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Abstract: The explosion of data stored in commercial
or administrational databases calls for intelligent tech-
niques to discover the patterns hidden in them and
thus to exploit all available information. Therefore
a new line of research has recently been established,
which became known under the names “Data Min-
ing” and “Knowledge Discovery in Databases”. In this
paper we study a popular technique from its arsenal
of methods to do dependency analysis, namely learn-
ing inference networks (also called “graphical models”)
from data. We review the already well-known prob-
abilistic networks and provide an introduction to the
recently developed and closely related possibilistic net-
works. The latter can be expected to have some impact
on industrial applications, because they are especially
suited to handle not only uncertain, but also imprecise
information.

1 Introduction

Due to the advances in hardware and software tech-
nology, large databases (product databases, customer
databases, etc.) are nowadays maintained in almost
every company and scientific or administrational insti-
tution. But often the data is only recorded; evaluation
is restricted to simple retrieval and aggregation opera-
tions that can be carried out e.g. by SQL queries. It is
obvious that such operations cannot discover broader
structures or general patterns that are present in the
data. This, obviously, is a waste of information, since
knowing such patterns can give a company a decisive
competitive edge. Therefore from recent research a
new area called “Data Mining” has emerged, which
aims at finding “knowledge nuggets” that are hidden
in huge volumes of data. It is the operational core of
a process called “Knowledge Discovery in Databases”,
which (in addition to data mining) comprises data se-
lection, data preprocessing, data transformation, vi-
sualization, and result evaluation and documentation
[6].

Data mining itself can be characterized best by a set
of tasks like classification, clustering (segmentation),

prediction, etc. In this paper we focus on dependency
analysis, i.e. the task to find dependencies between the
attributes that are used to describe a domain of inter-
est. A popular method for this task is the automatic
induction of inference networks, also called “graphical
models”, from a set of sample cases.

Graphical models are best known in their prob-
abilistic version, i.e. as Bayesian networks [18] or
Markov networks [16]. Efficient implementations of
inference systems based on them include HUGIN [1]
and PATHFINDER [12]. Probabilistic graphical mod-
els are learned from data by searching for the most
appropriate decomposition of the multivariate proba-
bility distribution induced by a given dataset [5, 13].

Unfortunately probabilistic graphical models suffer
from severe difficulties to deal with imprecise, i.e. set-
valued, information in the database to learn from.
However, the incorporation of imprecise information
is more and more recognized as being indispensable
for industrial practice. Therefore graphical models are
studied also with respect to other uncertainty calculi,
either based on a generalization of the modeling tech-
nique to so-called valuation-based networks [23, 24],
implemented e.g. in PULCINELLA [22], or based on
a specific derivation of possibilistic networks, imple-
mented e.g. in POSSINFER [10, 15]. Recently learning
possibilistic networks from data has also been studied
[9, 11, 2, 3].

Since the approach to try possibilistic or fuzzy meth-
ods, if a mechanism for handling uncertainty and im-
precision is needed, has been used several times in the
past and turned out to be successful in several indus-
trial projects, it can be expected that the same holds
true for possibilistic graphical models. Indeed, the ap-
plication we describe in this paper provides strong ev-
idence for such an expectation.

2 Probabilistic Networks

To describe an object or a case taken from a given
domain of interest usually a set of attributes is used,
e.g. to describe a car we may consider the manufac-



turer, the model (year), the colour, etc. Depending on
the object or case these attributes assume certain val-
ues, e.g. VW, Golf, red, etc. In probability theory
such attributes are seen as random wvariables which
assume their values depending on the (simple) event
from the sample space. Of course, some combinations
of attribute values are more frequent than others, e.g.
red VW Golf are more frequent than yellow BMW Z1.
This frequency information is modeled as a joint prob-
ability distribution on the Cartesian product of the
attribute domains, i.e. to each combination of values a
probability is assigned. However, this joint probability
distribution cannot be represented directly, since usu-
ally a large number of attributes is necessary to de-
scribe an object or a case in sufficient detail, but even
a modest number of attributes leads to a huge space
of possible combinations of attribute values. There-
fore ways to compress the representation are searched
for. Among these are the (closely related) Bayesian
networks [18] and Markov networks [16].

Bayesian networks, to which we restrict our dis-
cussion of probabilistic networks, are based on the
product theorem of probability theory. This theorem
states that a strictly positive joint probability distri-
bution of a set of random variables can be decomposed
into a product of conditional probability distributions.
For discrete random variables, to which we confine in
the following (we actually assume, that all domains
are finite), this theorem reads (4i,..., A4, are the at-
tributes, dom(A), k =1,...,n, their domains):
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Unfortunately, simply applying the product theorem
does not lead to a better representation, but rather
to a worse one, since even the conditional distribution
needed for the first factor is just as large as the joint
distribution itself. However, if for the domain of inter-
est we know a set of conditional independencies
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where parents(Ay) C {A1,..., Ak_1}, it may be possi-
ble to simplify the products significantly (provided the

Figure 1: A simple Bayesian network representing the
joint probability distribution on the variables A, ..., F
using the products Va € dom(A),...,e € dom(E) :
P(A=a,..,E =€) =PFE=¢/B=0b)-PD =
d|C=c¢)-P(C=c|B=bA=a)-P(B)-P(A).

sets parents(Ay) of conditioning attributes are small).
These equations are called “conditional independence
statements”, since they state that given the values of
the attributes in parents(Ay), the attribute Ay is inde-
pendent of the remaining attributes in {4;,..., Az}
It is obvious that the achievable simplification depends
on the order of the attributes when applying the prod-
uct theorem, since this order determines which con-
ditional independencies can be exploited in the first
place. If a bad order is chosen, no simplification may
be possible, whereas a good order may lead to consid-
erably smaller sets of conditions.

The resulting simplified products are usually repre-
sented as a directed graph — this is the reason for the
name “graphical model” —, in which there is an edge
from each conditioning attribute to the correspond-
ing conditioned attribute, i.e. from each element of
parents(Ay) to A, k = 1,...,n. This also explains the
name parents(Ay), since the elements of this set thus
turn out to be the parent nodes of the attribute A in
a directed graph (cf. figure 1). To each node the con-
ditional probability distributions of the corresponding
attribute given its parent attributes is assigned.

With the help of such a graph inferences can be
drawn by propagating observations, i.e. restrictions on
the possible values of some attributes, along the edges
of the graph — using the conditional probability dis-
tributions to update the (marginal) probabilities.

Learning a Bayesian network from data consists in
decomposing (factorizing) a given multi-variate prob-
ability distribution into products as simple as possible
using the means described above. Equivalently we may
say that we try to find a dependency graph as sparse
as possible. Of course, the distribution to decompose
is not given directly, but we are given only a database
of sample cases. From this database (conditional) rel-
ative frequencies are determined, which are then used
to estimate the (conditional) probabilities.

An algorithm to learn a Bayesian network from data
always consists of two parts: an evaluation measure
and a search method. With the aid of the former a



given decomposition (a given dependency graph) is
evaluated, whereas the latter governs which decom-
positions (which graphs) are considered in the search.
Often the evaluation measure can be used to guide the
search, since it is usually the goal to maximize (or min-
imize) its value. There is a large variety of evaluation
measures, some of which have been developed espe-
cially for learning Bayesian networks [5, 13], while oth-
ers have been transferred from the closely related task
of inducing decision trees [4, 19, 20]. Unfortunately
reasons of space prevent us from discussing these mea-
sures in detail. An interested reader may take a look at
[2, 3]. Of course, there are also several possible search
methods, like greedy parent search, optimum weight
spanning tree construction, simulated annealing, ge-
netic programming, etc.

3 Possibilistic Networks

The development of possibilistic networks was trig-
gered by the fact that probabilistic networks are well
suited to represent and process uncertain information,
but cannot that easily be extended to handle imprecise
information. Since the explicit treatment of imprecise
information is more and more claimed to be necessary
for industrial practice, it is reasonable to investigate
graphical models related to alternative uncertainty cal-
culi, e.g. possibility theory.

Maybe the best way to explain the difference be-
tween uncertain and imprecise information is to con-
sider the notion of a degree of possibility. The in-
terpretation we prefer is based on the context model
[8, 15]. In this model possibility distributions are seen
as information-compressed representations of (not nec-
essarily nested) random sets and a degree of possibility
as the one-point coverage of a random set [17].

To be more precise: Let wg be the actual, but un-
known state of a domain of interest, which is con-
tained in a set Q of possible states. Let (C,2°, P),
C ={c1,ca,...,cm}, be a finite probability space and
v : C — 2% a set-valued mapping. C is seen as a set of
contexts that have to be distinguished for a set-valued
specification of wy. The contexts are supposed to de-
scribe different physical and observation-related frame
conditions. P({c}) is the (subjective) probability of
the (occurrence or selection of the) context c.

A set v(c) is assumed to be the most specific correct
set-valued specification of wg, which is implied by the
frame conditions that characterize the context ¢. By
‘most specific set-valued specification’ we mean that
wo € (c) is guaranteed to be true for v(c), but is not
guaranteed for any proper subset of v(c). The result-
ing random set T' = (y, P) is an imperfect (i.e. impre-
cise and uncertain) specification of wy. Let 7 denote
the one-point coverage of I' (the possibility distribution

induced by I'), which is defined as
7r: Q= [0,1],7r(w) =P ({ce C|wenr(c)}).

In a complete modeling the contexts in C' must be
specified in detail, so that the relationships between
all contexts c¢; and their corresponding specifications
v(cj) are made explicit. But if the contexts are un-
known or ignored, then 7p(w) is the total mass of all
contexts ¢ that provide a specification v(c) in which wq
is contained, and this quantifies the possibility of truth
of the statement “w = wy” [7, 8, 10].

That in this interpretation a possibility distribution
represents uncertain and imprecise knowledge can be
understood best by comparing it to a probability dis-
tribution and to a relation. A probability distribu-
tion covers uncertain, but precise knowledge. This be-
comes obvious, if one notices that a possibility distri-
bution in the interpretation described above reduces
to a probability distribution, if V¢; € C : |y(¢;)| = 1,
i.e. if for all contexts the specification of wy is precise.
On the other hand, a relation represents imprecise,
but certain knowledge about dependencies between at-
tributes. Thus, not surprisingly, a relation can also
be seen as a special case of a possibility distribution,
namely if there is only one context. Hence the context-
dependent specifications are responsible for the impre-
cision, the contexts for the uncertainty in the imperfect
knowledge expressed by a possibility distribution.

As a concept of independence we use possibilistic
non-interactivity. Let X, Y, and Z be three disjoint
subsets of variables. Then X is called conditionally
independent of Y given Z w.r.t. 7, if Vw € Q0 :

m(wxuy |wz) = min{r(wx |wz), 7(wy | wz)}

whenever m(wz) > 0, where 7(- | -) is a non-normalized
conditional possibility distribution

m(wx | wz) = max{n(w') | W' € Q Aproj x (w) = wx
Aproj z(w) =wz},

with projy(w) the projection of a tuple w to the vari-
ables in X.

With these ingredients the theory of possibilistic
networks can be developed in analogy to the proba-
bilistic case. The only difference is that instead of the
product to decompose (factorize) the given joint distri-
bution and the sum to determine the marginal distri-
butions the operations minimum and maximum have
to be used: A possibilistic network is a decomposition
of a multi-variate possibility distribution according to
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1 — parental error
2 — dam correct?
3 — sire correct?
4 — stated dam ph.gr. 1
5 — stated dam ph.gr. 2
6 — stated sire ph.gr. 1
7 — stated sire ph.gr. 2
8 — true dam ph.gr. 1
9 — true dam ph.gr. 2
10 — true sire ph.gr. 1
11 — true sire ph.gr. 2

nyy fl v2 fI v2 fl v2 fl v2 v2 v2 v2v2
n y y fl v2 *F Fx f] g2 x ck ockk okl f]y)
nyy fl v2 f1 f1 f1l v2 f1 f1 f1 f1 fifl
nyy fl v2 fI f1 f1 v2 f1 f1 f1 f1 fif
nyy fl v2 fI vl f1 v2 f1 v1 v2 f1 flv2
n oy y f1 f1 & & 1 1 * & {1 {1 [1fl
ny y fl vl * * {1 vyl ** * vyl v2 viv2
nyy fl v2 fI vl f1 v2 f1 vl f1 vl flvl

where parents(Ay) is the set of parents of variable Ay,
which is made as small as possible by exploiting con-
ditional independencies of the type indicated above.
Just as a Bayesian network it can be represented as a
directed graph in which there is an edge from each of
the conditioning variables (the parents) to the condi-
tioned variable (the child).

Learning possibilistic networks from data has been
studied in [9, 11, 2, 3]. Basically it can follow the
same lines as learning probabilistic networks. Again
an algorithm for this task has two parts: an evaluation
measure and a search method. The latter can be the
same as for learning a probabilistic network, but, of
course, different evaluation measures have to be used
to estimate the network quality. For reasons of space
we must skip the details here. An interested reader
may consult [11, 2, 3].

4 Applications

As a test case we chose the Danish Jersey cattle
blood group determination problem [21], for which a
Bayesian network designed by domain experts (cf. fig-
ure 2) and a database of 500 real world sample cases
exists (an extract of this database is shown in table 1).
The problem with this database is that it contains a
pretty large number of unknown values — only a little
over half of the tuples are complete (This can already
be guessed from the extract shown in table 1: the stars

12 — offspring ph.gr. 1
13 — offspring ph.gr. 2
14 — offspring genotype
15 — factor 40

16 — factor 41

17 — factor 42

18 — factor 43

Figure 2: Domain expert
designed network for the
Danish Jersey cattle blood
type determination exam-
ple.

19 — lysis 40
20 — lysis 41
21 — lysis 42
22 — lysis 43

The grey nodes correspond to observable at-
tributes. Node 1 can be removed to simplify con-
structing the clique tree for propagation.

nyny 0®6206 Table 1: An extract from
y yny? 7607 the Danish Jersey cat-
y ynn?7700 tle blood group determi-
y ynn?77200 nation database.

y yny?770T7

y ynn6©600

nyyy 0545

Yy yyy 7767

denote missing values).

As already indicated above, missing values make it
difficult to learn a Bayesian network, since an unknown
value can be seen as representing imprecise informa-
tion: It states that all values contained in the domain
of the corresponding attribute are possible. Neverthe-
less it is still feasible to learn a Bayesian network from
the database in this case, since the dependencies are
rather strong and thus the remaining small number of
tuples is still sufficient to recover the underlying struc-
ture. However, learning a possibilistic network from
the same dataset is much easier, since possibility the-
ory was especially designed to handle imprecise infor-
mation. Hence no discarding or special treatment of
tuples is necessary. An evaluation of the learned net-
work showed that it was of comparable quality. Thus
we can conclude that learning possibilistic networks
from data is an important alternative to the estab-
lished probabilistic methods.

5 Conclusions

In this paper we reviewed, although briefly, the ideas
underlying probabilistic networks and provided an
equally brief introduction to possibilistic networks.
The main advantage of the latter over the former is
that they can handle directly imprecise, i.e. set-valued,
information. This is especially useful, if an inference
network is to be learned from data and the database



to learn from contains a considerable amount of miss-
ing values. Whereas in order to learn a probabilistic
network these tuples have to be discarded or treated in
some complicated manner, possibilistic network learn-
ing can easily take them into account and can thus,
without problem, make use of all available information.
These considerations proved to be well-founded in an
application on a real-world database and therefore it
can be expected that data mining with possibilistic
networks will soon find its way to broader industrial
application.
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