update rule for the membership degrees is now derived by incorporating the
constraints ∀ j;1≤ j ≤ n : ∑

c
i=1 ui j = 1 with Lagrange multipliers into the objective

function. This yields the Lagrange function

L(X,U,C,Λ) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j︸ ︷︷ ︸
=J(X,U,C)

+
n

∑
j=1

λ j

(
1−

c

∑
i=1

ui j

)
,

where Λ = (λ1, . . . ,λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂

∂ukl
L(X,U,C,Λ) = w uw−1

kl d2
kl−λl

!
= 0 and thus ukl =

(
λl

wd2
kl

) 1
w−1

.

Summing these equations over the clusters (in order to be able to exploit the cor-
responding constraints on the membership degrees, which are recovered from the
fact that it is a necessary condition for a minimum that the partial derivatives of the
Lagrange function w.r.t. the Lagrange multipliers vanish), we get

1 =
c

∑
i=1

ui j =
c

∑
i=1

(
λ j

wd2
i j

) 1
w−1

and thus λ j =

( c

∑
i=1

(
wd2

i j
) 1

1−w

)1−w

.

Therefore we finally have for the membership degrees ∀i;1≤ i≤ c: ∀ j;1≤ j ≤ n:

ui j =
d

2
1−w
i j

∑
c
k=1 d

2
1−w
k j

and thus for w = 2: ui j =
d−2

i j

∑
c
k=1 d−2

k j

.

This rule is fairly intuitive, as it updates the membership degrees according to the
relative inverse squared distances of the data points to the cluster centers.

However, this rule also has the disadvantage that it necessarily yields a graded
assignment. Regardless of how far a data point is from a cluster center, it will always
receive a non-vanishing degree of membership to the corresponding cluster. The
undesirable results that can be caused by this property in the presence of clusters
with fairly uneven numbers of members have been demonstrated clearly in [27].

In addition, it was revealed in [27] that the reason lies essentially in the fact
that h′(ui j) =

d
dui j

uw
i j = wuw−1

i j vanishes at ui j = 0. This suggests the idea to use a
transformation function that does not have this property and thus allows, at least for
sufficiently large distance relationships, a crisp assignment of data points to cluster
centers. In [27] the function h(ui j) = αu2

i j +(1−α)ui j, α ∈ (0,1], or, with a more

easily interpretable parametrization, h(ui j) =
1−β

1+β
u2

i j +
2β

1+β
ui j, β ∈ [0,1), was sug-

gested as such a transformation. It relies on the standard function h(ui j) = u2
i j and

mixes it with the identity to avoid a vanishing derivative at zero. The parameter β is,
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for two clusters, the ratio of the smaller to the larger squared distance, at and below
which we get a crisp assignment [27]. It therefore takes the place of the fuzzifier w:
the smaller β , the softer the boundaries between the clusters.

The update rule for the membership degrees is derived in essentially the same
way as for h(ui j) = uw

i j, although one has to pay attention to the fact that crisp
assignments are now possible and thus some membership degrees may vanish. The
detailed derivation, which I omit here, can be found in [27] or in [7]. It yields

ui j =
u′i j

∑
c
k=1 u′k j

with u′i j = max
{

0, d−2
i j −

β

1+β (c j−1)

c j

∑
k=1

d−2
ς(k) j

}
,

where ς : {1, . . . ,c} → {1, . . .c} is a mapping function for the cluster indices such
that ∀i;1≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max
{

k
∣∣∣∣ d−2

ς(k) j >
β

1+β (k−1)

k

∑
i=1

d−2
ς(i) j

}
is the number of clusters to which the data point x j has a non-vanishing member-
ship. This update rule is fairly interpretable, as it still assigns membership degrees
essentially according to the relative inverse squared distances to the clusters, but
subtracts an offset from them, which makes crisp assignments possible.

5 Fuzzification by Membership Regularization

We have seen that transforming the membership degrees in the objective function
has the disadvantage that the transformation function appears in the update rule
for the cluster centers. In order to avoid this drawback, one may try to achieve a
fuzzification by leaving the membership degrees in their weighting of the (squared)
distances untouched. Graded memberships are rather achieved by adding a regular-
ization term to the objective function, which pushes the minimum away from a crisp
assignment. Most commonly, the objective function then takes the form

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd2
i j + γ

c

∑
i=1

n

∑
j=1

f (ui j),

where f is a convex function on the real interval [0,1]. The parameter γ takes the
place of the fuzzifier w: the higher γ , the softer the boundaries between the clusters.

To analyze this objective function, we use the same basic means as in the preced-
ing section: we confine ourselves to two clusters c1 and c2 and consider the terms
of the objective function that refer to a single data point x j, that is, we consider
J(x j,c1,c2,u1 j,u2 j) = u1 jd2

1 j +u2 jd2
2 j +γ f (u1 j)+γ f (u2 j). Since u2 j = 1−u1 j, it is

J(x j,c1,c2,u1 j) = u1 jd2
1 j+(1−u1 j)d2

2 j+γ f (u1 j)+γ f (1−u1 j). A necessary condi-
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tion for a minimum is ∂

∂u1 j
J(x j,c1,c2,u1 j)= d2

1 j−d2
2 j+γ f ′(u1 j)−γ f ′(1−u1 j)= 0,

where ′ denotes taking the derivative w.r.t. the argument of the function. This leads
to the simple condition d2

1 j + γ f ′(u1 j) = d2
2 j + γ f ′(1−u1 j).

We now assume again, without loss of generality, that d1 j < d2 j, which implies
f ′(u1 j)> f ′(1−u1 j). In addition we know u1 j > u2 j = 1−u1 j, because the degree
of membership should be higher for the cluster that is closer. In other words, the
function f must be the steeper, the greater its argument. Hence it must be a convex
function on the unit interval in order to allow for graded memberships.

More concretely, we obtain (d2
2 j−d2

1 j)/γ = f ′(u1 j)− f ′(1−u1 j) as a condition
for a minimum. Since f is a convex function on the unit interval, the maximum value
of the right hand side is f ′(1)− f ′(0). If f ′(1)− f ′(0)<∞, we have the possibility of
crisp assignments, because in this case there exist values for d2

1 j, d2
2 j and γ such that

the minimum of the function J(x j,c1,c2,u1 j) w.r.t. ui j either does not exist or lies
outside the unit interval. In such a situation the best choice is the crisp assignment
u1 j = 1 and u2 j = 0 (still assuming that d1 j < d2 j).

To obtain the update rule for the cluster centers we can simply transfer the result
from the preceding section, since the regularization term does not refer to the cluster
centers. Therefore we have the simple rule (because here h(ui j) = ui j)

ci =
∑

n
j=1 ui jx j

∑
n
j=1 ui j

.

This demonstrates the advantage of a membership regularization approach, because
the membership degrees are directly the weights with which the data points enter
the mean computation that yields the new cluster center.

In order to derive the update rule for the membership degrees, we have to respect
the constraints ∀ j;1 ≤ j ≤ n : ∑

c
i=1 ui j = 1. This is achieved in the usual way (cf.

the preceding section) by incorporating them with Lagrange multipliers into the
objective function. The resulting Lagrange function is

L(X,U,C,Λ) =
c

∑
i=1

n

∑
j=1

ui jd2
i j + γ

c

∑
i=1

n

∑
j=1

f (ui j)︸ ︷︷ ︸
=J(X,C,U)

+
n

∑
j=1

λ j

(
1−

c

∑
i=1

ui j

)
,

where Λ = (λ1, . . . ,λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂

∂ukl
L(X,U,C) = d2

kl + γ f ′(ukl)−λl
!
= 0 and thus ukl = f ′−1

(
λl−d2

kl
γ

)
,

where ′ denotes taking the derivative w.r.t. the argument of the function and f ′−1

denotes the inverse of the derivative of the function f . In analogy to Section 4, the
constraints on the membership degrees are now exploited to obtain 1 = ∑

c
k=1 uk j =

∑
c
k=1 f ′−1((λ j − d2

k j)/γ). This equation has to be solved for λ j and the result has
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to be used to substitute λl in the expression for the ukl derived above. However, in
order to do so, we need to know the exact form of the regularization function f .

The regularization functions f that have been suggested in the literature (con-
crete examples are studied below) can be seen as derived from a maximum entropy
approach. That is, the term of the objective function that forces the ui j to minimize
the weighted sum of squared distances is complemented by a term that forces them
to maximize the entropies of the distributions over the clusters, the ui j describe for
each data point. Thus the ui j are pushed away from a crisp assignment, which has
minimum entropy. Generally, such an approach starts from the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd2
i j− γ

n

∑
j=1

H(u j),

where u j = (u1 j, . . . ,uc j) comprises the degrees of membership the data point x j
has to the different clusters. H computes their entropy, as u j is, at least formally, a
probability distribution, since it satisfies ∀i;1≤ i≤ c : ui j ∈ [0,1] and ∑

c
i=1 ui j = 1.

In order to develop the maximum entropy approach in more detail, we consider
the generalized entropy proposed by Daróczy in [9]. Let p = (p1, . . . , pr) be a prob-
ability distribution over r values. Then Daróczy entropy is defined as

Hβ (p) =
2β−1

2β−1−1

r

∑
i=1

pi(1− pβ−1
i ) =

2β−1

2β−1−1

(
1−

r

∑
i=1

pβ

i

)
.

From this general formula the well-known Shannon entropy [38] can be derived as

H1(p) = lim
β→1

Hβ (p) =−
r

∑
i=1

pi log2 pi.

Employing it in the entropy-regularized objective function leads to

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd2
i j + γ

c

∑
i=1

n

∑
j=1

ui j lnui j,

where the factor 1/ ln2 (which stems from the relation log2 ui j = lnui j/ ln2) is in-
corporated into the factor γ , as the natural logarithm allows for easier mathematical
treatment. That is, we have f (ui j) = ui j lnui j [25, 31, 33, 8] and therefore obtain
f ′(ui j) = 1+ lnui j and f ′−1(y) = ey−1. Using the latter in the formulas obtained
above for deriving the update rule for the membership degrees yields

ui j =
e−d2

i j/γ

∑
c
k=1 e−d2

k j/γ
.

As was pointed out in [35, 21], this update rule relates the approach very closely
to the expectation maximization (EM) algorithm for Gaussian mixtures [11, 15, 6],
since by setting γ = 2σ2, we obtain exactly the formula for the expectation step. As a
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consequence, this update rule can be interpreted as computing the probability that a
data point x j was sampled from a Gaussian distribution centered at ci and having the
variance σ2. In addition, since the update rule for the cluster centers coincides with
the maximization step, this form of fuzzy clustering is actually indistinguishable
from the expectation maximization algorithm for a mixture of Gaussians.

It should be noted that f ′(ui j) = 1+ lnui j implies f ′(1)− f ′(0) = ∞ and thus
Shannon entropy regularization always yields graded assignments. However, this
drawback is less harmful here, because e−d2

i j/γ is much “steeper” than d−2
i j and thus

is less prone to produce undesired results (cf. also the discussion in [12]).
Another commonly used special case of Daróczy entropy is so-called quadratic

entropy, which results if we set the parameter β = 2, that is,

H2(p) = 2
r

∑
i=1

pi(1− pi) = 2−2
r

∑
i=1

p2
i .

Employing it in the entropy-regularized objective function leads to

J(X,C,U) =
c

∑
i=1

n

∑
j=1

ui jd2
i j + γ

c

∑
i=1

n

∑
j=1

u2
i j,

as the constant term 2 has no influence on the location of the minimum and thus can
be discarded, and the factor 2 can be incorporated into the factor γ . That is, we have
f (ui j) = u2

i j [34] and therefore obtain f ′(ui j) = 2ui j and f ′−1(y) = y
2 .

In order to derive the update rule for the memberships, one has to pay attention to
the fact that f ′(1)− f ′(0) = 2. Therefore crisp assignments are possible and some
membership degrees may vanish. However, the detailed derivation can easily be
found by following, for example, the same lines as for the analogous approach in
the preceding section, which also allowed for vanishing membership degrees.

The resulting membership degree update rule is ∀i : 1≤ i≤ c : ∀ j : 1≤ j ≤ n :

ui j = max
{

0,
1
c j

(
1+

c j

∑
k=1

d2
ς(k) j

2γ

)
−

di j

2γ

}
,

where ς : {1, . . . ,c} → {1, . . .c} is a mapping function for the cluster indices such
that ∀i;1≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max
{

k
∣∣∣∣ k

∑
i=1

d2
ς(i) j > k dk j−2γ

}
is the number of clusters to which the data point x j has a non-vanishing membership.
In this update rule 2γ can be interpreted as a reference distance relative to which all
distances are judged. For two clusters, 2γ is the difference between the distances of
a data point to the cluster centers, at and above which a crisp assignment is used.
Clearly, this is equivalent to saying that the distances, if measured in 2γ units, must
differ by less than 1 in order to obtain a graded assignment.
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A disadvantage of this update rule is that it refers to the difference of the distances
rather than their ratio, which seems more intuitive. As a consequence, a data point
that has distance x to one cluster and distance y to the other is assigned in exactly the
same way as a data point that has distance x+ z to the first cluster and distance y+ z
to the second, regardless of the value of z (provided z≥−min{x,y}).

Alternatives to the discussed approaches modified the Shannon entropy term,
using, for instance, f (ui j) = ui j lnui j +(1−ui j) ln(1−ui j) [42], or replaced it with
Kullback-Leibler information divergence [30] to the (estimated) cluster probability
distribution [22], that is, f (ui j) = ui j ln ui j

pi
with pi =

1
n ∑

n
j=1 ui j.

It has also been tried to use f (ui j) = uw
i j [41, 36], but combined with h(ui j) = uw

i j
(to avoid technical complications), so that the objective function is effectively

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j (d

2
i j + γ).

Hence this is actually a hybrid approach that combines membership transforma-
tion and regularization. Another hybrid approach, proposed in [40], combines
h(ui j) = uw

i j and Shannon entropy regularization f (ui j) = ui j lnui j. Finally, a gener-
alized objective function was presented in [5] and analyzed in more detail in [43].

It should be noted, though, that the approach of [16], which is covered by the
generalized objective function of [5] and based on

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j− γ

c

∑
i=1

p2
i with pi =

1
n

n

∑
j=1

ui j,

is not a membership regularization scheme, as it yields crisp assignments unless
w > 1. In this approach the entropy term (which is added rather than subtracted)
serves the purpose to choose the number of clusters automatically.

A closely related approach is possibilistic clustering [28, 29], which eliminates
the constraints ∀ j;1≤ j ≤ n : ∑

c
i=1 ui j = 1 and is based on the objective function

J(X,C,U) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j +
c

∑
i=1

ηi

n

∑
j=1

(1−ui j)
w.

Here the ηi are suitable positive numbers (one per cluster ci, 1 ≤ i ≤ c) that de-
termine the distance at which the membership degree of a point to a cluster is 0.5.
They are usually initialized, based on the result of a preceding run of standard fuzzy
clustering, as the average fuzzy intra-cluster distance ηi = ∑

n
j=1 uw

i jd
2
i j/∑

n
j=1 uw

i j and
may or may not be updated in each iteration [28].

Although this approach is useful in certain applications, it should be noted that
the objective function of possibilistic clustering is truly optimized only if all clusters
are identical [39], because the missing constraints decouple the clusters. Thus it
actually requires that the optimization process gets stuck in a local optimum in order
to yield useful results, which is a somewhat strange property.
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6 Conclusions

Since classical c-means clustering does not yield graded data point assignments,
even if one allows the membership variables to take values in the unit interval,
the objective function has to be modified if graded assignments are desired. There
are two fundamental approaches to this: transforming the membership degrees or
adding a membership regularization term. In both cases variants can be derived that
allow partially crisp assignments, that is, allow for vanishing membership degrees,
as well as variants that enforce graded assignments regardless of the data. All of
these variants have advantages and disadvantages: membership transformation suf-
fers generally from the fact that the transformation function enters the cluster center
update, but uses a fairly intuitive relative inverse squared distance scheme for the
membership updates. Quadratic entropy regularization allows for vanishing mem-
bership degrees, but refers to distance differences rather than more intuitive distance
ratios. Shannon entropy regularization leads to a procedure that is equivalent to the
expectation maximization (EM) algorithm for a mixture of Gaussian and thus is
not a specifically “fuzzy” approach anymore. However, judging from the discussion
in [12] due to which the forced graded assignment is unproblematic, its practical
advantages make it, in my personal opinion, the most recommendable approach.
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27. Klawonn F and Höppner F (2003) What is Fuzzy about Fuzzy Clustering? Understanding
and Improving the Concept of the Fuzzifier. Proc. 5th Int. Symposium on Intelligent Data
Analysis (IDA 2003, Berlin, Germany), 254–264. Springer-Verlag, Berlin, Germany

28. Krishnapuram R and Keller JM (1993) A Possibilistic Approach to Clustering. IEEE Trans.
on Fuzzy Systems 1(2):98–110. IEEE Press, Piscataway, NJ, USA

29. Krishnapuram R and Keller JM (1996) The Possibilistic c-Means Algorithm: Insights and
Recommendations. IEEE Trans. on Fuzzy Systems 4(3):385–393. IEEE Press, Piscataway,
NJ, USA

30. Kullback S and Leibler RA (1951) On Information and Sufficiency. Annals of Mathematical
Statistics 22:79–86. Institute of Mathematical Statistics, Hayward, CA, USA

31. Li RP and Mukaidono M (1995) A Maximum Entropy Approach to Fuzzy Clustering. Proc.
4th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 1994, Yokohama, Japan), 2227–2232.
IEEE Press, Piscataway, NJ, USA

32. Lloyd S (1982) Least Squares Quantization in PCM. IEEE Trans. Information Theory
28:129–137. IEEE Press, Piscataway, NJ, USA

33. Miyamoto S and Mukaidono M (1997) Fuzzy c-Means as a Regularization and Maximum En-
tropy Approach. Proc. 7th Int. Fuzzy Systems Association World Congress (IFSA’97, Prague,
Czech Republic), II:86–92



14 Christian Borgelt

34. Miyamoto S and Umayahara K (1998) Fuzzy Clustering by Quadratic Regularization. Proc.
IEEE Int. Conf. on Fuzzy Systems/IEEE World Congress on Computational Intelligence
(WCCI 1998, Anchorage, AK), 2:1394–1399. IEEE Press, Piscataway, NJ, USA

35. Mori Y, Honda K, Kanda A, and Ichihashi H (2003) A Unified View of Probabilistic PCA
and Regularized Linear Fuzzy Clustering. Proc. Int. Joint Conf. on Neural Networks (IJCNN
2003, Portland, OR) I:541–546. IEEE Press, Piscataway, NJ, USA
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