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Abstract – In recent years several algorithms for mining
frequent subgraphs in graph databases have been proposed,
with a major application area being the discovery of frequent
substructures of biomolecules. Unfortunately, most of these
algorithms still struggle with fairly long execution times if
larger substructures or molecular fragments are desired. In
this paper we describe two advanced pruning strategies —
equivalent sibling pruningandperfect extension pruning—
that can be used to speed up the MoFa algorithm (introduced
in [2]) in the search for closed molecular fragments, as we
demonstrate with experiments on the NCI’s HIV database.

Keywords: molecular fragment, closed fragment, graph
mining, pruning, perfect extension.

1 Introduction
A frequent task in biochemistry is the search for com-

mon features in large sets of molecules. Examples are drug
discovery, where one is interested in identifying properties
shared by molecules that have been classified as “active”
w.r.t., for example, the protection of human cells against
a virus, and compound synthesis, where one tries to iden-
tify properties that enable or inhibit the synthesis of new
molecules, so that one can predict the chances for a success-
ful synthesis.

Since the features one may use to describe molecules are
manifold, there are approaches in abundance, ranging from
simple one-dimensional measurements to highly complex
thousand-dimensional descriptors. The molecular weight
and the number of hydrogen donors or acceptors are exam-
ples of simple features. More complex ones include binary
vectors, which can be several thousand bits long with each bit
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representing a specific constellation of atoms like aromatic
rings or amino groups, as well as shape descriptors that try
to capture geometric properties of a molecule.

In this paper we focus on an approach that models
molecules as attributed graphs, thus taking the connection
structure, though not the 3-dimensional structure into ac-
count. The resulting set of graphs is then searched for com-
mon subgraphs, that is, molecular fragments, that appear
with a user-specified minimum frequency. For this approach
several algorithms have been proposed recently, with many
of them based on methods developed for association rule
mining. In particular, the Apriori algorithm [1] and the Eclat
algorithm [13] are taken as starting points. The general ideas
of these algorithms can be transferred to molecular substruc-
ture mining, even though the fact that the input consists of
graphs instead of sets poses some problems. Examples of
algorithms developed in this way are MolFea [6], FSG [7],
gSpan [12], MoFa [2] and FFSM [5]. Other approaches rely,
for instance, on principles from inductive logic programming
[3] and describe the graph structure by logical expressions.

A common problem of all approaches is that the task is
highly complex and therefore careful optimization is neces-
sary to achieve bearable execution times. In this paper we
consider optimizations for the MoFa algorithm [2], which
consist in two advanced pruning strategies, namelyequiva-
lent sibling pruningand perfect extension pruning. These
methods can lead to considerable speed-ups in the search for
closed molecular fragments, with the latter being particularly
useful when the considered fragments become larger.

2 Molecular Fragment Mining
As stated above, the algorithm presented in [2] represents

molecules as attributed graphs. It then carries out a depth
first search on a tree of fragments (Eclat-based approach).
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Figure 1: The amino acids clycin, cystein and serin.
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Figure 2: The search
tree for the amino
acids example.

Going down one level in this search tree means extending a
fragment by adding a bond and maybe an atom to it. For each
fragment a list of embeddings into the available molecules is
maintained, from which the lists of embeddings of its exten-
sions can easily be constructed. As a consequence, expensive
re-embeddings of fragments are not necessary. The support
of a fragment, that is, the number of molecules it is contained
in, is then determined by simply counting the number of dif-
ferent molecules the embeddings refer to. If the support of
a fragment is high in the set of active molecules and low in
the set of inactive molecules it is reported as a discriminative
fragment.

The important ingredients of the algorithm are different
search tree pruning methods, which can be grouped into
three categories:size based pruning, support based prun-
ing, andstructural pruning. Among these the latter is the
most important and most complicated one. It is based on a
set of rules that defines a local order of the extensions of a
fragment, which is used to avoid redundant searches. (See
[2] for details.)

Since the way in which the search tree is traversed is very
important for the following explanations, let us briefly dis-
cuss a simple example. Figure 1 shows the amino acids
clycin, cystein and serin with hydrogens and charges ne-
glected. The upper part of the tree (or forest if the empty
fragment at the root is removed) that is traversed by our al-
gorithm for these molecules is shown in Figure 2. The first
level contains individual atoms, the second connected pairs
and so on. The dots indicate subtrees that are not depicted in
order to keep the figure understandable. The numbers next
to these dots state the number of fragments in these subtrees,
giving an indication of the total size of the tree.

The order, in which the atoms on the first level of the
tree are processed, is determined by their frequency of oc-
currence in the molecules. The least frequent atom type is
considered first. Therefore the algorithm starts on the left by

embedding a sulfur atom into the example molecules. That
is, the molecules are searched for sulfur atoms and their lo-
cations are recorded. In our example there is only one sul-
fur atom in cystein, which leads to one embedding of this
(one atom) fragment. This fragment is then extended (depth
first search) by a single bond and a carbon atom (-C ), which
produces the fragmentS-C on the next level. All other ex-
tensions of fragments that are generated by going down one
level in the tree are created in an analogous way.

If a fragment allows for more than one extension (as is the
case, for instance, for the fragmentsO-C and S-C-C-C ),
we sort them according to the local ordering rules mentioned
above (see [2] for details). The main purpose of this local
order is to prevent certain extensions to be generated, in or-
der to avoid redundant searches. For instance, the fragment
S-C-C-C-O is not extended by adding a single bond to a
nitrogen atom at the second carbon atom, because this exten-
sion has already been considered in the subtree rooted at the
left sibling of this fragment.

Furthermore, in the subtree rooted at the nitrogen atom,
extensions by a bond to a sulfur atom are ruled out, since all
fragments containing a sulfur atom have already been con-
sidered in the tree rooted at the sulfur atom (leftmost branch).
Similarly, neither sulfur nor nitrogen are considered in the
tree rooted at the oxygen atom, and the rightmost tree con-
tains fragments that consist of carbon atoms only.

Up to now we only described how the search tree is orga-
nized, i.e., the manner in which the candidates for frequent
fragments are generated and the order in which they are con-
sidered. However, in an application this search tree is not
traversed completely—that would be much too expensive for
a real world database. Since a reported fragment must be fre-
quent and extending a fragment can only reduce the support
(because only fewer molecules can contain it), subtrees can
be pruned as soon as the support falls below a user-defined
threshold (support based pruning). Furthermore, the depth
of the tree may be restricted, thus limiting the size of the
fragments to be generated (size based pruning).

It should be noted that the approach can easily be extended
to find discriminative fragments, i.e., fragments that are fre-
quent in the active molecules and infrequent in a comple-
mentary set of inactive molecules, defined formally by user-
specified lower and upper support thresholds, even though
the latter cannot be used to prune the search tree. (See [2]
for details.)

3 Advanced Pruning Strategies
As described in [2], the structural pruning scheme em-

ployed in MoFa cannot rule out all redundant search. How-
ever, even though there is no simple way to suppressall
redundant search, there are some possibilities for improve-
ment, two of which we describe in this section. The first we
call equivalent sibling pruning, which checks for equivalent
children of a search tree node, the second isperfect exten-
sion pruning, which follows only one branch of the search
tree if the corresponding extension satisfies certain criteria.
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Figure 3: Some (fictitious) example molecules.
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Figure 4: Search tree for the molecules in Figure 3.

Note that the first can be applied even if the search is not
restricted to closed fragments, while the second presupposes
that non-closed fragments can be discarded.

3.1 Closed Molecular Fragments
The notion of aclosed fragmentis derived from the corre-

sponding notion of aclosed item set, which is defined as an
item set no superset of which has the same support, i.e., is
contained in the same number of transactions. Analogously,
a closed fragmentis a fragment no superstructure of which
has the same support, i.e., is contained in the same num-
ber of molecules. As an example consider the three exam-
ple molecules shown in Figure 3 and the corresponding (un-
pruned) MoFa search tree (starting from sulfur as a seed)
shown in Figure 4: the closed fragments (for a minimum
support of two molecules, i.e., 66%) are circled.

As for item sets, restricting the search for molecular frag-
ments to closed fragments does not lose any information: all
frequent fragments can be constructed from the closed ones
by simply forming all substructures of closed fragments that
are not closed fragments themselves and assigning to them
as their support the maximum of the support values of those
closed fragments of which they are substructures. Conse-
quently, restricting the search to closed fragments is a very
convenient way to reduce the size of the output. In addition,
chemists are usually not interested in all frequent fragments,
but only in the closed ones, presumably because they contain
all relevant information without redundancy.

Note that in [2] we already restricted the search to closed
fragments, even though we did not use the termclosed frag-
mentin that paper. Recently [12] studied the advantages of a
restriction to closed fragments in more detail. The main ad-
vantage of restricting the search to closed fragments, certain
pruning techniques become applicable, which can speed up
the search considerably.
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Figure 5: Three phenols: phenol, p-cresol, and catechol.
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Figure 6: Equivalent extended embeddings.

3.2 Equivalent Sibling Pruning
In order to suppress all redundant search, one would have

to check whether any two subtrees of the search tree have
the same fragment as their root (or a fragment which only
differs in the restrictions placed on its possible extensions),
so that only one (namely the least restricted one) is actually
searched. Such a general check, however, is costly, because
one would have to store all fragments that have been con-
sidered in the search so far. In addition, one would need
an efficient way of checking these stored fragments for an
equivalent one. Finally, it is difficult to find out whether a
subtree to be searched is the least restricted one appearing in
the whole search tree, even though the depth first traversal
applied in MoFa always considers the least restricted sibling
node first.

However, what can be checked fairly easily is whethertwo
sibling nodesin the search tree correspond to fragments that
are equivalent (represent the same substructure) and differ
only in the restrictions placed on their possible extensions.
That such a situation can actually occur can be seen from the
example molecules shown in Figure 5. Suppose we start the
search by embedding a benzene ring into these molecules.
Since such a ring exhibits a high symmetry (which is a nec-
essary prerequisite for equivalent siblings), it can be embed-
ded into each of the molecules in twelve different ways (the
ring can be rotated to six positions and it can be traversed in
two directions). Consider now the extensions of this benzene
ring: each of the twelve embeddings is extended by a bond
and an oxygen atom. This leads to twelve new fragments, all
of which are equivalent and differ only in the label of the ring
atom that was extended (see Figure 6 for examples). Obvi-
ously it suffices in this situation to consider the fragment in
which the ring atom with the smallest number was extended.
All other fragments must lead to redundant search, because
they allow for a subset of the possible extensions, but no ad-
ditional ones.

Since the MoFa algorithm considers sibling nodes w.r.t. a
local order that is based on the extension information of the
parent fragment (i.e. bond and atom type, number of the atom
the bond is incident to) and processes the least restricted ex-
tensions first, it is fairly easy to implement the described



pruning approach: for each node its preceding sibling nodes
are checked for equivalence and if an equivalent sibling is
found, the current node is skipped.

The equivalence test is carried out as follows: for the
fragment corresponding to the current node an arbitrary em-
bedding into an arbitrary molecule is selected. In the cor-
responding molecule all bonds and atoms belonging to this
embedding are marked and all other bonds and atoms are un-
marked. Then all embeddings of the fragment corresponding
to a sibling node that is to be checked for equivalence are tra-
versed. For each of these embeddings it is checked whether
it refers only to marked atoms and bonds, that is, whether it
essentially represents the same substructure. If such an em-
bedding can be found, the two fragments are equivalent and
consequently the current node (the extensions of which are
more severely restricted than those of its already processed
sibling) can be skipped.

Note that it suffices to check one molecule, because if
there are identical embeddings into one molecule there must
be identical embeddings into all molecules referred to by
the fragment. As a consequence the check is comparatively
cheap and thus does not degrade performance much even if
the pruning cannot be carried out.

3.3 Perfect Extension Pruning
Perfect extension pruning is based on the observation that

sometimes there is a fairly large common fragment inall cur-
rently considered molecules. As long as the search has not
grown a fragment to this maximal common one, it is not nec-
essary to branch in the search tree.

From the definition of a closed fragment it is clear that if
there is a common substructure inall currently considered
molecules of which the current fragment is only a part, then
any extension that does not grow the current fragment to-
wards the maximal common one can be postponed until this
maximal common fragment has been reached. The reason is,
obviously, that the maximal common fragment is part of all
closed fragments that can be found in the currently consid-
ered set of molecules. Consequently, it suffices to follow one
path in the search tree that leads to this maximal common
fragment and to start branching only from there.

As an example consider again the set of molecules shown
in Figure 3. If the search is seeded with a single sulfur atom,
considering extensions by a single bond starting at the sulfur
atom and leading to an oxygen atom can be postponed un-
til the structureS-C-N common to all molecules has been
grown (provided that the extensions of this maximal com-
mon fragment are not restricted in any way — see below).

Technically, the search tree pruning is based on the notion
of a perfect extension. An extension of a fragment, consist-
ing of a bond and possibly an atom (if the bond does not
close a ring), is calledperfect if all of its embeddings can
be extended in exactly the same way by this bond and atom.
(Note that there may be multiple ways of extending an em-
bedding by this bond and atom. In this case all embeddings
must be extendable in the same number of ways.) If there is
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Figure 7: Search tree with perfect extension pruning.

a perfect extension of a fragment, all closed fragments can,
in principle, be found by searching only the corresponding
branch.

There is, however, a minor complication, because perfect
extension pruning interferes with the normal structural prun-
ing done in MoFa. Normal structural pruning prevents ex-
tensions of a fragment by bonds that start from atoms with
smaller numbers than the one extended in the preceding step.
However, a perfect extension should not lead to such a re-
striction, because otherwise some search results are lost.

As an example consider again the search tree shown in
Figure 4. If we simply confined the search to the subtree
rooted at the fragmentS-C-N , we would lose the fragment
O-S-C-N in the left branch. The reason is that the exten-
sion ofS-C to S-C-N , due to the normal structural pruning
rules, prevents an extension of the sulfur atom in this subtree,
because an atom with a higher number, namely the carbon
atom, has been extended in the preceding step.

However, a perfect extension should not restrict possible
future extensions of the fragment in this way. Therefore the
extension information of a fragment obtained by a perfect
extension are set to those of its parent fragment, bypassing
the normal structural pruning rules. In the considered exam-
ple, this allows us to extend the fragmentS-C-N by bonds
starting from the sulfur atom and thus we get the search
tree shown in Figure 7, in which the fragmentO-S-C-N is
found.

When it comes to implementing perfect extension prun-
ing, one should bear in mind that checking whether an exten-
sion is perfect by testing the extensions of all embeddings is
costly. Therefore we precede the actual test by cheap tests in
order to, if possible,fail earlyorsucceed early. The ideas un-
derlying these tests are fairly simple: an extension leading to
a fragment cannot be perfect (1) if the number of molecules
referred to by the fragment differs from those referred to by
its parent and (2) if the number of embeddings of the frag-
ment is not an integer multiple of the number of embeddings
of its parent. On the other hand, if these tests do not indicate
that the extension is not perfect, we can immediately con-
clude that it is perfect (1) if the fragment refers only to one
molecule or (2) the number of molecules referred to equals
the number of embeddings (i.e., there is exactly one embed-
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Table 1: Effects of pruning on the steroids data set.

pruning # nodes # frags. # embs.

neither 58134 58134 87593
equivalent sibling 26768 27565 42926
perfect extension 4260 6766 16494
both 1561 3035 7839

ding per molecule). Only if these test do not yield a decision
we actually carry out the costly test whether each parent em-
bedding leads to the same number of extended embeddings.

Note that it is actually necessary to count the embeddings
per molecule. Checking only whether the total number of
embeddings into all molecules coincides with (or is an in-
teger multiple of) the parent embeddings does not suffice
as can be seen from the example shown in Figure 8. Even
though the total number of embeddings is the same in the
right branch, the extension is not perfect. The left extension
is not perfect, because the number of extended embeddings,
even though the same for each parent embedding, is reduced
from the number of extensions of its parents. This indicates
that some symmetry has been destroyed by the extension,
which therefore cannot be perfect.

4 Experiments
In order to demonstrate the effects of the two pruning

approaches, we carried out experiments on two data sets.
The first is a very small data set consisting of 17 steroid
molecules.1 The effects of the two pruning methods are
shown in Table 1 (all experiments were carried out with
a minimum support of one molecule). As can be seen,
both pruning methods have considerable effects, with those
of perfect extension pruning being much more pronounced.
However, this is presumable due to the very low minimum
support, which makes perfect extension pruning highly ef-
fective. At higher support values equivalent sibling pruning
seems to be more effective (see below).

In a second test we ran the program on the well-known
HIV data set available from the National Cancer Institute [8].
This library contains about 44,000 molecules tested for their
activity against the HI-virus, which are grouped into three
classes: about 400 belong to class CA (confirmed active),
about 1000 to CM (confirmed medium active) and the rest
belongs to CI (confirmed inactive). In the experiments we
report here, however, we neglected these class assignments

1See Section 6 below for a download URL.
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Figure 9: Execution times on the NCI’s HIV data.
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Figure 10: Numbers of nodes on the NCI’s HIV data.

and tried to find common substructures of all molecules at
minimum support thresholds ranging from 0.7 to 4%. We
used an AMD XP 2000+ system with 756 MB RAM running
S.u.S.E. Linux 9.1 and Java 1.4.2.

The results are shown in Figures 9 and 10. The former
states the decimal logarithm of the execution time in sec-
onds, the latter the decimal logarithm of the number of vis-
ited nodes in the search tree. Each diagram contains four
graphs: The black line (which in Figure 9 is almost, in Fig-
ure 10 completely hidden under the red line) corresponds
to no pruning. The blue line (which in Figure 9 is almost,
in Figure 10 completely hidden under the green line) corre-
sponds to equivalent sibling pruning. Finally, the red line
corresponds to perfect extension pruning and the green line
to both pruning methods combined.

As can be seen from Figure 9, equivalent sibling prun-
ing yields the highest gains for higher support values, while
perfect extension pruning is more effective at lower support
values. It is interesting to node that the effects of perfect ex-
tension pruning are not achieved by considerably reducing
the number of search tree nodes as a comparison with Fig-
ure 10 shows.

5 Conclusions
In this paper we presented two advanced pruning strate-

gies for the MoFa molecular fragment mining algorithm:
equivalent sibling pruningand perfect extension pruning.
Especially the second leads to a considerable acceleration of



the search for closed fragments, as the experiments demon-
strate. Its drawback, namely that it is only applicable if
closed fragments suffice is usually negligible, since chemists
are rarely interested in non-closed fragments. The experi-
ments show that both methods are useful and lead to consid-
erable speed-ups.

6 Software
An implementation of the described molecular fragment

mining algorithm can be retrieved free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/moss.html
http://www.inf.uni-konstanz.de/bioml/projects/mofa/

Note that this implementation does not support wildcard
atoms (as described in [4]). The version supporting such an
option is property of Tripos, Inc., USA.
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