Keeping Things Simple:
Finding Frequent Iltem Sets by Recursive Elimination

Christian Borgelt

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg
Universitatsplatz 2, 39106 Magdeburg, Germany

borgelt@iws.cs.uni-magdeburg.de

ABSTRACT

Recursive elimination is an algorithm for finding frequent
item sets, which is strongly inspired by the FP-growth al-
gorithm and very similar to the H-mine algorithm. It does
its work without prefix trees or any other complicated data
structures, processing the transactions directly. Its main
strength is not its speed (although it is not slow, even out-
performs Apriori and Eclat on some data sets), but the sim-
plicity of its structure. Basically all the work is done in one
simple recursive function, which can be written with rela-
tively few lines of code.

1. INTRODUCTION

One of the currently fastest and most popular algorithms for
frequent item set mining is the FP-growth algorithm [7]. It
is based on a prefix tree representation of the given database
of transactions (called an FP-tree), which can save consid-
erable amounts of memory for storing the transactions. A
close relative of this approach is the H-mine algorithm [9],
which uses a somewhat simpler data structure called an H-
struct, which is faster to build than an FP-tree.

The basic idea of both algorithms can be described as a re-
cursive elimination scheme: in a preprocessing step delete
all items from the transactions that are not frequent indi-
vidually, i.e., do not appear in a user-specified minimum
number of transactions. Then select all transactions that
contain the least frequent item (least frequent among those
that are frequent), delete this item from them, and recurse
to process the obtained reduced database, remembering that
the item sets found in the recursion share the item as a pre-
fix. On return, remove the processed item also from the
database of all transactions and start over, i.e., process the
second frequent item etc. In these processing steps the prefix
tree (or the H-struct), which is enhanced by links between
the branches, is exploited to quickly find the transactions
containing a given item and also to remove this item from
the transactions after it has been processed.

In this paper I study an algorithm that is based on a very
similar scheme, but does its work without a prefix tree or an
H-struct representation. It rather processes the transactions
directly, organizing them merely into singly linked lists. The
main advantage of such an approach is that the needed data
structures are very simple and that no re-representation of
the transactions is necessary, which saves memory in the re-
cursion. In addition, processing the transactions is almost
trivial and can be coded in a single recursive function with
relatively few lines of code. Surprisingly enough, the price
one has to pay for this simplicity is relatively small: my
implementation of this recursive elimination scheme yields
competitive execution times compared to my implementa-
tions [4, 5] of the Apriori [1, 2] and Eclat [10] algorithms.

2. RECURSIVE ELIMINATION

As already indicated in the introduction, recursive elimina-
tion is based on a step by step elimination of items from
the transaction database together with a recursive process-
ing of transaction subsets. This section describes the details
of this scheme as well as some implementation issues.

2.1 Preprocessing

Similar to several other algorithms for frequent item set min-
ing, like, for example, Apriori or FP-growth, recursive elim-
ination preprocesses the transaction database as follows: in
an initial scan the frequencies of the items (support of single
element item sets) are determined. All infrequent items—
that is, all items that appear in fewer transactions than
a user-specified minimum number—are discarded from the
transactions, since, obviously, they can never be part of a
frequent item set.

In addition, the items in each transaction are sorted, so
that they are in ascending order w.r.t. their frequency in
the database. Although the algorithm does not depend on
this specific order, experiments showed that it leads to much
shorter execution times than a random order. A descending
order led to a particularly slow operation in my experiments,
performing even worse than a random order.

This preprocessing is demonstrated in Table 1, which shows
an example transaction database on the left. The frequen-
cies of the items in this database, sorted ascendingly, are
shown in the table in the middle. If we are given a user
specified minimal support of 3 transactions, items f and g
can be discarded. After doing so and sorting the items in

adf ad

cde g |1 ecd
bd f]2 bd
abcd e |3 acbd
bec a |4 chb
abd c |5 abd
bde b |7 ebd
bceg d|8 echb
cdf cd
abd abd

Table 1: Transaction database (left), item frequen-
cies (middle), and reduced transaction database
with items in transactions sorted ascendingly w.r.t.
their frequency (right).

each transaction ascendingly w.r.t. their frequencies we ob-
tain the reduced database shown in Table 1 on the right.

2.2 Transaction Representation

Each transaction is represented as a simple arrays of item
identifiers (which are integer numbers). The initial transac-
tion database is turned into a set of transaction lists, with
one list for each item. These lists are stored in a simple ar-
ray, each element of which contains a support counter and
a pointer to the head of the list. The list elements them-
selves consist only of a successor pointer and a pointer to
(or rather into, see below) the transaction. The transac-
tions are inserted one by one into this structure by simply
using their leading item as an index. However, the leading
item is removed from the transaction, that is, the pointer in
the transaction list element points to the second item. Note
that this does not lose any information as the first item is
implicitely represented by the list the transaction is in.

To illustrate this, Figure 1 shows, at the very top, the rep-
resentation of the reduced database shown in Table 1 on the
right. The first list, corresponding to the item e, contains the
second, seventh and eight transaction, with the item e re-
moved. The counter in the array element states the number
of transactions containing the corresponding item. It should
be noted, as will become clear later, that this counter is not
always equal to the length of the associated list, although
this is the case for this initial representation of the database.
Differences result from (shrunk) transactions that contain no
other items and are thus not represented in the list.

For implementations it is important to note that the de-
scribed scheme, with a pointer into the transaction so that
the leading item is skipped, can only be applied in languages
that allow for pointer arithmetic. In languages in which this
is impossible (like, for instance, Java) the items in the trans-
actions may be sorted the other way round and an element
counter, stored in the list elements, may used to specify the
subset of the items that is to be considered.

2.3 Recursive Processing

Recursive elimination works as follows: The array of lists
that represents a (reduced) transaction database is “disas-
sembled” by traversing it from left to right, processing the
transactions in a list in a recursive call to find all frequent

initial database

clbldlg}ﬁ

prefix b
e acbd

0fofo]o]5]
Lo | [¢]

Figure 1: Procedure of the recursive elimination
with the modification of the transaction lists (left)
as well as the construction of the transaction lists
for the recursion (right).

item sets that contain the item the list corresponds to. After
a list has been processed recursively, its elements are either
reassigned to the remaining lists or discarded (depending on
the transactions they represent), and the next list is worked
on. Since all reassignments are made to lists that lie to the
right of the currently processed one, the list array will finally
be empty (will contain only empty lists).

Before a transaction list is processed, however, its support
counter is checked, and if it exceeds the user-specified min-
imum support, a frequent item set is reported, consisting
of the item associated with the list and a possible prefix
associated with the whole list array (see below).

One transaction list is processed as follows: for each list
element the leading item of its (shrunk) transaction is re-
trieved and used as an index into the list array; then the el-
ement is added at the head of the corresponding list. In such
a reassignment, the leading item is also removed from the
transaction, which can be implemented as a simple pointer
increment (or as a counter decrement, see above). In ad-
dition, a copy of the list element (with the leading item of
the transaction already removed by the pointer increment)
is inserted in the same way into an initially empty second
array of transaction lists. (Note that only the list element
is copied, not the transaction. Both list elements, the reas-
signed one and the copy refer to the same transaction.)

Since the elements of a transaction list all share an item
(given by the list index), this second array collects the subset
of transactions that contain a specific item and represents
them as a set of transaction lists. This set of transaction
lists is then processed recursively, noting the item associated
with the list it was generated from as a common prefix of all
frequent item sets found in the recursion. After the recursion
the next transaction list is reassigned, copied, and processed
in a recursive call and so on.

The process is illustrated for the root level of the recursion
in Figure 1, which shows the transaction list representation
of the initial database at the very top. In the first step all
item sets containing the item e are found by processing the
leftmost list. The elements of this list are reassigned to the
lists to the right (grey list elements) and copies are inserted
into a second list array (shown on the right). This second
list array is then processed recursively, before proceeding to
the next list, i.e., the one for item a.

Note that a list element representing a (shrunk) transaction
that contains only one item is neither reassigned nor copied,
because the transaction would be empty after the removal
of the leading item. Instead only the counter in the lists
array element is incremented as an indicator of such list ele-
ments. Such a situation occurs when the list corresponding
to the item a is processed. The first list element refers to a
(shrunk) transaction that contains only item d and thus only
the counter for item d (grey) is incremented. For the same
reason only one of the five elements in the list for item c is
reassigned/copied in step 3.

After four steps all transaction lists have been processed and
the lists array has become empty. Note that the list for the
last element (referring to item d) is always empty, because

there are no items left that could be in a transaction and
thus all transactions are represented in the counter.

2.4 Optimization Issues

Obviously the allocation of the elements of the transaction
lists is a critical issue. This can be done, for example, with
a specialized memory management for equally sized small
objects, which allocates them in large arrays and then dis-
tributes them individually as needed. A related alternative
to solve the problem works as follows: in the first place, since
by the number of transactions we know the maximum num-
ber of list elements we will ever have to create on a recursion
level, we can allocate the list elements as an array, in one
block of memory. Secondly, we can store the allocated mem-
ory blocks in a globally accessible place, so that we only have
to allocate them the first time we reach a particular recur-
sion depth and simply reuse them on the second time. This
wastes some memory, since one has to allocate on each re-
cursion level as many list elements as there are transactions
in the original database in order to be sure that they suffice
in all recursion branches. However, since each list element is
fairly small (8 bytes on a 32-bit machine) the total amount
of needed memory is acceptable. Furthermore, the gains in
computation time are substantial and definitely justify this
small waste of memory.

Of course, the same scheme of storing allocated blocks of
memory in a globally accessible place and resuing them in
the recursion is also used for the list arrays. Furthermore, it
is clear that copies of the list elements are created only if the
support counter corresponding to the currently processed
list exceeds the user-specified minimum support, because
otherwise no frequent item sets can be found in the recursion
and hence building the lists is not necessary.

A final optimization issue concerns the traversal of the lists
array. Since in the second lists array only the entries be-
yond the entry for the item corresponding to the currently
processed list can be filled, the traversal can be started at
this point in the recursion by passing its index.

2.5 Extensions

An idea that suggests itself when considering how the de-
scribed recursive elimination scheme may be improved is to
use prefix trees instead of simple arrays of item identifiers to
represent the transactions. The transaction lists will then
be lists of transaction trees and thus can be expected to
be shorter. Howver, the disadvantage of such an approach
is that processing a list gets much more complex, since re-
assigning a transaction prefix tree while removing the first
item from the represented transactions involves splitting it
into its branches, assigning each branch to a different list.
In addition, the prefix tree itself is already a much more
complicated data structure.

Nevertheless I implemented it, too, in order to check its
merits in experiments. Unfortunately the hopes I placed
in it were not fulfilled as the experiments reported in the
following section show: most of the time using prefix trees
actually degrades performance. The cause of this behavior
presumably are the more complex operations involved in
reassigning prefix trees compared to simple transactions.

log(time/s) over support
1_
0_
-1
T T T T T T T T T T T T
34 35 36 37 38 39 40 41 42 43 44 45
Figure 2: Results on BMS-Webview-1
i log(time/s) over support
l_

s P 3
A Tk T SRy

5 10 15 20 25 30 35 40 45 50 55 60

Figure 3: Results on T10I4D100K

log(time/s) over support

Figure 4: Results on census

log(time/s) over support

1200 1300 1400 1500 1600 1700 1800 1900 2000

Figure 5: Results on chess

log(time/s) over support

200 300 400 500 600 700 800 900 1000

Figure 6: Results on mushroom

3. EXPERIMENTAL RESULTS

I ran experiments on the same five data sets that I already
used in [4, 5], namely BMS-Webview-1 [8], T1014D100K [11],
census, chess, and mushroom [3]. However, I used a different
machine and an updated operating system, namely a Pen-
tium 4C 2.6GHz system with 1 GB of main memory running
S.u.S.E. Linux 9.3 and gcc version 3.3.5). The results were
compared to experiments with my implementations of Apri-
ori, Eclat, and FPgrowth. All experiments were rerun to
ensure that the results are comparable.

Figures 2 to 6 show, each for one of the five data sets, the
decimal logarithm of the execution time over different mini-
mum support values. The solid black line refers to the recur-
sive elimination algorithm studied here, the dotted black line
to the version that uses transaction prefix trees. The grey
lines represent the corresponding results for Apriori (solid
line), Eclat (dashed line), and FPgrowth (dotted line).

In general the recursive elimination algorithm seems to per-
form in a similar way as Apriori, as can be seen from the
fairly similar shapes of the solid black and solid grey lines in
all diagrams. However, the recursive elimination algorithm
always outperforms Apriori by a considerable margin, on
all data sets, particularly pronounced on T10I4D100K. In
addition, its superiority usually increases with lower values
of the minimum support, an effect that is clearly visible on
census, chess, and mushroom.

In a comparison with Eclat recursive elimination also fares
pretty well. Although it is bet clearly on chess and, for lower
support, on BMS-Webview-1, it almost reaches Eclat’s per-
formance on census and mushroom for lower support. FP-
growth, however, fairly clearly outperforms recursive elimi-
nation on census, chess, and mushroom.

Although using prefix trees may seem like a good idea at
first sight, it almost always degrades performance. The only
exception is census, on which prefix trees lead to a substan-
tial gain, even though its relative superiority shrinks with
higher support values. Separating the execution times for
the tree construction and the recursive elimination shows
that it is not the tree construction, but the more complex
later processing that is the cause. The gains resulting from
the reduced list lengths (which, after some reassignments of
a transaction tree, cannot be expected to be so substantial
anyway) seem to be too small to outweigh this effect.

4. CONCLUSIONS

Even though its underlying scheme—which is based on delet-
ing items, recursive processing, and reassigning transactions
—is very simple and works without complicated data struc-
tures, recursive elimination performs surprisingly well, as
can be seen from the experiments reported in the preceding
section. If a quick and straightforward implementation is
desired, it could be the method of choice.

5. PROGRAM

The implementation of the recursive elimination algorithm
described in this paper (Windows™ and Linux™ executa-
bles as well as the source code, distributed under the LGPL)
can be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/ borgelt /software.html

At this URL my implementations of Apriori, Eclat, and FP-
growth are also available as well as a graphical user interface
(written in Java) for finding association rules with Apriori.

6. REFERENCES
[1] R. Agrawal, T. Imielienski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases. Proc. Conf. on Management of Data,
207-216. ACM Press, New York, NY, USA 1993

[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast Discovery of Association Rules. In:
[6], 307-328

[3] C.L. Blake and C.J. Merz. UCI Repository of Machine
Learning Databases. Dept. of Information and
Computer Science, University of California at Irvine,
CA, USA 1998
http://www.ics.uci.edu/ mlearn/MLRepository.html

[4] C. Borgelt. Efficient Implementations of Apriori and
Eclat. Proc. 1st IEEE ICDM Workshop on Frequent
Item Set Mining Implementations (FIMI 2003,
Melbourne, FL). CEUR Workshop Proceedings 90,
Aachen, Germany 2003.
http://www.ceur-ws.org/Vol-90/

[5] C. Borgelt. Recursion Pruning for the Apriori
Algorithm. Proc. 2nd IEEE ICDM Workshop on
Frequent Item Set Mining Implementations (FIMI
2003, Brighton, United Kingdom). CEUR Workshop
Proceedings 126, Aachen, Germany 2004.
http://www.ceur-ws.org/Vol-126/

[6] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds. Advances in Knowledge
Discovery and Data Mining. AAAT Press / MIT Press,
Cambridge, CA, USA 1996

[7] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns
without Candidate Generation. In: Proc. Conf. on the
Management of Data (SIGMOD’00, Dallas, TX).
ACM Press, New York, NY, USA 2000

[8] R. Kohavi, C.E. Bradley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 Organizers’ Report: Peeling
the Onion. SIGKDD Exploration 2(2):86-93. 2000.

[9]

(10]

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and

D. Yang. H-Mine: Hyper-Structure Mining of
Frequent Patterns in Large Databases. IEEE Conf. on
Data Mining (ICDM’01, San Jose, CA), 441-448.
IEEE Press, Piscataway, NJ, USA 2001

M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discovery
and Data Mining (KDD’97), 283-296. AAAIT Press,
Menlo Park, CA, USA 1997

Synthetic Data Generation Code for Associations and
Sequential Patterns. Intelligent Information Systems,
IBM Almaden Research Center
http://www.almaden.ibm.com/
software/quest/Resources/index.shtml

