
Mining Frequent Parallel Episodes

with Selective Participation

Christian Borgelt1 Christian Braune2 Kristian Loewe2,3 Rudolf Kruse2

1Intelligent Data Analysis Research Unit, European Centre for Soft Computing
c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres (Asturias), Spain

2Department of Knowledge and Language Processing, Otto-von-Guericke-University
Universitätsplatz 2, 39106 Magdeburg, Germany

3Department of Neurology, Experimental Neurology, Otto-von-Guericke-University
Leipziger Straße 44, 39120 Magdeburg, Germany

Abstract

We consider the task of finding frequent parallel
episodes in parallel point processes, allowing for im-
precise synchrony of the events constituting occur-
rences (temporal imprecision) as well as incomplete
occurrences (selective participation). We tackle this
problem with frequent pattern mining based on the
CoCoNAD methodology, which is designed to take
care of temporal imprecision. To cope with selec-
tive participation, we form a reduction sequence of
items (event types) based on found frequent pat-
terns and guided by pattern overlap. We evaluate
the performance of our method on a large number
of data sets with injected parallel episodes.

Keywords: parallel episode, temporal imprecision,
selective participation, frequent pattern mining

1. Introduction

We present methodology to identify frequent pat-
terns in parallel point processes, a task that is also
known as finding frequent parallel episodes in event
sequences (see [10]). This task can be seen as a
generalization of frequent item set mining (FIM, see
e.g. [1]). However, while in FIM items occur in pre-
defined groups, so-called transactions, in our setting
a continuous (time) scale underlies the data.

Continuous time already poses a first problem,
which we refer to as temporal imprecision: in prac-
tice, synchrony of events is almost never perfect, but
affected by a certain amount of (temporal) jitter.
We take this into account when mining for frequent
patterns by defining that items (or events) co-occur
if they occur in a (user-defined) limited time span
from each other. As a support measure we use the
size of a maximum independent set (MIS) of such
synchronous groups of items, which can be com-
puted efficiently with a greedy algorithm [2, 12].

A second problem consists in selective participa-
tion: due to imperfections of the measuring technol-
ogy or properties of the underlying process, several
occurrences of a pattern may be incomplete, that is,
only a subset of the items underlying the pattern is
actually present in an instance. This problem is the

focus of this paper and we tackle it with an approach
that interprets found (partial) patterns as edges in
a hypergraph. We then try to find a dense sub-
graph with a reduction sequence approach loosely
inspired by the procedure in [15]: the total set of
items is reduced by removing in each step the item
that is least connected to the other items. The step
in which the least connected item is most strongly
connected (compared to all other steps) finally iden-
tifies the frequent pattern (or parallel episode).

The application domain that motivates our in-
vestigation is the analysis of parallel spike trains in
neurobiology: sequences of points in time, one per
neuron, representing the times at which an electri-
cal impulse (action potential or spike) is emitted.
Our objective is to identify neuronal assemblies, in-
tuitively understood as groups of neurons that tend
to exhibit synchronous spiking. Such cell assem-
blies were proposed in [6] as a model for encoding
and processing information in biological neural net-
works. In particular, as a (possible) first step in
the identification of neuronal assemblies, we look
for frequent neuronal patterns (i.e. groups of neu-
rons that exhibit frequent synchronous spiking). In
this setting, both temporal imprecision and selec-
tive participation (of neurons) are expected to be
present and thus require proper treatment.

The remainder of this paper is structured as fol-
lows: Section 2 covers basic terminology and nota-
tion. Sections 3 and 4 briefly review the CoCoNAD
methodology for finding frequent parallel episodes
in the presence of temporal imprecision. In Sec-
tion 5 we present our methodology to identify fre-
quent parallel episodes with selective participation.
Section 6 reports experimental results on data sets
with injected parallel episodes. Finally, in Section 7
we draw conclusions from our discussion.

2. Event Sequences and Parallel Episodes

We mainly adopt here the notation and terminol-
ogy of [10]. That is, our data are (finite) sequences
of events of the form S = {〈i1, t1〉, . . . , 〈im, tm〉},
m ∈ N, where ik in the event 〈ik, tk〉 is the
event type or item (taken from an item base B)

and tk ∈ R is the time of occurrence of ik, k ∈
{1, . . . , m}. Note that the fact that S is a set im-
plies that there cannot be two events with the same
item occurring at the same time: events with the
same item must differ in their occurrence time and
events occurring at the same time must have dif-
ferent types/items. Note also that such data may
as well be represented as parallel point processes

P = {〈i1, {t
(1)
1 , . . . , t

(1)
m1

}〉, . . . , 〈in, {t
(n)
1 , . . . , t

(n)
mn}〉}

by grouping events with the same item i ∈ B,
n = |B|, and listing the times of their occurrences
for each of them. Finally, note that in our mo-
tivating application (i.e. spike train analysis), the
items (or event types) are the neurons and the cor-
responding point processes list the times at which
spikes were recorded for these neurons.

Episodes (in S) are defined as sets of items I ⊆ B

that are endowed with a partial order and usually
required to occur in S within a certain time span.
Parallel episodes, on which we focus in this paper,
have no constraints on the relative order of their el-
ements. An instance (or occurrence) of a parallel
episode I ⊆ B, I 6= ∅, (or a (set of) synchronous
event(s) for I) in an event sequence S with respect
to a (user-specified) time span w ∈ R

+ can be de-
fined as a subsequence R ⊆ S, which contains ex-
actly one event per item i ∈ I and which can be
covered by a (time) window at most w wide. Hence
the set of all instances of a parallel episode I ⊆ B,
I 6= ∅, in an event sequence S is

ES,w(I) =
{

R ⊆ S | {i | 〈i, t〉 ∈ R} = I

∧ |R| = |I| ∧ σw(R) > 0
}

,

where the operator σw captures the (approximate)
synchrony of the events in R:

σw(R) =

1 if max{t | 〈i, t〉 ∈ R}
− min{t | 〈i, t〉 ∈ R} ≤ w,

0 otherwise.

That is, σw(R) = 1 iff all events in R can be covered
by a (time) window at most w wide.

Based on this notion of (imprecise) synchrony, we
define the support of an item set I ⊆ B as follows
(see also [8, 13] for a related, but still significantly
different characterization that is based on covering
windows rather than sets of underlying events):

sS,w(I) =

max
{

|U| | U ⊆ ES,w(I) ∧

∀R1, R2 ∈ U ; R1 6= R2 : R1 ∩ R2 = ∅
}

.

That is, we define the support (or total synchrony)
of a pattern I ⊆ B as the size of a maximum inde-
pendent set (MIS) of its instances (where by inde-
pendent set we mean a collection of instances that
do not share any events, that is, the instances do not
overlap). Such an approach has the advantage that
the resulting support measure is guaranteed to be
anti-monotone, as can be shown generally for max-
imum independent subset (or, in a graph interpre-
tation, node set) approaches—see, e.g., [4] or [16].

A parallel episode I ⊆ B is called frequent (in S)
if its support sS,w(I) meets or exceeds a (user-
specified) minimum support smin. The task of min-
ing frequent parallel episodes consists in finding, for
a given event sequence S and window width w, all
parallel episodes I ⊆ B that are frequent in S. How-
ever, in order to reduce the output, it is common
to report only the closed frequent parallel episodes,
where a parallel episode I is called closed if no par-
allel episode that is a proper superset J ⊃ I has the
same support. We denote the set of all closed fre-
quent parallel episodes that can be found in an event
sequence S w.r.t. (user-specified) window width w

and minimum support smin by CS(w, smin) ⊆ 2B .

3. CoCoNAD

At least at first sight, a support measure based on
(the size of) a maximum independent set (MIS)
seems to suffer from the severe drawback that in
the general case finding a maximum independent
set is NP-complete [7] and even hard to approxi-
mate [5]. Intuitively speaking, this means that (un-
less P = NP) there is no (known) algorithm that
does fundamentally better than an algorithm that
tries all possibilities. As a consequence, the algo-
rithm has exponential time complexity (in the size
of the set ES,w(I), from which the maximum inde-
pendent set is to be selected) and thus would take
a prohibitively long time to find a solution.

Fortunately, though, the problem instances we
are facing here are strongly constrained by the un-
derlying one-dimensional time domain, which makes
it possible to devise an efficient greedy algorithm
that solves it exactly. For a given item set I, for
which the support is to be determined, this algo-
rithm starts with an empty selection of instances
and proceeds by traversing the sequence S (or the
parallel point processes P) chronologically. It al-
ways selects as the next instance the element of
ES,w(I) that does not overlap any of the already
selected instances and contains the earliest possible
events for each of the items in I. For this, it does not
even have to construct the set ES,w(I) explicitly, but
can work directly on the sequence S (or the parallel
point processes P). As a consequence, it has a time
complexity of mI · log(|I|), where mI =

∑

i∈I mi

is the sum of the numbers of events of each item i

(that is, the total number of events with items in I),
since mI events have to be passed through a priority
queue of size |I|. Details of this algorithm (includ-
ing pseudo-code) can be found in [2], while a proof
that it is guaranteed to find (the size of) a maximum
independent set of ES,w(I) can be found in [12].

Based on this support computation, frequent par-
allel episodes are then found with a standard divide-
and-conquer scheme as it is also known from fre-
quent item set mining, particularly from the Eclat
algorithm [17, 1]. The algorithm proceeds as fol-
lows: for a chosen item i, the problem of finding

all frequent parallel episodes is split into two sub-
problems: (1) find all frequent parallel episodes con-
taining i and (2) find all frequent parallel episodes
not containing i. Each subproblem is then further
divided based on another item j: find all frequent
patterns containing (1.1) both i and j, (1.2) i but
not j, (2.1) j but not i, (2.2) neither i nor j etc.

The search is pruned with the so-called apri-
ori property, which is a direct consequence of the
fact that support is anti-monotone: ∀I, J ⊆ B :
(J ⊇ I ∧ sS,w(I) < smin) ⇒ sS,w(J) < smin. Or in
words: no superset of an infrequent parallel episode
can be frequent. Hence, the recursive division pro-
cess can be terminated as soon as the support of
the set of all included split items falls below the
(user-specified) minimum support smin. Details of
this approach in the context of FIM can be found,
for example, in [1]. Details of this scheme for find-
ing (closed) frequent parallel episodes (including
pseudo-code) can be found in [2]. Referring to the
application domain that motivated its development,
this algorithm is called CoCoNAD (for Continuous-
time Closed Neuron Assembly Detection).

4. Pattern Spectrum Filtering

A common problem of frequent pattern mining
methods is the usually huge number of patterns they
produce, most of which are merely chance events.
In order to cope with this problem, [11] introduced
and [14] refined an approach that is referred to as
pattern spectrum filtering (PSF) and that tries to
reduce the patterns to statistically significant ones.

This method is based on the following insight:
even if it is highly unlikely that a specific group of
z items co-occurs s times, it may still be likely that
some group of z items co-occurs s times, even if
items occur independently. The reason is simply
that there are so many possible groups of z items
(unless the item base B as well as the group size z

are tiny) that even though each group has only a
tiny probability of co-occurring s times, it may be
almost certain that one of them co-occurs s times.

Therefore, since there is no a-priori reason to pre-
fer certain sets of z items over others (although a re-
fined analysis may take individual item frequencies
into account), we should not declare a found pattern
significant if the occurrence of a counterpart (same
or larger group size z or support s) can be explained
as a chance event under the null hypothesis of inde-
pendent items. Hence, patterns with the same pat-
tern signature 〈z, s〉 are pooled. This corresponds
to conducting only one hypothesis test per pattern
signature, either accepting or rejecting all patterns
with this signature in a single decision. The main
advantage of this approach is that it reduces the
number of statistical tests considerably and thus of-
fers an effective way of dealing with the multiple
testing problem, which would be insurmountable if
all patterns had to be tested individually.

In order to determine the likelihood of observ-
ing different pattern signatures 〈z, s〉 under the null
hypothesis of independent items, a data randomiza-
tion or surrogate data approach is employed. The
general idea is to represent the null hypothesis im-
plicitly by (surrogate) data sets that are generated
from the original data in such a way that their
occurrence probability is (approximately) equal to
their occurrence probability under the null hypoth-
esis. Such an approach has the advantage that it
needs no explicit data model for the null hypothe-
sis, which in many cases (including the one we are
dealing with here) may be difficult to specify. In-
stead, the original data is modified in random ways
to obtain data that are at least analogous to those
that could be sampled under conditions in which
the null hypothesis holds. An overview of surrogate
data methods in the context of neural spike train
analysis can be found in [9].

We employ pattern spectrum filtering to remove
(many) patterns that are merely chance events, in
order to simplify forming a reduction sequence of
the items (see Section 5): the fewer patterns we
have to handle, the faster we can generate this se-
quence and the less affected it will be by chance
events. However, we apply pattern spectrum filter-
ing in a less strict form than [11, 14], because many
of the patterns that result from parallel episodes
with incomplete occurrences may be relatively small
or have a relatively low support and thus are likely
to be removed by strict pattern spectrum filtering.
How strict pattern spectrum filtering is, is mainly
controlled by the number of surrogate data sets: the
more surrogate data sets are generated, the more
patterns will be identified as chance events.

Furthermore, in order to avoid having to actually
generate and analyze surrogate data sets (which is a
time consuming process), we draw on the approach
proposed in [3], which estimates a pattern spectrum
by analyzing the original data set. This approach
has the additional advantage that it reduces fluctu-
ations in case only few surrogate data sets are to be
generated (as is the case here, because we want to
execute only weak pattern spectrum filtering), since
it estimates a support distribution per pattern size.

5. Selective Participation

Our approach to identify parallel episodes in the
presence of selective participation is based on the
following insight: although incomplete occurrences
of a pattern may make it impossible that the full
pattern is reported by the mining procedure, it is
highly likely that several overlapping subsets will
be reported. This is illustrated in Figure 1, which
shows parallel spike trains of six neurons a to f with
complete and incomplete instances of the parallel
episode comprising all six neurons (in blue; while
background spikes are shown in gray). Although
the full set of neurons fires together only once (left-

f
e
d

c
b

a

Figure 1: Parallel episodes (indicating neuron as-
sembly activity) with selective participation (blue)
as well as background spikes (gray).

most instance) and thus would not be detected, the
other five incomplete occurrences give rise to five
subsets of size 4, each of which occurs twice, and
many subsets of size 3, occurring 3 or more times.
Since these patterns overlap heavily, it should be
possible to reconstruct the full pattern by analyz-
ing pattern overlap and combining patterns.

Our method views the set of patterns that have
been found in a given data set as a hypergraph1 on
the set of items (which are the vertices of this hyper-
graph): each pattern forms a hyperedge. Patterns
that are affected by selective participation thus give
rise to densely connected sub-hypergraphs. Hence,
we should be able to identify such patterns by find-
ing densely connected sub-hypergraphs.

For detecting dense sub-hypergraphs we draw on
the approach proposed in [15]. Although this ap-
proach was designed to find dense subgraphs in
standard graphs, its basic idea is easily transferred
and adapted: we form a reduction sequence of items
by removing, in each step, the item that is least
connected to the other items (that are still consid-
ered). Then we identify from this sequence the set
of items where the least connected item (i.e., the
one that was removed next) was most strongly con-
nected (compared to other steps of the sequence).
This item set is the result of the procedure.

Although this limits the basic procedure to the
identification of a single pattern, it is clear that
multiple patterns can easily be found with the same
amendment as suggested in [15]: find a pattern and
then remove the underlying items (vertices) from
the data. Repeat the procedure on the remaining
items to find a second pattern. Remove the items
of this second pattern and so on. A drawback of
this approach is that it can find only disjoint pat-
terns and thus fails to identify overlapping patterns.
However, given the general difficulty to handle se-
lective participation, we believe that this is an ac-
ceptable shortcoming for the time being.

Formally, we construct a reduction sequence of
item sets, starting from the item base B, as

Jn = B, where n = |B|,

Jk = Jk+1 − {argmini∈Jk+1
ξS,w,smin

(i, Jk+1)},

for k = n − 1, n − 2, . . . , 0,

where ξS,w,smin
(i, Jk) denotes the strength of con-

1While in a standard graph any edge connects exactly

two vertices, in a hypergraph a single hyperedge can connect

arbitrarily many vertices.

nection that item i ∈ Jk has to the other items in
the set Jk, as it is induced by the (closed) frequent
patterns found when mining the sequence S with
window width w and minimum support smin (con-
crete functions ξS,w,smin

(i, Jk) are studied below).
We then assign a quality measure to each element
of this reduction sequence:

∀k; 0 ≤ k ≤ n :

ξS,w,smin
(Jk) = min

i∈Jk

ξS,w,smin
(i, Jk).

Finally, we select the pattern (item set)

I = argmaxJk;0≤k≤n ξS,w,smin
(Jk),

that is, the pattern with the highest quality (sub-
hypergraph density), as the result of our procedure.

To obtain concrete instances of the functions
ξS,w,smin

(i, Jk) we tried two different approaches:

Pattern-based approach

Let C∗
S(w, smin) ⊆ 2B be the set of closed frequent

patterns that are identified by the CoCoNAD algo-
rithm (if executed with window width w and mini-
mum support smin on S), for which no counterpart
(same pattern signature) was observed in any of the
surrogate data sets (that is, the closed frequent pat-
terns remaining after pattern spectrum filtering).
Let C∗

S,J(w, smin) = {I ∈ C∗
S(w, smin) | I ⊆ J} be

the subset of these patterns that are subsets of an
item set J . Then we define the hypergraph connec-
tion strength of item i ∈ J to the other items in J as

ξ
(pat)
S,w,smin

(i, J) =
∑

I∈C∗

S,J
(w,smin)

(|I| − r) · sS,w(I),

where r ∈ {0, 1} is a parameter that determines
whether the full pattern size (hyperedge size) should
be considered (r = 0), or whether the item i it-
self should be disregarded (r = 1). The support
of the item set I enters the definition because a
larger support clearly means a stronger connec-

tion. Intuitively, ξ
(pat)
S,w,smin

(i, J) sums the numbers
of events underlying each of the patterns that con-
nect i to the other items in J . Note that in this
definition we assume (as is common practice) that

ξ
(pat)
S,w,smin

(i, J) = 0 if C∗
S,J(w, smin) = ∅.

This approach has the advantage that merely the
filtered set of closed frequent patterns is needed.
However, it has the disadvantage that subset pat-
terns which, by chance, occur again outside of the
instances of the full pattern may deteriorate the
quality. An example of such an occurrence can be
seen in Figure 1: the neurons a, b and e fire to-
gether between the second and third instance of the
full set. However, this is not an incomplete instance
of the full set, but rather a chance coincidence re-
sulting from the background spikes. This can lead
to a subset being preferred to the full pattern, even
though the sum in the above definition gives higher
weight to events that support multiple instances (as
these are counted multiple times).

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12
instances

c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
1 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
1 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
1 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
1 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
1 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
1 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
1 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
1 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
1 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
1 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
1 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
1 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
1 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
1 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

3
4

5
6

7
8

9
10 11 12 13

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
1 102 s 1

Figure 2: Experimental results with ν = 1 (each item missing from one instance).

In order to improve on such cases, we refine our
method by looking at the instances of each pattern:

Instance-based approach

Let C∗
S(w, smin) and CS,J(w, smin) be defined as

above. Let US,w(I) ⊆ ES,w(I) be the indepen-
dent set of instances of I that was identified by
the CoCoNAD algorithm in order to compute the
support sS,w(I). Furthermore, let VS,w,smin

(J) =
⋃

I∈C∗

S,J
(w,smin) US,w(I). That is, VS,w,smin

(J) is the

set of all instances underlying all patterns found
in S that are subsets of J .

Our idea is that we only want to consider in-
stances that are not “isolated”, but “overlap” some
other instance (preferably of a different pattern).
The reason is that isolated instances likely stem
from chance coincidences, while instances that
“overlap” other instances likely stem from the same
(complete or incomplete) instance of the full pattern
we try to identify. To implement this idea, we define

V∗
S,w,smin

(i, J) =

{R ∈ VS,w,smin
(J) | ∃t : 〈i, t〉 ∈ R ∧

∃T ∈ VS,w,smin
(J) : T 6= R ∧ o(T , R)},

where o(R, T) is an operator that tests whether the
instances R and T overlap. In words: V∗

S,w,smin
(i, J)

is the set of instances of patterns that contain the
item i ∈ J and are subsets of the set J , which over-
lap at least one other instance.

For the operator o we tried two different variants:

oi(R, T) =

{

1 if R ∩ T 6= ∅,

0 otherwise, and

os(R, T) = σw(R ∪ T),

where σw is the synchrony operator from Section 2.
That is, oi checks whether the instances have a non-
empty intersection, while os only checks whether the
events underlying the instances are synchronous.

Based on these definitions, we finally define

ξ
(inst)
S,w,smin

(i, J) =
∣

∣

{

〈j, t〉 ∈
⋃

R∈V∗

S,w,smin
(i,J) R | j 6= i ∨ r = 0

}∣

∣,

where the parameter r ∈ {0, 1} determines whether
events of the item i should be considered (r = 0) or
disregarded (r = 1). That is, the parameter r has
the same function as the parameter r in the pattern-
based approach (justifying the same name). Intu-

itively, ξ
(inst)
S,w,smin

(i, J) is the total number of events
(possibly ignoring events of the item i) underlying
instances that connect it to other items in J .

Compared to the pattern-based approach, the
instance-based approach has the advantage that no
events are counted multiple times and that chance
coincidences are much less likely to deteriorate the
detection quality. However, its disadvantage is that
it is more costly to compute, because not just the
patterns themselves, but the individual instances of
all relevant patterns have to be processed.

6. Experiments

We implemented our detection method in Python,
using an efficient C-based Python extension mod-
ule that implements the CoCoNAD algorithm [2]
as well as pattern spectrum estimation [3], while
the reduction sequence was constructed directly in
Python (see below for the sources). We generated
event sequence data as independent Poisson pro-
cesses with parameters chosen in reference to our
application domain: 100 items (number of neurons
that can be simultaneously recorded with current
technology), 20Hz event rates (typical average fir-
ing rate observed in spike train recordings), 3s total
time (typical recording times for spike trains range
from a few seconds up to about an hour).

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12
instances

c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
2 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
2 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
2 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
2 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
2 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
2 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
2 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
2 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
2 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
2 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
2 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
2 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
2 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
2 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

5
6

7
8

9
10 11 12 13 14 15

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
2 102 s 1

Figure 3: Experimental results with ν = 2 (each item missing from two instances)

Into such independent data sets we injected a sin-
gle parallel episode each, with sizes z ranging from 2
to 12 items and numbers c of occurrences (instances)
ranging from 2 to 21. To simulate temporal impreci-
sion, the events of each instance were jittered inde-
pendently by drawing an offset from a uniform dis-
tribution on [−1.5ms, +1.5ms] (which corresponds
to typical bin lengths for time-binning of parallel
neural spike trains, which are 1 to 7ms). To simu-
late selective participation, we deleted each item of
a parallel episode from a number ν ∈ {1, 2, 3, 4, 5}
of their instances. This created data sets with in-
stances similar to those shown in Figure 1 (which
corresponds to z = 6, c = 6 and ν = 1, but has much
fewer background spikes): a few instances may be
complete, but most lack a varying number of items.
For each signature 〈z, c〉 of a parallel episode and
each value of ν we created 1000 such data sets.

Then we tried to detect the injected parallel
episodes with the methods described in Section 5.
For mining closed frequent patterns we used a win-
dow width of w = 3ms (matching the jitter of the
temporal imprecision) as well as a minimum support
smin = 2 and a minimum pattern size of 2 (to al-
low even for small patterns to be detected). Pattern
spectrum filtering was executed with an estimated
pattern spectrum, equivalent to 100 surrogate data
sets. The resulting filtered closed patterns were sub-
jected to all variants of the reduction sequence con-
struction and result selection described in Section 5.

Some of the results we obtained are depicted in
Figures 2 (for ν = 1), 3 (for ν = 2), and 4 (for
ν = 4). In each of these figures, the top row refers
to the pattern-based approach (with r = 1), the sec-
ond and third row to the instance-based approach
(also with r = 1), where the second row uses the
overlap operator oi and the third row the overlap
operator os. In each row, the first diagram shows

the number of (strict) false negatives, that is, the
fraction of runs (of 1000) in which something else
than exactly the injected pattern was found.

In order to elucidate what happens in those runs
in which the injected parallel episode was not (ex-
actly) detected, the diagrams in columns 2 and 3
show the fraction of runs in which a superset or a
subset, respectively, of the injected parallel episode
was returned. Column 4 shows the fraction of runs
with overlap patterns (the reported pattern contains
some, but not all of the items of the injected paral-
lel episode and at least one other item), column 5
the fraction of runs with patterns that are unre-
lated to the injected parallel episode. In all cases
not recorded in columns 2 to 5, and not yielding ex-
actly the injected parallel episode either, an empty
pattern was returned by our procedure (not shown
separately). Such a result (an empty pattern) is
caused exclusively by the closed pattern mining not
producing any patterns our reduction sequence con-
struction can work on. That is, in these cases the
synchronous activity in the data was not strong
enough to distinguish it from chance patterns.

Among those cases in which a non-empty pat-
tern is returned, that does not coincide with the
injected parallel episode, subsets are most common
(column 3), followed by overlap patterns. These
cases mainly occur for lower numbers of instances,
which is to be expected, as the smaller number of
instances deteriorates the pattern structure. Once
the number of instances is large enough, almost all
runs produce exactly the injected parallel episode.

If we compare the different rows of each of the
Figures 2–4, we see that the instance-based ap-
proach performs slightly better than the pattern-
based approach, and the more so, the more events
are missing. The two instance-based approaches
(distinguished by the overlap operator: oi or os)

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12
instances

c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
4 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
4 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
4 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
4 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
4 102 p 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
4 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
4 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
4 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
4 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
4 102 i 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

false neg.
4 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

supersets
4 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

subsets
4 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

overlap
4 102 s 1

pa
tte

rn
siz

e z

2
3

4
5

6
7

8
9

10
11

12

instances
c

9
10 11 12 13 14 15 16 17 18 19

ra
te

0

0.2

0.4

0.6

0.8

1

unrelated
4 102 s 1

Figure 4: Experimental results with ν = 4 (each item missing from four instances)

are essentially tied, possibly with a very slight ad-
vantage for the overlap operator oi.

If we compare the diagrams across the three Fig-
ures 2–4, we may also conjecture that each addi-
tional instance from which items are missing, re-
quires about two additional instances to compen-
sate the reduction in detection quality (note the
different scales on the instance axis!). This is also
plausible, since each item missing from one addi-
tional instance effectively removes an instance (as
it removes as many events as an instance contains)
and since the removals are distributed over multiple
instances, additional compensation is needed. Fur-
thermore, we see that we achieve reliable detection
even if items are missing from up to about one quar-
ter of the instances of a pattern.

In summary, our methods appear to work very
well, given how little structure is present in the data,
especially for larger values of ν. If our method de-
tects something at all (which is the case as soon as
there is structure in the data that cannot be ex-
plained as a chance event), it is almost always re-
lated to the actual parallel episode, and most often
the exact parallel episode, provided the number of
instances is large enough.

7. Conclusion

In this paper, we presented a method to detect
parallel episodes in point processes in the presence
of both temporal imprecision and selective partic-
ipation. This method is based on finding (par-
tial) patterns with the CoCoNAD methodology and
then trying to combine these patterns by finding
a densely connected sub-hypergraph in the hyper-
graph that is induced by these patterns on the set of
items. Our extensive experiments demonstrate that
the method works very well, although about two

additional instances are needed to compensate each
item missing from one additional instance. This is
not surprising, though, considering the loss of infor-
mation that results from the missing items. Rather
it is surprising that only two additional coincidences
are enough to allow fairly reliable detection.

Software

An implementation of the CoCoNAD algorithm in
Python and in C (as a stand-alone program and as
a Python extension library) can be found at

http://www.borgelt.net/coconad.html and
http://www.borgelt.net/pycoco.html.

A Java graphical user interface is available at
http://www.borgelt.net/cocogui.html.

The scripts with which we executed our experiments
as well as the complete result diagrams (all param-
eter combinations) have been made available at

http://www.borgelt.net/hypernad.html.

Acknowledgments

The work presented in this paper was partially sup-
ported by the Spanish Ministry for Economy and
Competitiveness (MINECO Grant TIN2012-31372)
and by the Government of the Principality of As-
turias (Programa Asturias Grant CT14-05-2-06).

References

[1] C. Borgelt. Frequent Item Set Mining. Wi-
ley Interdisciplinary Reviews (WIREs): Data
Mining and Knowledge Discovery 2:437–456
(doi:10.1002/widm.1074). J. Wiley & Sons,
Chichester, United Kingdom 2012

[2] C. Borgelt and D. Picado-Muiño. Finding Fre-
quent Synchronous Events in Parallel Point

Processes. Proc. 12th Int. Symposium on Intel-
ligent Data Analysis (IDA 2013, London, UK),
116–126. Springer-Verlag, Berlin/Heidelberg,
Germany 2013

[3] C. Borgelt and D. Picado-Muiño. Simple Pat-
tern Spectrum Estimation for Fast Pattern Fil-
tering with CoCoNAD. Proc. 13th Int. Sympo-
sium on Intelligent Data Analysis (IDA 2014,
Leuven, Belgium), 37–48. Springer-Verlag,
Berlin/Heidelberg, Germany 2014

[4] M. Fiedler and C. Borgelt. Subgraph Support
in a Single Graph. Proc. IEEE Int. Workshop
on Mining Graphs and Complex Data, 399–404.
IEEE Press, Piscataway, NJ, USA 2007

[5] J. Høastad. Clique is Hard to Approximate
within n1−e. Acta Mathematica 182:105–142.
Mittag–Leffler Institute, Stockholm, Sweden
1999

[6] D.O. Hebb. The Organization of Behavior.
J. Wiley & Sons, New York, NY, USA 1949

[7] R.M. Karp. Reducibility among Combinatorial
Problems. In: R.E. Miller and J.W. Thatcher
(eds.) Complexity of Computer Computations,
85–103. Plenum Press, New York, NY, USA
1972

[8] S. Laxman, P.S. Sastry, and K. Unnikrishnan.
Discovering Frequent Episodes and Learning
Hidden Markov Models: A Formal Connec-
tion. IEEE Trans. on Knowledge and Data En-
gineering 17(11):1505–1517. IEEE Press, Pis-
cataway, NJ, USA 2005

[9] S. Louis, C. Borgelt, and S. Grün. Generation
and Selection of Surrogate Methods for Cor-
relation Analysis. In: S. Grün and S. Rotter
(eds.) Analysis of Parallel Spike Trains, 359–
382. Springer-Verlag, Berlin, Germany 2010

[10] H. Mannila, H. Toivonen, and A. Verkamo.
Discovery of Frequent Episodes in Event Se-
quences. Data Mining and Knowledge Discov-
ery 1(3):259–289. Springer, New York, NY,
USA 1997

[11] D. Picado-Muiño, C. Borgelt, D. Berger,
G.L. Gerstein, and S. Grün. Finding Neu-
ral Assemblies with Frequent Item Set Min-
ing. Frontiers in Neuroinformatics 7:article 9
(doi:10.3389/fninf.2013.00009). Frontiers Me-
dia, Lausanne, Switzerland 2013

[12] D. Picado-Muiño and C. Borgelt. Frequent
Itemset Mining for Sequential Data: Syn-
chrony in Neuronal Spike Trains. Intelligent
Data Analysis 18(6):997-1012. IOS Press, Am-
sterdam, Netherlands 2014

[13] N. Tatti. Significance of Episodes Based on
Minimal Windows. Proc. 9th IEEE Int. Conf.
on Data Mining (ICDM’09, Miami, FL, USA),
513–522. IEEE Press, Piscataway, NJ, USA
2009

[14] E. Torre, D. Picado-Muiño, M. Denker,
C. Borgelt, and S. Grün. Statistical Eval-
uation of Synchronous Spike Patterns Ex-

tracted by Frequent Item Set Mining. Frontiers
in Computational Neuroscience, 7:article 132
(doi:10.3389/fninf.2013.00132). Frontiers Me-
dia, Lausanne, Switzerland 2013

[15] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo,
and M. Tsiarli. Denser than the Densest Sub-
graph: Extracting Optimal Quasi-Cliques with
Quality Guarantees. Proc. 19th ACM SIG-
MOD Int. Conf. on Knowledge Discovery and
Data Mining (KDD 2013, Chicago, IL), 104–
112. ACM Press, New York, NY, USA 2013

[16] N. Vanetik, E. Gudes, and S.E. Shimony.
Computing Frequent Graph Patterns from
Semistructured Data. Proc. IEEE Int. Conf.
on Data Mining, 458–465. IEEE Press, Piscat-
away, NJ, USA 2002

[17] M.J. Zaki, S. Parthasarathy, M. Ogihara, and
W. Li. New Algorithms for Fast Discovery
of Association Rules. Proc. 3rd Int. Conf.
on Knowledge Discovery and Data Mining
(KDD 1997, Newport Beach, CA), 283–296.
AAAI Press, Menlo Park, CA, USA 1997

